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Theory of Algorithms for Unconstrained
Optimization

Jorge Nocedal”

1. Introduction

A few months ago, while preparing a lecture to an audience that included engineers and
numerical analysts, I asked myself the question: from the point of view of a user of
nonlinear optimization routines, how interesting and practical is the body of theoretical
analysis developed in this field? To make the question a bit more precise, I decided to
select the best optimization methods known to date — those methods that deserve to be
in a subroutine library — and for each method ask: what do we know about the behavior
of this method, as implemented in practice? To make my task more tractable, I decided
to consider only algorithms for unconstrained optimization.

I was surprised to find that remarkable progress has been made in the last 15 years in
the theory of unconstrained optimization, to the point that it is reasonable to say that
we have a good understanding of most of the techniques used in practice. It is reassuring
to see a movement towards practicality: it is now routine to undertake the analysis under
realistic assumptions, and to consider optimization algorithms as they are implemented
in practice. The depth and variety of the theoretical results available to us today have
made unconstrained optimization a mature field of numerical analysis.

Nevertheless there are still many unanswered questions, some of which are fundamental.
Most of the analysis has focused on global convergence and rate of convergence results,
and little is known about average behavior, worst case behavior and the effect of rounding
errors. In addition, we do not have theoretical tools that will predict the efficiency of
methods for large scale problems.

In this article I will attempt to review the most recent advances in the theory of un-
constrained optimization, and will also describe some important open questions. Before
doing so, I should point out that the value of the theory of optimization is not limited to
its capacity for explaining the behavior of the most widely used techniques. The question
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posed in the first paragraph: “what do we know about the behavior of the most popular
algorithms?” is not the only important question. We should also ask how useful is the
theory when designing new algorithms, i.e. how well can it differentiate between efficient
and inefficient methods. Some interesting analysis will be discussed in this regard. We
will see that the weaknesses of several classical algorithms that have fallen out of grace,
such as the Fletcher-Reeves conjugate gradient method and the Davidon-Fletcher-Powell
variable metric method, are fairly well understood. I will also describe several theoretical
studies on optimization methods that have not yet enjoyed widespread popularity, but
that may prove to be highly successful in the future.

I have used the terms “theoretical studies” and “convergence analysis”, without stating
precisely what I mean by them. In my view, convergence results fall into one of the four
following categories.

1 Global convergence results. The questions in this case are: will the iterates converge
from a remote starting point? Are all cluster points of the set of iterates solution
points?

2 Local convergence results. Here the objective is to show that there is a neighborhood
of a solution and a choice of the parameters of the method for which convergence
to the solution can be guaranteed.

3 Asymptotic rate of convergence. This is the speed of the algorithm, as it converges
to the solution (which is not necessarily related to its speed away from the solution).

4 Global efficiency or global rate of convergence. There are several measures; one of
them estimates the function reduction at every iteration. Another approach is to
study the worst case global behavior of the methods.

Most of the literature covers results in categories (1)-(3). Global efficiency results,
category (4), can be very useful but are difficult to obtain. Therefore it is common
to restrict these studies to convex problems (Nemirovsky and Yudin, 1983), or even to
strictly convex quadratic objective functions (Powell, 1986). Global efficiency is an area
that requires more attention and where important new results can be expected.

To be truly complete, the four categories of theoretical studies mentioned above should
also take into account the effect of rounding errors, or noise in the function (Hamming
1971). However, we will not consider these aspects here, for this would require a much
more extensive survey. The term global optimization is also used to refer to the problem
of finding the global minimum of a function. We will not discuss that problem here, and
reserve the term “global convergence” to denote the properties described in 1.

2. The Most Useful Algorithms for Unconstrained Optimization

Since my goal is to describe recent theoretical advances for practical methods of opti-
mization, I will begin by listing my selection of the most useful optimization algorithms.
Tinclude references to particular codes in subroutine libraries instead of simply referring
to mathematical algorithms. However the routines mentioned below are not necessarily
the most efficient implementations available, and are given mainly as a reference. Most
of the algorithms listed below are described in the books by (Dennis and Schnabel, 1983),
(Fletcher, 1987) and (Gill, Murray and Wright, 1981).
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. The conjugate gradient method, or extensions of it. Conjugate gradient methods
are useful for solving very large problems and can be particularly effective on some
types of multiprocessor machines. An efficient code implementing the Polak-Ribiére
version of the conjugate gradient method, with restarts, is the routine VA14 of
the Harwell subroutine library (Powell, 1977). A robust extension of the conjugate
gradient method, requiring a few more vectors of storage, is implemented in the
routine CONMIN (Shanno and Phua, 1980).

. The BFGS variable metric method. Good line search implementations of this pop-
ular variable metric method are given in the IMSI, and NAG libraries. The BFGS
method is fast and robust, and is currently being used to solve a myriad of opti-
mization problems.

° The partitioned quasi-Newton method for large scale optimization. This method,
developed by (Griewank and Toint, 1982c), is designed for partially-separable func-
tions. These types of functions arise in numerous applications, and the partitioned
quasi-Newton method takes good advantage of their structure. This method is
implemented in the Harwell routine VE08, and will soon be superseded by a more
general routine of the Lancelot package which is currently being developed by Conn,
Gould and Toint.

. The limited memory BFGS method for large scale optimization. This method resem-
bles the BFGS method but avoids the storage of matrices. It is particularly useful
for large and unstructured problems. It is implemented in the Harwell routine VA15
(Liu and Nocedal, 1989).

. Newton’s method. A good line search implementation is given in the NAG library,
whereas the IMSL library provides a trust region implementation (Dennis and Schn-
abel, 1983), (Gay, 1983). A truncated Newton method for large problems, which
requires only function and gradients, is given by (Nash, 1985).

° The Nelder-Meade simplex method for problems with noisy functions. An imple-
mentation of this method is given in the IMSL library.

In the following sections I will discuss recent theoretical studies on many of these
methods. I will assume that the reader is familiar with the fundamental techniques of
unconstrained optimization, which are described, for example in the books by (Dennis
and Schnabel, 1983), (Fletcher, 1987) and (Gill, Murray and Wright, 1981). We will con-
centrate on line search methods because most of our knowledge on trust region methods
for unconstrained optimization was obtained before 1982, and is described in the excellent
survey papers by (Moré and Sorensen, 1984) and (Moré, 1983). However in section 8 we
will briefly compare the convergence properties of line search and trust region methods.

3. The Basic Convergence Principles

One of the main attractions of the theory of unconstrained optimization is that a
few general principles can be used to study most of the algorithms. In this section,
which serves as a technical introduction to the paper, we describe some of these basic
principles. The analysis that follows gives us a flavor of what theoretical studies on line
search methods are, and will be frequently quoted in subsequent sections.
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Our problem is to minimize a function of n variables,

min f(z), (3.1)
where f is smooth, and its gradient g is available. We consider iterations of the form
Th41 = T + apdy, (3.2)

where di is a search direction and «j is a steplength obtained by means of a one-
dimensional search. In conjugate gradient methods the search direction is of the form

dr = —gi + Brdi—1, (3.3)

where the scalar 8, is chosen so that the method reduces to the linear conjugate gradient
method when the function is quadratic and the line search is exact. Another broad class
of methods defines the search direction by

dp = =B} g (3.4)
where By is a nonsingular symmetric matrix. Important special cases are given by:
B, = I  (the steepest descent method)
B, = V?f(zy) (Newton’s method).

Variable metric methods are also of the form (3.4), but in this case By is not only a
function of z, but depends also on Br_; and zp_q.

All these methods are implemented so that dj is a descent direction, i.e. so that
d;‘fgk < 0, which guarantees that the function can be decreased by taking a small step
along dj. For the Newton-type methods (3.4) we can ensure that dj, is a descent direction
by defining By to be positive definite. For conjugate gradient methods obtaining descent
directions is not easy and requires a careful choice of the line search strategy. Throughout
this section we will assume that the optimization method is of the form (3.2) where d,
is a descent direction.

The convergence properties of line search methods can be studied by measuring the
goodness of the search direction and by considering the length of the step. The quality of
the search direction can be studied by monitoring the angle between the steepest descent
direction —g; and the search direction. Therefore we define

cos O := —gi di/[|gxl| [|dxll- (3.5)

The length of the step is determined by a line search iteration. A strategy that will
play a central role in this paper consists in accepting a positive steplength ay if it satisfies
the two conditions:

flar + agdy) f(x) + oraggl dy, (3.6)
g(xp + apdy) dy o2t dy, (3.7)

where 0 < 01 < o9 < 1. The first inequality ensures that the function is reduced
sufficiently, and the second prevents the steps from being too small. We will call these
two relations the Wolfe conditions. 1t is easy to show that if dj is a descent direction, if f
is continuously differentiable and if f is bounded below along the ray {zj + adi| a > 0},
then there always exist steplengths satisfying (3.6)-(3.7) (Wolfe, 1969, 1971). Algorithms

<
>
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that are guaranteed to find, in a finite number of iterations, a point satisfying the Wolfe
conditions have been developed by Lemaréchal (1981), Fletcher (1987) and Moré and
Thuente (1990).

This line search strategy allows us to establish the following useful result due to Zou-
tendijk. At first, the result appears to be obscure, but its power and simplicity will
soon become evident. We will give a proof so that the reader can have a clear idea of
how it depends on the properties of the function and line search. This result was essen-
tially proved by Zoutendijk (1970) and Wolfe (1969 and 1971). The starting point of the
algorithm is denoted by x.

Theorem 3.1 Suppose that f is bounded below in R™ and that f is continuously
differentiable in a neighborhood N of the level set £ := {z : f(2) < f(21)}. Assume also

that the gradient is Lipschitz continuous, i.e., there exists a constant L > 0 such that

lg(z) = g(2)]| < Lflx — &), (3.8)

for all ,& € M. Consider any iteration of the form (3.2), where dj, is a descent direction
and ay, satisfies the Wolfe conditions (3.6)-(3.7). Then

> cos® O ||gxl|® < . (3.9)
k>1

Proof. From (3.7) we have that
(gr41 = g6)"di > (03 = 1)gi" dy.
On the other hand, the Lipschitz condition (3.8) gives
(gr+1 — gi) " di < anL||dy]*.

