
On the Solution of Complementarity Problems Arising in

American Options Pricing

Liming Feng∗ Vadim Linetsky† José Luis Morales‡ Jorge Nocedal§

August 3, 2010

Abstract

In the Black