Combining these two relations we obtain

0'2—1

—)gi" d/ i )* (3.10)

Using the first Wolfe condition (3.6) and (3.10), we have
g9 — 1

—)gx" di)? /[l di]|*.
We now use definition (3.5) to write this relation as

Fea1 < fu + ccos O ||gxl?,

where ¢ = 0¢(0y — 1)/ L. Summing this expression and recalling that f is bounded below
we obtain

ag > (

o1 < fr + o1(

o0
Z cos? HngkHQ < oo,
k=1

which concludes the proof. a

We shall call inequality (3.9) the Zoutendijk condition. Let us see how Zoutendijk’s
condition can be used to obtain global convergence results. Suppose that an iteration of
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the form (3.2) is such that

cosfy > 6 >0, (3.11)
for all k. Then we conclude directly from (3.9) that
kh_}rgo lgx|| = 0. (3.12)

In other words, if the search direction does not tend to be orthogonal to the gradient, then
the sequence of gradients converges to zero. This implies, for example that the method
of steepest descent, with a line search satisfying the Wolfe conditions, gives (3.12), since
in this case we have cosfp = 1 for all k. Thus to make the steepest descent method
“globally convergent” it is only necessary to perform an adequate line search.

For line search methods of the form (3.2), the limit (3.12) is the best type of global
convergence result that can be obtained — we cannot guarantee that the method converges
to minimizers, but only that it is attracted by stationary points.

Consider now the Newton-type method (3.2),(3.4), and assume that the condition
number of the matrices By is uniformly bounded, i.e. that for all k

1Bl 1B < A,
for some constant A > 0. Then from (3.5) we have that
cosfp > 1/A.

As before, we use Zoutendijk’s condition (3.9) to obtain the global convergence result
(3.12). We have therefore shown that Newton’s method or the variable metric methods
are globally convergent if the matrices By, are positive definite (which is needed for the
descent condition), if their condition number is bounded, and if the line search satisfies
the Wolfe conditions. For a more thorough discussion see (Ortega and Rheinboldt, 1970).

For some algorithms, such as conjugate gradient methods, it is not possible to show
the limit (3.12), but only a weaker result, namely

li]gninf lgx|| = 0. (3.13)

We can also obtain this type of result from Zoutendijk’s condition (3.9), but this time
the method of proof is contradiction. Suppose that (3.13) does not hold, which means
that the gradients remain bounded away from zero, i.e. there exists v > 0 such that for

all k

gkl = 7- (3.14)
Then from (3.9) we conclude that

cos b — 0. (3.15)

In other words, the algorithm can only fail, in the sense of (3.14), if the whole sequence
{cos 0} converges to 0. Therefore to establish (3.13) it suffices to show that a subsequence
{cos O, } is bounded away from zero.

For example, any line search method can be made globally convergent, in the sense of
(3.13), by interleaving steepest descent steps. To be more precise, consider any method
of the form (3.2) where dj is a descent direction for all k, and where oy is chosen to



THEORY OF ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION 7

satisfy the Wolfe conditions. Suppose, in addition, that at every m steps, where m is
some pre-selected integer, we define dy = —gi. Since for these steepest descent steps
cos §, = 1, the previous discussion shows that the limit (3.13) is obtained.

It would seem that designing optimization algorithms with good convergence properties
is easy, since all we need to ensure is that the search direction does not tend to become
orthogonal to the gradient, or that steepest descent steps are interleaved regularly. In-
deed, since the gradient g is always available, we can compute cos# at every iteration
and apply the following angle test: if cos 8 is less than some pre-selected constant, then
modify the search direction by turning it towards the steepest descent direction. Such an-
gle tests have been proposed many times in the literature, and ensure global convergence,
but are undesirable for the following reasons.

In addition to global convergence we would like the methods to converge rapidly. After
all, if all we want to achieve is global convergence we should be satisfied with the steepest
descent method. It is well-known, however, that steepest descent is very slow and that
much faster algorithms can be designed. A classical result of Dennis and Moré states
that the iteration (3.2) is superlinearly convergent if and only if

agdy = di + o(||d}]]), (3.16)

where d} is the Newton step (Dennis and Moré, 1974). Therefore to attain a fast rate
of convergence it is necessary that we approximate the Newton direction asymptotically.
An angle test may prevent us from doing so. For example, the BFFGS variable metric
method described in §5 can generate ill-conditioned approximations Bj of the Hessian.
It is difficult, however, to determine if this is undesirable or if the matrices B} are ap-
proximating well an ill-conditioned Hessian matrix. To decide this requires knowledge of
the problem that we do not possess. We have learned that it is preferable not to interfere
with the BFGS method and to let the matrices By evolve freely, because convergence is
usually obtained and the rate is superlinear.

By far the most substantial argument against angle tests is this: the best implemen-
tations of the methods listed in §2 do not need them; it has been found that other types
of safeguards are more effective. We will return to this.

(Dennis and Moré, 1977) prove a result that is of great practical value because it
suggests how to estimate the initial trial value in the line search of a variable metric
method. They show that for an iteration in which the the search directions approach
the Newton direction, the steplength aj = 1 satisfies the Wolfe conditions for all large
k, provided oy < 1/2. Thus the unit trial steplength should always be used in variable
metric methods.

Let us summarize what we have discussed so far. Zoutendijk’s condition plays a central
role when studying the global convergence properties of line search methods. Most of the
global convergence analyses use it explicitly or follow similar approaches. The Dennis-
Moré (3.16) condition is fundamental to the study of rates of convergence. It states that
a method is superlinearly convergent if and only if the direction and the length of the step
approximate those of Newton’s method, asymptotically. Many variable metric methods
are superlinearly convergent, and this is proved by simply verifying that (3.16) holds.

So far, we have only talked about one type of line search, namely the one satisfying
the Wolfe conditions, and it would be misleading to suggest that this is the only useful
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strategy. Indeed many convergence results can also be proved for other line searches,
as we will discuss in later sections. A popular strategy, called backtracking, consists of
successively decreasing the steplength, starting from an initial guess, until a sufficient
function reduction is obtained; see for example (Ortega and Rheinboldt, 1970). A back-
tracking line search is easy to implement and is well-suited for constrained problems.

Let us now discuss global efficiency analyses. One of the earliest results concerns the
steepest descent method, with exact line searches, when applied to quadratic problems.
This result is characteristic of global efficiency studies, which are established under very
restrictive assumptions, and yet provide useful insight into the methods.

Suppose that f is the quadratic function

fla)= %xTAac, (3.17)

where A is symmetric and positive definite. Consider the steepest descent method with
exact line searches

Tp1 = Tk — Gk, (3.18)
where
ar = gl gn/gn’ Ags. (3.19)
A simple computation (Luenberger, 1984) shows that
T 2
fop1 = |1 (9x_91) fr (3.20)

(9xT Agr)(grT A Lgp)

This gives the function reduction at each iteration, and it is interesting that we have
an equality. However this relation could not be used to estimate, a priori, how many
iterations will be required to obtain a certain function reduction because it depends on
gradient values which are unknown. Nevertheless, it is clear that the quotient in (3.20)
can be bounded in terms of quantities involving only the matrix A. To do this, we use
the Kantorovich inequality to obtain (Luenberger, 1984)

nggk 4A1An
(9xT Agi) (gt Ak=1gr) = (A + An)?

where Ay < ... < A, are the eigenvalues of A. By substituting this in (3.20) we obtain
the simple relation

A — A ]2
O e . .
Je41 < [/\n+/\1] Je (3.21)

This is the worst-case global behavior of the steepest descent method (3.18) - (3.19) on
the quadratic problem (3.17), but it can be argued that this is also the average behavior
(Akaike, 1959). Note that this global efficiency result also shows that asymptotic rate
of convergence of the sequence {f(z)} is linear, with a constant that depends on the
condition number of A. Clearly, if A\,,/A; is large, the term inside the square brackets in
(3.21) is close to 1 and convergence will be slow.

Does this analysis help our understanding of the steepest descent method with inexact
line searches on general nonlinear functions? The answer is definitely “yes”. If at the
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solution point z, the Hessian matrix is positive definite then, near x,, f can be approx-
imated well by a strictly convex quadratic, and the previous analysis is relevant - except
that an inexact line search can make matters worse. However, if the line search always
performs one quadratic interpolation, then the steplength will be exact asymptotically,
and one can show that the rate of convergence is linear with constant [\, — Xy / A, + /\1]2,
where Ay < ... < A, are now the eigenvalues of the Hessian sz(ac*).

This global efficiency result has been presented in some detail because it is illustrative
of such studies in optimization methods: a simple model problem is chosen, and by direct
computation, recurrence relations are established to determine the function reduction.
Such relations are difficult to obtain for general nonlinear functions, but Nemirovsky and
Yudin are able to derive several interesting results for convex functions. Their work is
described in the book (Nemirovsky and Yudin, 1983) and in subsequent papers. We will
now give a very brief description of their approach, to show its flavor.

Suppose that f is a strongly convex and continuously differentiable function. Suppose
also that the gradient satisfies the Lipschitz condition (3.8) for all z € R™. Let us denote
a lower bound on the smallest eigenvalue of the Hessian V2 f(z) by m. Nemirovsky and
Yudin define the global estimate of the rate of convergence on an iterative method as
a function h(zy — z.,m, L, k) :— R such that for any objective function f and for any
k > 1 we have

fo — fe <crh(er —ae,m, L, k),

where ¢q is a constant, k is the iteration number, L is the Lipschitz constant, and z, is
the solution point.

The faster the rate at which h converges to 0 as k — oo, the more efficient the method.
Nemirovsky and Yudin (see also Nesterov, 1988) show that there is a lower bound on the
rate of convergence of h.

Theorem 3.2 Consider an optimization method which, at every iteration k, evaluates
the function f and gradient g at Ny auxiliary points whose convex hull has dimension
less than or equal to [. Then for all k

Wy = 2w, L k) > calloy — ol min [([1+ 1]k)72, eV ESFD] (3.22)
where ¢; depends on m and L, and c¢3 is a constant.

In this framework, a method is optimal if its efficiency mapping h is bounded above by
the right hand side of (3.22), where ¢3 and c3 are allowed to be any constants. Nemirovsky
and Yudin show that the well-known conjugate gradient and variable metric methods are
not optimal, and (Nesterov, 1983) proposes a conjugate gradient method that achieves
the optimal bound. In this theoretical framework optimization algorithms are ranked
according to their worst case behavior. We will discuss this in more detail in later
sections.

This concludes our outline of some basic principles used in the theoretical analysis
of optimization methods. Two classical books giving an exhaustive treatment of this
subject are (Ostrowsky, 1966) and (Ortega and Rheinboldt, 1970). Much of what is
known about the theory of quasi-Newton methods is described in the survey paper by
(Dennis and Moré, 1977) and in Dennis and Walker (1981). More recent survey papers
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include (Dennis and Schnabel, 1987), (Schnabel, 1989), (Toint, 1986a) and (Powell, 1985).
In the following sections we focus on recent theoretical developments which are, to a great
extent, not covered in these articles.

4. Conjugate Gradient Methods

The introduction of the conjugate gradient method by Fletcher-Reeves, in the 1960s,
marks the beginning of the field of large scale nonlinear optimization. Here was a tech-
nique that could solve very large problems, since it requires storage of only a few vectors,
and could do so much more rapidly than the steepest descent method. The definition of a
large problem has changed drastically since then, but the conjugate gradient method has
remained one of the most useful techniques for solving problems large enough to make
matrix storage impractical. Numerous variants of the method of Fletcher and Reeves
have been proposed over the last 20 years, and many theoretical studies have been de-
voted to them. Nevertheless, nonlinear conjugate gradient methods are perhaps the least
understood methods of optimization.

The recent development of limited memory and discrete Newton methods have nar-
rowed the class of problems for which conjugate gradient methods are recommended.
Nevertheless, in my view, conjugate gradient methods are still the best choice for solving
very large problems with relatively inexpensive objective functions (Liu and Nocedal,
1989). They can also be more suitable than limited memory methods on several types of
multiprocessor computers (Nocedal, 1990).

The theory of conjugate gradient methods for nonlinear optimization is fascinating.
Unlike the linear conjugate gradient method for the solution of systems of equations,
which is known to be optimal (in some sense), some nonlinear conjugate gradient meth-
ods possess surprising, and sometimes bizarre properties. The theory developed so far
offers fascinating glimpses into their behavior, but our knowledge remains fragmentary.
I view the development of a comprehensive theory of conjugate gradient methods as one
of the outstanding challenges in theoretical optimization, and I believe that it will come
to fruition in the near future. This theory would not only be a significant mathemat-
ical accomplishment, but could result in the discovery of a superior conjugate gradient
method.

The original conjugate gradient method proposed by (Fletcher and Reeves, 1964) is
given by

dr, = —gr + Bpidg—1, (4.1)
Th41 = T + apdy, (4.2)
where ay is a steplength parameter, and where
0 fork=1
FR — 4.3
= e gl k22 (3)

When applied to strictly quadratic objective functions this method reduces to the linear
conjugate gradient method provided ay, is the exact minimizer (Fletcher, 1987). Other
choices of the parameter 35 in (4.1) also possess this property, and give rise to distinct
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algorithms for nonlinear problems. Many of these variants have been studied extensively,
and the best choice of 3 is generally believed to be

o= gh (gr — ge-1)/ |91l (4.4)

and is due to Polak and Ribiére (1969).

The numerical performance of the Fletcher-Reeves method (4.3) is somewhat erratic:
it is sometimes as eflicient as the Polak-Ribiére method, but it is often much slower. It
is safe to say that the Polak-Ribiére method is, in general, substantially more efficient
than the Fletcher-Reeves method.

In many implementations of conjugate gradient methods, the iteration (4.1) is restarted
every n steps by setting 3x equal to zero, i.e. taking a steepest descent step. This ensures
global convergence, as was discussed in section 3. However many theoretical studies
consider the iteration without restarts (Powell, 1977, 1984a), (Nemirovsky and Yudin,
1983), and there are good reasons for doing so. Since conjugate gradient methods are
useful for large problems, it is relevant to consider their behavior as n — oo. When
n is large (say 10,000) we expect to solve the problem in less than n iterations, so
that a restart would not be performed. We can also argue that we would like to study
the behavior of large sequences of unrestarted conjugate gradient iterations to discover
patterns in their behavior. We will see that this approach has been very successful
in explaining phenomena observed in practice. Therefore in this section we will only
consider conjugate gradient methods without restarts.

The first practical global convergence result is due to Al-Baali (1985) and applies to
the Fletcher-Reeves method. To establish this result it is necessary that the line search
satisfy the strong Wolfe conditions

flar + agdy)
lg(@r + andy) T dy|

where 0 < 01 < 03 < % Note that if a stplength ay satisfies the strong Wolfe conditions,
then it satisfies the usual Wolfe conditions (3.6)-(3.7). Therefore Zoutendijk’s result (3.9)
will hold, provided we can show that the search directions of the Fletcher-Reeves method
are descent directions. Al-Baali does this, obtaining the following global convergence
result. Throughout this section we assume that the starting point is such that the level
set L:={x: f(z) < f(x1)} is bounded, that in some neighborhood A of L, the objective

function f is continuously differentiable, and that its gradient is Lipschitz continuous.

f(ag) + orapgl dy, (4.5)

<
S _UQdikv (46)

Theorem 4.1 Consider the Fletcher-Reeves method (4.1)-(4.2), where the steplength
satisfies the strong Wolfe conditions (4.5)-(4.6). Then there is a constant ¢ > 0 such that

gidi < —cllgrl®, (4.7)
forall K> 1, and

ligninf lgxll = 0.

This result is interesting in many respects. The relation (4.7) is established by in-
duction in a novel and elegant fashion. It shows that the strong Wolfe conditions are
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sufficient to ensure the descent property of the Fletcher-Reeves method. Prior to this
result it was thought that an ad hoc and complicated line search would be required to
guarantee descent. Relation (4.7) appears to play an important role in conjugate gradient
methods, and we will encounter it again below. This theorem is also attractive because
it applies to the algorithm as implemented in practice, and because the assumptions on
the objective function are not restrictive.

Theorem 4.1 can be generalized to other iterations related to the Fletcher-Reeves
method. Touati-Ahmed and Storey (1990) show that Theorem 4.1 holds for all methods of
the form (4.1)-(4.2), which satisfy the strong Wolfe conditions, and with any [ such that
0 < B < BiF. Gilbert and Nocedal (1990) extend this to any method with |8;| < BIF,
and show that this result is tight in the following sense: there exists a smooth function
f, a starting point zy and values of gy satisfying

|ﬁk| < CﬁZRv

for some ¢ > 1, such that the sequence of gradient norms {||gx||} generated by (4.1)-(4.2)
is bounded away from zero.

This is our first encounter with a negative convergence result for conjugate gradient
methods. It shows that the choice of the parameter 3 is crucial. An analysis of conjugate
gradient methods with inexact line searches, shows that unless 3y is carefully chosen, the
length of the search direction dj can grow without bound causing the algorithm to fail.
In the results mentioned so far, only the size of 8, with respect to 87" plays an important
role in ensuring global convergence. We will see later that a more subtle property of i
determines the efficiency of the iteration.

Powell (1977) has given some arguments that explain, at least partially, the poor
performance of the Fletcher-Reeves method in some problems: if a very small step is
generated away from the solution, then due to the definition (4.3), it is likely, that
subsequent steps will also be very short. We will not give the supporting facts for this
argument, but only mention that the analysis is simple, and also shows that the Polak-
Ribiére method would not slow down in these circumstances. This propensity for short
steps, causes the Fletcher-Reeves algorithm to sometimes stall away from the solution,
and this behavior can be observed in practice. For example, I have observed that when
solving the minimal surface problem (Toint, 1983) with 961 variables, the Fletcher-Reeves
method generates tiny steps for hundreds of iterations, and is only able to terminate this
pattern after a restart is performed.

Powell (1977) and Nemirovsky and Yudin (1983) give global efficiency results that
provide further evidence of the inefficiency of the Fletcher-Reeves method. The simplest
analysis is that of Powell, who shows that if the Fletcher Reeves method, with exact line
searches, enters a region in which the function is the two-dimensional quadratic

1
f($) = §$T$7
then the angle between the gradient g, and the search direction dj stays constant. There-
fore, if this angle is close to 90° the method will converge very slowly. Indeed since this
angle can be arbitrarily close to 90°, the Fletcher-Reeves method can be slower than the
steepest descent method. Powell also shows that the Polak-Ribiére method behaves quite
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differently in these circumstances, for if a very small step is generated, the next search
direction tends to the steepest descent direction, preventing a sequence of tiny steps from
happening.

With all the arguments given in favor of the Polak-Ribiére method, we would expect
to be able to prove, for it, a global convergence result similar to Theorem 4.1. That this
is not possible follows from a remarkable result of Powell (1984a). He shows that the
Polak-Ribiére method with exact line searches can cycle infinitely, without approaching
a solution point. Since the steplength of Powell’s example would probably be accepted
by any practical line search algorithm, it appears unlikely that a satisfactory global
convergence result will ever be found for the Polak-Ribiére method.

Powell establishes his negative result by an algebraic tour de force. He assumes that
the line search always finds the first stationary point, and shows that there is a twice
continuously differentiable function of three variables and a starting point such that the
sequence of gradients generated by the Polak-Ribiére method stays bounded away from
zero. Since Powell’s example requires that some consecutive search directions become
almost contrary, and since this can only be achieved (in the case of exact line searches)
when i < 0, (Powell, 1986) suggests modifying the Polak-Ribiére method by setting

B = max{4", 0}, (1.8)

Thus if a negative value of 8™ occurs, this strategy will restart the iteration along the
steepest descent direction.

Gilbert and Nocedal (1990) show that this modification of the Polak-Ribiére method
is globally convergent both for exact and inexact line searches. If negative values of
B;" occurred infinitely often, global convergence would follow, as discussed in section 3,
because an infinite number of steepest descent steps would be taken. Thus Gilbert and
Nocedal consider the case where ;™ > 0 for all sufficiently large %k, and show that in
this case liminf ||gx|| = 0, provided the line search has the following two properties: (i) it
satisfies the strong Wolfe conditions, (ii) it satisfies (4.7) for some constant ¢. Gilbert and
Nocedal discuss how to implement such a line search strategy for any conjugate gradient
method with S > 0. We will now describe their analysis, which is quite different from
that used by Al-Baali for the study of the Fletcher-Reeves method.

The use of inexact line searches in conjugate gradient methods requires careful con-
sideration. In contrast with the Fletcher-Reeves method, the strong Wolfe conditions
(4.5)-(4.6) no longer guarantee the descent property for the Polak-Ribiére or other con-
jugate gradient methods. It turns out, however, that if g5 is always non-negative it is
possible to find a line search strategy that will provide the descent property. To see this
note that from (4.1) we have

gl dy = —|lgell* + Brgr’ dr_1. (4.9)

Therefore, to obtain descent for an inexact line search algorithm, one needs to ensure
that the last term is not too large. Suppose that we perform a line search along the
descent direction dy_q1, enforcing the Wolfe (or strong Wolfe) conditions, to obtain ay.
If gx7d,_; < 0, the non-negativity of 3j; implies that the sufficient descent condition
(4.7) holds. On the other hand, if (4.7) is not satisfied then it must be the case that
ngdk_l > 0, which means that a one-dimensional minimizer has been bracketed. It is



14 JORGE NOCEDALNORTHWESTERN UNIVERSITY

then easy to apply a line search algorithm, such as that given by Lemaréchal (1981),
Fletcher (1987) or Moré and Thuente (1990), to reduce |gy? dj_1| sufficiently and obtain
(4.7). Note that the only condition imposed so far on 3 is that it be non-negative.

To obtain global convergence for other conjugate gradient methods we need to impose
another condition on fi, and interestingly enough, it is the property that makes the
Polak-Ribiére method avoid the inefficiencies of the Fletcher-Reeves method. We say
that a method has Property (*) if a small step, aj_1dx_1 in a region away from the
solution implies that f; will be small. A precise definition is given in (Gilbert and
Nocedal, 1990). It isolates an important property of the Polak-Ribiére method: the
tendency to turn towards the steepest descent direction if a small step is generated away
from the solution. The global convergence result of Gilbert and Nocedal is as follows.

Theorem 4.2 Consider any method of the form (4.1)-(4.2) with the following three
properties: (i) B > 0 for all k; (ii) the line search satisfies the Wolfe conditions (3.6)-(3.7)
and the sufficient descent condition (4.7); (iii) Property (%) holds. Then liminf ||gx|| = 0.

This is one of the most general convergence results known to date. However it is not
clear if the restriction (i > 0 is essential, in some way, and should always be imposed
in conjugate gradient methods, or if it only simplifies the analysis. It is also not known
if the cycling of the Polak-Ribiére method predicted by Powell can occur in practice; to
my knowledge it has never been observed. (Luksan, 1991a) performed numerical tests
with several conjugate gradient methods that restrict 5™ to be non-negative, as well as
methods that are constrained by @;". The results are interesting, but inconclusive, and
more research is needed.

How fast is the convergence of conjugate gradient methods? Let us first answer this
question under the assumption that exact line searches are made. (Crowder and Wolfe,
1972) show that the rate of convergence is linear, and give an example that shows that
the rate cannot be Q-superlinear. (Powell, 1976b) studies the case in which the conjugate
gradient method enters a region where the objective function is quadratic, and shows that
either finite termination occurs, or the rate of convergence is linear. (Cohen, 1972) and
(Burmeister, 1973) show that, for general objective functions, the rate of convergence is
n-step quadratic, i.e.

[2kn = 2l = Ollzx — 2%),

and Ritter (1980) strengthens the result to
|2hn = el = ol ll2x — 2.]%).

(Powell, 1983) gives a slightly better result and performs numerical tests on small prob-
lems to measure the rate observed in practice. Faster rates of convergence can be estab-
lished (Schuller, 1974), (Ritter, 1980), under the assumption that the search directions
are uniformly linearly independent, but this does not often occur in practice. Several
interesting results assuming asymptotically exact line searches are given by Baptist and
Stoer (1977) and Stoer (1977). We will not discuss any of these rate of convergence
results further because they are not recent and are described, for example, in (Powell,
1983).

(Nemirovsky and Yudin, 1983) devote some attention to the global efficiency of the
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Fletcher-Reeves and Polak-Ribiére methods with exact line searches. For this purpose
they define a measure of “laboriousness” and an “optimal bound” for it among a cer-
tain class of iterations. They show that on strongly convex problems, not only do the
Fletcher-Reeves and Polak-Ribiére methods fail to attain the optimal bound, but they
also construct examples in which both methods are slower than the steepest descent
method. Subsequently (Nesterov, 1983) presents an algorithm that attains this optimal
bound. It is related to PARTAN — the method of parallel tangents (Luenberger, 1984),
and is unlikely to be effective in practice, but this has not been investigated, to the best of
my knowledge. Some extensions of Nesterov’s algorithm have been proposed by (Giiler,
1989).

Let us now consider extensions of the conjugate gradient method. Motivated by the
inefficiencies of the Fletcher-Reeves method, and guided by the desire to have a method
that cannot converge to point where the gradient is non-zero, (Powell, 1977) proposed
a conjugate gradient method which restarts automatically using a three-term recurrence
iteration introduced by (Beale, 1972). This method has been implemented in the Har-
well routine VE04 and outperforms the Fletcher-Reeves and Polak-Ribiére methods, but
requires more storage. (Shanno and Phua, 1980) proposed a different extension of the
conjugate gradient method that uses even more storage, and which resembles a variable
metric iteration. It has been implemented in the highly successful and popular code
CONMIN. This method, which is not simple to describe, also uses automatic restarts.
The iteration is of the form

di, = —Hpgx,

where Hy is a positive definite and symmetric matrix. Since this ensures that the search
directions are descent directions, the line search need only satisfy the usual Wolfe condi-
tions (3.6)-(3.7). (Shanno, 1978a, 1978b) shows that this algorithm is globally convergent,
with inexact line searches, on strongly convex problems. The convergence properties on
non-convex problems are not known; in fact, CONMIN is related to the BFGS variable
metric method, whose global convergence properties on non-convex problems are not yet
understood, as we will discuss in the next section.

It is interesting to note that for all the conjugate gradient methods described in this
section, and for their extensions, increased storage results in fewer function evaluations.
The Fletcher-Reeves method requires 4 n-vectors of storage, Polak-Ribiére 5, VE04 6 and
CONMIN 7. In terms of function evaluations, their ranking corresponds to the order in
which they were just listed — with CONMIN at the top.

Are automatic restarts useful? This remains controversial. (Gill and Murray, 1979)
speculate that the efficiency of VE04 and CONMIN is due to the fact that they make
good use of the additional information they store, rather than to the effects of restart-
ing. I agree with this assessment, and as we will see when we discuss limited memory
methods, it is possible to design methods that are more effective than CONMIN and use
no restarts. In my view, an undesirable feature of all the restarting criteria proposed so
far is that they do not rule out the possibility of triggering a restart at every step, hence
degrading the speed of convergence of the methods. Indeed, I have observed examples in
which CONMIN restarts at every iteration and requires an excessive number of function
evaluations.
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I will end this section with a question that has intrigued me for some time: have we
failed to discover the “right” implementation of the conjugate gradient method? Is there
a simple iteration of the form (4.1)-(4.2) which performs significantly better than all the
methods proposed so far, and which has all the desirable convergence properties? Given
the huge number of articles proposing new variations of the conjugate gradient method,
without much success, the answer would seem to be “no”. However I have always felt
that the answer is “yes” — but I could say no more.

5. Variable Metric Methods

We have seen that in order to obtain a superlinearly convergent method it is necessary
to approximate the Newton step asymptotically — this is the principle of Dennis and
Moré (3.16). How can we do this without actually evaluating the Hessian matrix at
every iteration? The answer was discovered by (Davidon, 1959), and was subsequently
developed and popularized by (Fletcher and Powell, 1963). It consists of starting with
any approximation to the Hessian matrix, and at each iteration, update this matrix by
incorporating the curvature of the problem measured along the step. If this update is
done appropriately, one obtains some remarkably robust and efficient methods, called
variable metric methods. They revolutionized nonlinear optimization by providing an
alternative to Newton’s method, which is too costly for many applications. There are
many variable metric methods, but since 1970, the BFFGS method has been generally
considered to be the most effective. It is implemented in all major subroutine libraries
and is currently being used to solve optimization problems arising in a wide spectrum of
applications.

The theory of variable metric methods is beautiful. The more we study them, the
more remarkable they seem. We now have a fairly good understanding of their proper-
ties. Much of this knowledge has been obtained recently, and we will discuss it in this
section. We will see that the BFGS method has interesting self-correcting properties,
which account for its robustness. We will also discuss some open questions that have
resisted an answer for many years. Variable metric methods, aside from being highly
effective in practice, are intricate mathematical objects, and one could spend a lifetime
discovering new properties of theirs. Ironically, our many theoretical studies of variable
metric methods have not resulted in the discovery of new methods, but have mainly
served to explain phenomena observed in practice. However it is hard to predict the
future of this area, which has given rise to many surprising developments.

The BFGS method is a line search method. At the k-th iteration, a symmetric and
positive definite matrix By is given, and a search direction is computed by

dy = —B; ' gy (5.1)
The next iterate is given by
Th41 = T + apdy, (5.2)

where the stepsize ay, satisfies the Wolfe conditions (3.6)-(3.7). It has been found that it
is best to implement BFGS with a very loose line search: typical values for parameters
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in (3.6)-(3.7) are 01 = 107* and o3 = 0.9. The Hessian approximation is updated by

Brspst By yryf
Bry1 = By — b b

: 5.3
sI By sk yl s (53)

where, as before,
Yk = Gk+1 — Gk Sk = Tkl — T (5.4)

Note that the two correction matrices on the right hand side of (5.3) have rank one.
Therefore by the interlocking eigenvalue theorem (Wilkinson, 1965), the first rank-one
correction matrix, which is subtracted, decreases the eigenvalues — we will say that it
“shifts the eigenvalues to the left”. On the other hand, the second rank-one matrix,
which is added, shifts the eigenvalues to the right. There must be a balance between
these eigenvalue shifts, for otherwise the Hessian approximation could either approach
singularity or become arbitrarily large, causing a failure of the method.

A global convergence result for the BFGS method can be obtained by careful consid-
eration of these eigenvalue shifts. This is done by Powell (1976a), who uses the trace and
the determinant to measure the effect of the two rank-one corrections on Bj. He is able
to show that if f is convex, then for any positive definite starting matrix By and any
starting point 27, the BFGS method gives liminf ||gx|| = 0. If in addition the sequence
{x} converges to a solution point at which the Hessian matrix is positive definite, then
the rate of convergence is superlinear.

This analysis has been extended by Byrd, Nocedal and Yuan (1987) to the restricted
Broyden class of quasi-Newton methods in which (5.3) is replaced by

Brspst B r
ka LR L y;;yk + @(st Brsg) vk}, (5.5)
sj. Bisy, Yje Sk

Bry1 = By —

where ¢ € [0,1], and

op = | YE Bysy,
ygsk sgBksk

The choice ¢ = 0 gives rise to the BFGS update, whereas ¢ = 1 defines the DFP method
— the first variable metric method proposed by Davidon, Fletcher and Powell (see e.g.
(Fletcher, 1987)). Byrd, Nocedal and Yuan prove global and superlinear convergence on
convex problems, for all methods in the restricted Broyden class, except for DFP. Their
approach breaks down when ¢ = 1, and leaves that case unresolved. Indeed the following
question has remained unanswered since 1976, when Powell published his study on the

BFGS method.

Open Question I.

Consider the DFP method with a line search satisfying the Wolfe conditions (3.6)-(3.7).
Assume that f is strongly convex, which implies that there is a unique minimizer z,. Do
the iterates generated by the DFP method converge to z,, for any starting point 21 and
any positive definite starting matrix B;7

It is rather surprising that, even though the DFP method has been known for almost
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30 years, we have little idea of what the answer to this basic question will turn out to be.
DFP can be made to perform extremely poorly on convex problems, making a negative
result plausible. On the other hand, the method has never been observed to fail; in fact
even in the worst examples we can see the DFP method creeping towards a solution
point. The most we can say is that the DFP method is globally convergent on convex
functions if the line searches are exact (Powell, 1971, 1972), or that if it converges to a
point, and line searches are exact, then the gradient at this point must be zero (Pu and
Yu, 1988). It may also seem puzzling to the reader that global convergence has been
established for ¢ = 0.999, say, but not for ¢ = 1. Wouldn’t a continuity argument show
that if the result holds for all ¢ < 1 then it must also hold for ¢ = 17 To answer this
question, and to describe the self-correcting properties of the BFGS method, mentioned
above, we will now discuss in some detail the convergence analyses of Powell, and Byrd,
Nocedal and Yuan.

Let us begin by considering only the BFGS method, and let us assume that the function
[ is strongly convex, i.e. that there exist positive constants m and M such that

ml|z||? < 2T G(x)z < M|z|)? (5.6)

for all z,2 € R", where G denotes the Hessian matrix of f. Computing the trace of (5.3)
we obtain

| Brsell® | Nyl
sEBrse  ylsk

Tr(Bis1) =Tr(Bg) — | (5.7)

It turns out that the middle term on the right hand side of this equation depends on
cos By, the angle between the steepest descent direction and the search direction, which
was used extensively in section 3. To see this, we first note that

1
fror1 — o = gl sp + 58;‘5G(5k)8k7

for some &, between zj41 and x;. Thus, using the first Wolfe condition (3.6) we have
a1gt sk > gi sk + %SzG(fk)Sk- (5.8)
Next we use (5.6) and the definition (3.5) of cos ) to obtain
(1= o0llgulllse | cos b > Somllsi”

which implies that
skl < cal|gkl| cos b, (5.9)

where ¢ = 2(1 — 01)/m. Since Bjpsi = —ajgy, using (5.9) we obtain

[ Besell®  _ azllgxll?

st Brsi agl[skllllgell cos B

gl
||sk]| cos 8
493

(5.10)

cocos2 0y
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We have thus shown that the term that tends to decrease the trace can be proportional
to ay/ cos? B. Let us now consider the last term in the trace equation (5.7). From the
definition of y; we have that

yr = Gsp, (5.11)

where

1
G = / Gz + Ts)dr. (5.12)
0

_1 11 _
Let us define z = G2 sy, where G2G'2 = (. Then from (5.11) and (5.6)

y;{yk _ 8;‘5@2%
yTse  slGsg
_ z;{@zk
N zgzk
< M. (5.13)

Therefore the term that tends to increase the trace is bounded above for all k, on convex
problems. We obtain from (5.7) and (5.10)

ak

Tr(Byy1) < Tr(By) — + M. (5.14)

¢y cos? O,
This relation allows insight into the behavior of the BFGS method. The discussion that
follows is not rigorous, but all the statements made below can be established rigorously.

Suppose for the moment that the steplengths oy are bounded below. If the algorithm
produces iterations for which cos 8y is not very small, it will advance towards the solution,
but some of the eigenvalues of { By} could become large because the middle term on the
right hand side of (5.14) could be significantly smaller than M. If, as a result of having an
excessively large Hessian approximation By, steps with very small cos 6y are produced,
little progress may be achieved, but a self correcting mechanism takes place: the middle
term in (5.14) will be larger than M, thus decreasing the trace. This self-correction
property is in fact very powerful. The smaller cos @ is, the faster the reduction in the
trace relation.

Suppose now that the steplengths aj tend to zero. It is easy to see (Byrd, Nocedal
and Yuan, 1987; p. 1179) that this is due to the existence of very small eigenvalues in
By, which cannot be monitored by the means of the trace. Fortunately, it turns out
that the BFGS update formula has a strong self-correcting property with respect to the
determinant, which can be used to show that, in fact, o is bounded away from zero in
mean. Indeed, the determinant of (5.3) is given by (Pearson (1969))

T
Y. Sk

det(B = det(B .
(Br+1) ( k)sszSk

(5.15)

Note that when sgBksk is small relative to ygsk = sgésk, the determinant increases,
reflecting the fact that the small curvature of our model is corrected, thus increasing
some eigenvalues.
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In conclusion, the trace relation shows that, for strongly convex problems, the eigen-
values of the matrices By cannot become too large, and the determinant relation shows
that they cannot become too small. This can be used to show that the method is con-
vergent, and by verifying the Dennis-Moré condition (3.16), one deduces that the rate of
convergence is superlinear.

Let us now consider the restricted Broyden class (5.5) with ¢ € [0,1). The analysis
proceeds along similar lines. The trace relation is now (Byrd, Nocedal and Yuan, 1987)

a 1-9¢)a 20M

Tr(Br+1) <Tr(Br)+ M + (bclk - (02 C0f2)0: + mi cos];k’ (5.16)
where ¢4 = (1 —02)/M. Note that the second and the third terms on the right hand side
of (5.16) produce a shift to the right in the eigenvalues, in the sense that they increase
the trace. The fourth term on the right hand side of (5.16) produces a shift to the left,
which can be very strong when cos @y is small. The last term can produce a shift in either
direction. A crucial fact is that this last term, of uncertain sign, is inversely proportional
to cos 8., whereas the negative fourth term is inversely proportional to cos? 8. Therefore,
when cos 8 is tiny, we still have a guaranteed decrease in the trace relation. This can be
used to show that the Hessian approximation By cannot grow without bound.

The determinant relation, for any ¢ € [0, 1], can be shown to satisfy,

T
det(Byyr) > det( By)—Er (5.17)
s3. Bysy,
which is essentially the same as for the BFFGS update, and so we can reason as before
to deduce that small eigenvalues are efficiently corrected. These arguments can be made
rigorous, and can be used to establish global and superlinear convergence for any method
in the restricted Broyden class using ¢ € [0, 1).

Why does this analysis not apply to the DFP method? It turns out that small eigen-
values do not cause problems, because (5.17) holds when ¢ = 1, showing that the method
possesses the self-correcting property with respect to the determinant mentioned above.
Therefore if very small eigenvalues occur, the DFP method will be able to increase them
quickly. Difficulties, however, can arise due to large eigenvalues. Note that the fourth
term on the right hand side of (5.16), which plays a crucial role in preventing the trace
from growing, is no longer present. The only term capable of decreasing the trace is
the last term in (5.16). In addition to being of uncertain sign, this term is smaller in
magnitude than the fourth term in (5.16), when cos @y is small. Thus it is not certain
that a shift to the left will occur, and even if it does we cannot expect it to be as strong
as for other methods in the Broyden class. Therefore we can expect the DFP method
to either develop excessively large Hessian approximations By, or at the very least, to
have difficulties in reducing a large initial Hessian approximation. Numerical tests con-
firm these observations, which also seem to agree with a global efficiency study of Powell
(1986), which we discuss later on.

We have assumed all along that the Wolfe conditions are always satisfied. Are the
good properties of the BFFGS method strongly dependent on them? This question is of
practical importance, because for problems with inequality constraints it is often not
possible to satisfy the second Wolfe condition (3.7). Fortunately it is proved by (Byrd
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and Nocedal, 1989) that the BFGS updating formula has excellent properties as long as
it perceives positive curvature — regardless of how large the function reduction or the
change in the gradient are. We now formally state one of these properties.

Theorem 5.1 Let {Bj} be generated by the BFGS formula (5.3) where, B; is sym-
metric and positive definite, and where for all ¥ > 1, y; and s; are any vectors that
satisfy

T
Utk > om0 (5.18)
51 Sk,
2
bl )
Y. Sk

Then for any p € (0,1) there exists a constant (1, such that, for any k& > 1, the relation
cos; > (5.20)
holds for at least [pk] values of j € [1,k].

This result states that, even though we cannot be sure that all the cosé; will be
bounded below, we can be sure that this is the case for most of them. This is enough
to obtain certain global convergence results. For example, Theorem 5.1 can be used to
show that the BFGS method using a backtracking line search is globally convergent on
convex problems. Various results of this type have also been obtained by (Werner, 1978
and 1989); see also (Warth and Werner, 1977).

The recent analysis on variable metric methods has not only produced new results, but
as can be expected, has also provided simpler tools for performing the analysis. (Byrd
and Nocedal, 1989) show that it is easier to work simultaneously with the trace and
determinant relations. For this purpose they define, for any positive definite matrix B,
the function

$(B) = tr(B) — In(det(B)), (5.21)

where In denotes the natural logarithm. It is easy to see that ¢(B) > In[cond(B)], so
that global convergence can be established by analyzing the behavior of ( By ). Moreover
the function v can also be used to establish superlinear convergence without having to
explicitly verify the Dennis-Moré condition (3.16); this is explained in (Byrd and Nocedal,
1989).

5.1. Non-Convex Objective Functions

All the results for the BFGS method discussed so far depend on the assumption that
the objective function f is convex. At present, few results are available for the case in
which f is a more general nonlinear function. Even though the numerical experience of
many years suggests that the BFGS method always converges to a solution point, this
has not been proved.

Open Question II. Consider the BFGS method with a line search satisfying the Wolfe
conditions (3.6)-(3.7). Assume that f is twice continuously differentiable and bounded
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below. Do the iterates satisfy lim inf ||gx|| = 0, for any starting point 1 and any positive
definite starting matrix B;7

This is one of the most fundamental questions in the theory of unconstrained opti-
mization, for BFGS is perhaps the most commonly used method for solving nonlinear
optimization problems. It is remarkable that the answer to this question has not yet
been found. Nobody has been able to construct an example in which the BFGS method
fails, and the most general result available to us, due to (Powell, 1976a), is as follows.

Theorem 5.2 Suppose that f is differentiable and bounded below. Consider the BFGS
method with a line search satisfying the Wolfe conditions (3.6)-(3.7). Then the limit
liminf ||gx|| = 0 is obtained for any starting point z; and any positive definite starting
matrix By if

T

Yi, Yk
ey (5.22)
Y. Sk

is bounded above for all k.

We showed earlier (see (5.13)) that in the convex case (5.22) is always bounded, re-
gardless of how the step s; is chosen. However in the non-convex case, in which the
Hessian matrix can be indefinite or singular, the quotient (5.22) can be arbitrarily large,
and only the line search could control its size. It is not known if the Wolfe conditions
ensure that (5.22) is bounded, and if not, it would be interesting to find a practical line
search that guarantees this.

Now that the global behavior of variable metric methods on convex problems is rea-
sonably well-understood, it is time that we made some progress in the case when f is
a general nonlinear function. Unfortunately establishing any kind of practical results in
this context appears to be extremely difficult.

The 1970s witnessed the development of a very complete local convergence theory for
variable metric methods. The main results, due to (Broyden, Dennis and Moré, 1973) and
(Dennis and Moré, 1974) have been used extensively for the analysis of both constrained
and unconstrained methods, and are very well summarized in (Dennis and Moré, 1977)
and (Dennis and Schnabel, 1983). A typical result is as follows. Suppose that z, is a
minimizer where the Hessian is positive definite. If 2 is sufficiently close to z, and By is
sufficiently close to V2 f(x.), then the iterates generated by the BFGS or DFP methods,
with unit steplengths, converge to x, superlinearly.

Another interesting result of Dennis and Moré makes no assumptions on the Hessian
approximations, and states that if the iterates generated by BFGS or DFP satisfy

o0
Z |ze — 2] < 00,
k=1

then the rate of convergence is superlinear. (Griewank and Toint, 1982b) extended this
result to the restricted Broyden class. A stronger result for BFGS is implicit in the
analysis of (Griewank, 1991) and (Byrd, Tapia and Zhang, 1990): if the iterates converge
(in any way) then the convergence rate must be superlinear.

A more general local convergence theory for least change secant methods has been
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developed by (Dennis and Walker, 1981). This work is important because it unifies
several local convergence analyses, and because it can be used to design methods for
special applications. Recently, (Martfnez, 1990) presented a theoretical framework that
applies to some methods not covered by the theory of Dennis and Walker; see also
(Martinez, 1991).

5.2. Global Efficiency of the BFGS and DFP Methods

(Nemirovsky and Yudin, 1983) note that to obtain efficiency measures of optimization
methods on general objective functions appears to be an unproductive task, because
only very pessimistic results can be established. Therefore they restrict their attention
to convex problems, and make some interesting remarks on the properties of the DFP
method. They do not resolve the question of whether DFP is optimal, in their sense, but
note that DFP is not invariant under the scaling of f. They use this fact to show that,
by badly scaling f, the DFP method can develop very large Hessian approximations and
advance slowly. Their construction exploits the weakness of DFP with respect to large
Hessian approximation mentioned above.

Powell (1986) is able to obtain much insight into the global behavior of BEGS and DFP
by focusing on a narrower class of problems. He considers a strictly convex quadratic
objective function of two variables, and studies the DFP and BFGS methods with
steplengths of one. Since both methods are invariant under a linear change of vari-
ables, he assumes without loss of generality that G/(z.) = I, as this results when making

the change of variables from = to z, + G(x*)%(ac — z,). Therefore Powell considers the
objective function

Fu,v) = %(qﬁ +0?), (5.23)

and analyzes the behavior of DFP and BFGS for different choices of the starting point a4
and the starting matrix By. Due to the special form of the objective function, the secant
equation Byi1Sk = yr, which is satisfied at each iteration by both DFP and BFGS, takes
the form

Bigi(2p1 — 25) = (Thp1 — 2)-

This shows that By always has one unit eigenvalue, and can assume that for all k,

10
B’“‘(o /\k)'

The DFP and BFGS iterations can be studied by measuring how fast Ay converges to 1.
Powell derives recurrence relations expressing Ag4o in terms of Aryq and Ag, and from
them, estimates the total number of iterations required to obtain the solution to a given
accuracy. These recurrence relations can also be used to estimate the function reduction
at each step, and to predict how many iterations will be required before superlinear
convergence takes place.

The results show vast differences of performance between the DFP and BFGS methods
when the initial eigenvalue Ay is large. Powell shows that, in this case, the number of
iterations required by the DFP method to obtain the solution with good accuracy can be
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of order Aq. In contrast, the BFGS method requires only log,, A1 iterations, in the worst
case. The analysis shows that if Ay is large, and if the starting point is unfavorable, then
the DFP method may decrease A\p by at most one at every iteration.

When A is small, both methods are very efficient. The BFGS method requires only
log,o(log o) A" iterations before superlinear convergence steps take place, whereas for
the DFP method this occurs after only one or two iterations.

This analysis depends heavily on the assumption that unit steplengths are always
taken. It is therefore relevant to ask if this is a reasonable assumption for problem
(5.23). Powell shows that an algorithm using a backtracking line search, would accept
the unit steplength in these circumstances. This would also be the case for other line
search strategies that only demand a sufficient decrease in the function. However, a
line search that requires the two Wolfe conditions may not accept the unit steplength in
some iterations, if the initial eigenvalue A; is large. Therefore Powell’s analysis has some
limitations, but the predictions of this analysis can be observed in some non-quadratic
problems, as we now discuss.

Byrd, Nocedal and Yuan (1987) test methods in Broyden’s class with a line search
satisfying the Wolfe conditions. The objective function is strongly convex; it is the sum
of a quadratic and a small quartic term. The problem has two variables and the starting
matrix is chosen as a diagonal matrix with eigenvalues 1 and 10*. The BFGS method
obtained the solution to high accuracy in 15 iterations. It was able to decrease the
trace of By, from 10* to 3 in only 10 iterations. In contrast, the DFP method required
4041 iterations to obtain the solution (which is amazingly close to the estimate given by
Powell). Tt took, for example, 3000 iterations for DFP to decrease the trace from 10* to
1100. These results agree closely with the theoretical predictions given above because
the objective function is nearly quadratic — the quartic term is small.

What should we expect if we use ¢ = 0.999 in this problem? Not surprisingly, we
find that very many iterations are needed. However it is interesting that the number of
iterations was 2223 — much less than for DFP. Thus a tiny change in ¢, away from one,
has a marked effect in performance.

5.3. Is BFGS the best variable metric method?

The search for a variable metric method that is more efficient than the BFGS method
began in the 1970s and has not ceased. In fact a new burst of research has taken place
in the last few years, and some of the new ideas may provide practical improvements in
performance.

(Davidon, 1975) proposed a method in which Byt is chosen to be the member of the
Broyden class that minimizes the condition number of Bk_lBk_H, subject to preserving
positive definiteness. The resulting value of ¢, sometimes lies outside [0,1], and often
coincides with the value of ¢, that defines the the Symmetric Rank-One method. We
will discuss the Symmetric Rank-One method in section 6, and it suffices to say here
that it possesses some important computational and theoretical properties. Unlike the
Symmetric Rank-One method, however, Davidon’s method is guaranteed to generate
positive definite Hessian approximations By, and can be implemented without any safe-
guards. Nevertheless interest in the method died after numerical tests failed to show an
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improvement over the BEGS method, and since the theoretical study by (Schnabel, 1978)
suggested that the advantages of using Davidon’s approach were likely to be modest.

Recently several authors have taken a new look at the idea of deriving optimally
conditioned updates, using different measures than the one proposed by Davidon. (Dennis
and Wolkowicz, 1991) use the function

_uw)
w(B) = ndet(B)’

to obtain a new class of updates. (Fletcher, 1991) notes that the optimal updates given
by the -function (5.21) are BFGS or DFP, depending on how the variational problem
is posed. Other work in this area includes (Al-Baali, 1990), (Luksan, 1991b), (Nazareth
and Mifflin, 1991), (Yuan, 1991) and (Hu and Storey, 1991). A different approach, in
which the secant equation is not imposed, has been investigated by (Yuan and Byrd,
1991). Even though these studies are interesting, it is too soon to know if any of these
new methods can perform significantly better than the BFGS method.

The analysis of section 5.2, on the two-dimensional quadratic, suggests that the BFGS
method is better at correcting small eigenvalues than large ones. Could we modify the
method so as to strengthen its ability to correct large eigenvalues? Some authors feel that
this can be done by using negative values for the parameter ¢, in Broyden’s class. It is
easy to explain the reason for this conjecture. Note that if ¢ < 0, the fourth term in the
right hand side of (5.16) remains negative and increases in magnitude, and the third term
becomes negative. This suggests that, when ¢y < 0, the algorithm is better able to correct
large eigenvalues. Care should be taken because there is a negative value ¢f for which the
update becomes singular (for values less than ¢}, the updated matrix becomes indefinite;
see for example (Fletcher, 1987)). Zhang and Tewarson (1988) performed numerical
tests with fixed negative values of ¢, and their results show a moderate but consistent
improvement over the BFGS method. They also prove that, for convex problems, global
and linear convergence can be established for negative values of ¢, provided that for all

k,
(1 =v)¢p < oéx <0, (5.24)

where v is an arbitrary constant in (0,1). However (Byrd, Liu and Nocedal, 1990) show
that this algorithm is not superlinearly convergent, in general. They show that designing
a superlinearly convergent method which uses negative values of ¢y is possible, but is
difficult to implement in practice.

One can also attempt to improve variable metric methods by introducing automatic
scaling strategies that adjust the size of the matrix By. If properly done, this could
alleviate, for example, the difficulties that DFP has with large eigenvalues. An idea
proposed by Oren and Luenberger (1974) consists of multiplying By by a scaling factor
1 before the update takes place. For example, for the BFGS method, the update would
be of the form

(5.25)

Bysyst By, Yryl
By =V | By — + .
+ s;kask y;{sk

Several choices for ), have been proposed by Oren and Luenberger (1974), Oren (1982),
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and in the references cited in these papers. The choice

T
Yi. Sk

Oy = —=—
sgBksk

(5.26)
is often recommended and has been tested in practice. The original motivation for self-
scaling methods arises from the analysis of quadratic objective functions, and the main
results also assume that exact line searches are performed. Disappointing numerical
results were reported by several researches (see for example Shanno and Phua (1980)),
and these results are explained by the analysis of (Nocedal and Yuan, 1991). They show
that the method (5.25)-(5.26), using a line search that satisfies the Wolfe conditions,
produces good search directions which allow superlinear convergence to take place if, in
addition, the size of the step is correctly chosen. It turns out, however, that to estimate
this stepsize, it is normally necessary to use an extra function evaluation, which makes
the approach inefficient. Nocedal and Yuan give an example in which the stepsizes
needed for superlinear convergence alternate between % and 2, and note that this type
of behavior can be observed in practice and is responsible for the relative inefficiency of
the self-scaling method compared to the unscaled BFGS method.

For these reasons, the Oren-Luenberger scaling is now commonly applied only after
the first iteration of a variable metric method. A quite different, and perhaps more
promising strategy has been proposed by (Powell, 1987), and further developed by (Lalee
and Nocedal, 1991) and Siegel (1991). Powell’s idea is to work with the factorization

Hy = Zp ZF (5.27)

of the inverse Hessian approximation Hj. This factorization has been used by (Goldfarb
and Idnani, 1983) for quadratic programming and has the advantage that it can be used
easily when inequality constraints are present. Powell shows that by introducing an
orthogonal rotation that makes the first column of Zj a multiple of s, the BFGS update
of Hy can be obtained via a simple update to Zj:

Sk \/sgyk 1=1
T

Z; — (Zléi—;;)sk 1=2,...,n,
where z; and 2 are the i-th columns of Z; and Z;4 respectively. Zj4 ZkT_I_1 gives Hpyq.

Note that the curvature information gathered during the most recent information is
contained in the first column of Z;,1, and that all other columns are obtained by a
simple operation. Since in the BFGS update we wish to reduce the possibility of having
an over-estimate of the Hessian, or equivalently an underestimate of the inverse Hessian,
Powell proposes to increase all columns of Z;1 so that their norms are at least equal to
a parameter which depends on the norm of the first column.

(Lalee and Nocedal, 1991) extend Powell’s idea to allow scaling down columns that
are too large, as well as scaling up those that are too small. They give conditions on the
scaling parameters in order for the algorithm to be globally and superlinearly convergent.
(Siegel, 1991) proposes a slightly different scaling strategy. At every iteration, he only
scales up the last [ columns of the matrix Zi, where [ is a non-increasing integer. The
parameter [ does not change if the search direction dj is in the span of the first n — [
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columns of Zj, or close to it. Otherwise, [ is decreased by 1. These column scaling
methods appear to work very well in practice, but there is not enough data yet to draw
any firm conclusions.

6. The Symmetric Rank-One Method

One of the most interesting recent developments in unconstrained optimization has
been the resurgence of the symmetric rank-one method (SR1). Several new theoretical
and experimental studies have reversed the general perception of this method. Instead of
being considered “fatally flawed”, the SR1 method is now regarded by many researchers
as a serious contender of the BFGS method for unconstrained problems, and as the most
suitable quasi-Newton method for applications in which positive definite updates cannot
be generated, such as constrained problems. The SR1 method remains controversial, and
it is difficult to predict if the enthusiasm for this method is temporary, or if it will find
a permanent place in optimization subroutine libraries.

The symmetric rank-one update is given by
(yr — Bise)(ye — Brsi)”
sE(yx — Besk)

Bry1 = B + (6.1)
It was first discovered by Davidon (1959) in his seminal paper on quasi-Newton methods,
and re-discovered by several authors. The SR1 method can be derived by posing the
following simple problem. Given a symmetric matrix By and the vectors s and yg, find
a new symmetric matrix Bg4q such that Briy — By has rank one, and such that

Bri15k = yg.

It is easy to see that if (y, — Brsg)' sp # 0, then the unique solution is (6.1), whereas if
yr = Bysy, then the solution is Bj,1 = By. However if (y,— Bysi)' s, = 0 and yp # Byss,
there is no solution to the problem, and this case clouds what is otherwise a clean and
simple argument. To prevent the method from failing, one can simply set Byy1 = DBg
when the denominator in (6.1) is close to zero, but this could prevent the method from
converging rapidly.

It was noted early on that the SR1 method has some very interesting properties,
provided it does not break down. For example Fiacco and McCormick (1968) show that
the SR1 method without line searches finds the solution of a strongly convex quadratic
function in at most » + 1 steps, if the search directions are linearly independent and if
the denominator in (6.1) is always non-zero. In this case B, 41 equals the Hessian of the
quadratic function. It is significant that this result does not require exact line searches,
as is the case for the BFGS and DFP methods.

However, the fact that the denominator in (6.1) can vanish, introduces numerical
instabilities and a possible breakdown of the method. Since this can happen even for
quadratic functions, and since (6.1) does not always generate positive definite matrices,
which complicates a line search implementation, the SR1 method fell out of favor. It was
rarely used in practice, even though very good computational results had been obtained
with safeguarded implementations (Dixon (1972)). The feeling in the early seventies was
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that the method has some intrinsic weaknesses, and that the BFGS method was clearly
preferable.

The revival of the SR1 method began, interestingly enough, during the development of
the partitioned quasi-Newton method of Griewank and Toint (1982c). As we will discuss
in the next section, the curvature condition s7y > 0 cannot always be expected to hold
for all element functions, and therefore the BFGS method cannot always be applied.
Therefore the implementation of the partitioned quasi-Newton method by Toint (Harwell
routine VEO8) uses the SR1 update when BFGS cannot be applied. This happens often;
in particular after an SR1 update has been applied all subsequent updates are performed
by means of SR1. The partitioned quasi-Newton method performs very well in practice,
giving a first indication of the success of the SR1 method — but this work drew less
attention than it deserved.

The SR1 method came to the limelight with a sequence of papers by Conn, Gould and
Toint (1988a, 1988b, 1991). The first two papers deal with trust region methods for bound
constrained problems, and report better results for SR1 than for BFGS. The authors
speculate that the success of SR1 may be due to its superior ability to approximate the
Hessian matrix at the solution. This is investigated in the third paper, in which the
following result is established.

Theorem 6.1 Suppose that fis twice continuously differentiable, and that its Hessian
is bounded and Lipschitz continuous. Let {z;} be the iterates generated by the SR1
method and suppose that z; — z. for some z, € R™. Suppose in addition that, for all

k,
|5t (i — Brsi)l = rllsell lyx — Brsell, (6.2)
for some r € (0,1), and that the the steps s; are uniformly linearly independent. Then
Jim | Br. — V2 f(a.)|| = 0.

Condition (6.2) is often used in practice to ensure that the SR1 update is well behaved:
if it is violated then the update is skipped. Conn, Gould and Toint (1991) report that
the assumption of uniform linear independence of the search directions holds in most of
their runs, and that the Hessian approximations generated by the SR1 method are often
more accurate than those generated by BFGS or DFP.

Osborne and Sun (1988) propose a modification in which the Hessian approximation
is scaled before the SR1 update is applied. They analyze this method and report good
numerical results. In an interesting recent paper, Khalfan, Byrd and Schnabel (1991)
make further contributions to the theory of the SR1 method, and present numerical
results that, to some extent, conflict with those of Conn, Gould and Toint (1991). They
consider both a line search and a trust region implementation and observe that, for the
problems they tested, the Hessian approximations generated by the SR1 method are
on the average only slightly more accurate than those produced by the BFGS method.
They report that in about one third of their problems neither method produces close
approximations to the Hessians at the solution.

These results suggest that the assumptions of Theorem 6.1 may not always be satisfied
in practice . Therefore Khalfan, Byrd and Schnabel study whether the steps generated
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by the SR1 method are uniformly linearly independent and find that this is often not the
case. They conclude that the efficiency of the SR1 method is unlikely to be due to the
properties given in Theorem 6.1, and pursue an analysis that is not based on the linear
independence assumption. They prove several results which we now describe.

The first result is related to the Dennis-Moré condition for superlinear convergence,
and assumes that unit steplengths are taken. It states that if z, is a minimizer such that
V2 f(x.,) is positive definite, and if

er = ||lok — 2%

and
[(Br = V2 f (@) skl
skl

b

are sufficiently small, then

(B = V2f(2.))sk]
skl

ok +sp — 24| < ex + cae}
where ¢; and ¢; are constants.

This bound suggests that some kind of quadratic rate is possible. To establish this,
however, Khalfan, Byrd and Schnabel must assume that the matrices { By} are positive
definite and bounded. This appears, at first, to be a very unrealistic assumption, but the
authors note that this is very often the case in their numerical tests. We now formally
state this second result on the SR1 method.

Theorem 6.2 Suppose that the iterates generated by the SR1 method converge to z,
~ a minimizer such that V?f(z.) is positive definite. Assume that for all & > 0 the
condition (6.2) is satisfied and that the matrices By are positive definite and uniformly
bounded above in norm. Then the rate of convergence is 2n-step ¢g-quadratic, i.e.

. €k+2
lim sup —;n <

k—o0 €L

These new results are, of course, not as strong as the global convergence results de-
scribed for the BFGS method, but one should keep in mind that the renewed interest
in the SR1 method is very recent. Therefore substantial advances in this area can be
expected.

7. Methods for Large Problems

Every function f with a sparse Hessian is partially separable, i.e. it can be written in
the form

)= 3 fite), (7.1)

where each of the ne element functions f; depends only on a few variables. This statement
is proved by (Griewank and Toint, 1981a), and provides the foundation for their parti-
tioned quasi-Newton method for large-scale optimization. The idea behind this method
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is to exploit the partially separable structure (7.1) and update an approximation B}'C to
the Hessian of each element function f;. These matrices, which are often very accurate,
can be assembled to define an approximation B to the Hessian of f. There is one com-
plication: even if V2f(z,) is positive definite, some of the element functions may be
concave, so that the BFGS method cannot always be used. In this case Griewank and
Toint use the SR1 update formula, and implement safeguards that skip the update if it
is suspect.

The search direction of the partitioned quasi-Newton method, as implemented by
(Toint, 1983), is determined by solving the system

(i B;;) dy, = —gx (7.2)

inside a trust region, using a truncated conjugate gradient iteration. If a direction of
negative curvature is detected, the conjugate gradient iteration is terminated, and dj, is
set to this direction of negative curvature. After this, a line search is performed along d.
This method is described and analyzed by (Griewank and Toint, 1982b, 1982¢, 1984);
the implementation just outlined corresponds to the Harwell routine VEOQS.

The partitioned quasi-Newton method performs very well in practice, and represents
one of the major algorithmic advances in nonlinear optimization. We should note that
many practical problems are directly formulated in the form (7.1), and that many other
problems can be recast in that form. Thus the partitioned quasi-Newton method is of
wide applicability.

To establish global convergence results, similar to those for the BFGS method on con-
vex problems, it is necessary to assume that all the element functions f; are convex. Under
this assumption (Griewank, 1991) shows that the partitioned quasi-Newton method is
globally convergent, even if the system (7.2) is solved inexactly. Griewank also relaxes the
smoothness conditions on the gradients of the element functions f;, and establishes rate
of convergence results under the assumption that these gradients are only Lipschitzian,
rather than differentiable. Griewank’s analysis completely describes the behavior of the
partitioned quasi-Newton method in the convex case, and strengthens earlier work by
(Toint, 1986b).

A very different approach for solving large problems ignores the structure of the prob-
lem, and uses the information of the last few iterations to define a variable metric ap-
proximation of the Hessian. This, so-called limited memory BFGS method, has proved
to be very useful for solving certain large unstructured problems, and is in fact competi-
tive with the partitioned quasi-Newton method on partially separable problems in which
the number of variables entering into the element functions f; exceeds 5 or 6 (Liu and
Nocedal, 1989).

The limited memory BFGS method is very similar to the standard BFGS method —
the only difference is in the matrix update. Instead of storing the matrices Hy that
approximate the inverse Hessian, one stores a certain number, say m, of pairs {s;,y;}
that define them implicitly. The product Hpgr, which defines the search direction, is
obtained by performing a sequence of inner products involving g, and the m most recent
vector pairs {s;,y;}. This is done efficiently by means of a recursive formula (Nocedal,
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1980). After computing the new iterate, we delete the oldest pair from the set {s;, y;} and
replace it by the newest one. Thus the algorithm always keeps the m most recent pairs
{si,yi} to define the iteration matrix. It has been observed that scaling can be highly
beneficial for large problems and several strategies for doing this have been studied by
(Gilbert and Lemaréchal, 1989).

The limited memory BFGS method is suitable for large scale problems because it has
been observed in practice that small values of m (say m € [3, 7]) give satisfactory results.
It is not understood why this method is as fast as the standard BFGS method on many
problems. Another interesting open question is how to design a strategy for selecting
the most useful corrections pairs — not simply the most recent ones — to improve the
performance of the method.

Since the Dennis-Moré condition (3.16) cannot possibly hold for the limited memory
BFGS method, its rate of convergence must be linear. (Liu and Nocedal, 1989) prove
that the limited memory BFGS method is globally and linearly convergent on convex
problems for any starting point, and for several useful scaling strategies. It is interesting
to note that, as implemented by Liu and Nocedal, the method does not possess quadratic
termination. A different limited memory method, that combines cycles of BFGS and
conjugate gradient directions has been developed by (Buckley and LeNir, 1983).

Newton’s method is, of course, the best method for solving many types of problems.
Both line search and trust region implementations have been developed for the large-
scale case; see (Steihaug, 1983), (Nash, 1985), (O’Leary, 1982) and (Toint, 1986a). The
convergence properties of implementations of Newton’s method in which the linear system

VA f(ar)dy = —gx (7.3)

is solved inaccurately were first considered by (Dembo, Fisenstat and Steihaug, 1982)
and by (Bank and Rose, 1981). Several interesting recent papers generalizing this work,
and focusing on specific methods for solving the linear system (7.3), include (Brown and
Saad, 1989 and 1990), (El Hallabi and Tapia, 1989), (Martinez, 1990) and (Eisenstat
and Walker, 1991). Non-monote Newton methods, i.e. methods in which function values
are allowed to increase at some iterations, have been analyzed by (Grippo, Lampariello
and Lucidi, 1990a, 1990b); the numerical results appear to be very satisfactory. Non-
monotone methods may prove to be very useful for solving highly nonlinear problems.

8. Remarks on Other Methods

I have concentrated on recent theoretical studies on methods for solving general un-
constrained minimization problems. Due to space limitations I have not discussed the
solution of systems of nonlinear equations or nonlinear least squares. The Nelder-Meade
method is known to fail, so that establishing a global convergence result for it is not
possible. Recently there has been research on modifications of the Nelder-Meade method
to improve its performance, and it is possible to establish global convergence for some of
them. For a description of this work see (Torczon, 1991).

As mentioned earlier, I have not reviewed trust region methods because most of their
theoretical studies (for unconstrained problems) are not recent and are reviewed by (Moré
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and Sorensen, 1984). Nevertheless, I would like to briefly contrast their properties with
those of line search methods.

Trust region methods do not require the Hessian approximations By to be positive
definite. In fact, very little is required to establish global convergence: it is only necessary
to assume that the norm of the matrices || By|| does not increase at a rate that is faster
than linear (Powell, 1984b). In contrast, for line search methods one needs to ensure that
the condition number of the Hessian approximations || B || does not grow too rapidly. This
requires control on both the largest and smallest eigenvalues of By, making the analysis
more complex than for trust region methods. It is also possible to show that for trust
region methods the sequence of iterates always has an accumulation point at which the
gradient is zero and the Hessian is positive semi-definite. This is better than the result
lim inf ||gx|| = 0 which is the most that can be proved for line search methods.

Thus the theory of trust region methods has several advantages over that of line search
methods, but both approaches seem to perform equally well in practice. Line search
methods are more commonly used because they have been known for many years and
because they can be simpler to implement. At present, line search and trust region
methods coexist, and it is difficult to predict if one of these two approaches will become
dominant. This will depend on the theoretical and algorithmic advances that the future
has in store.
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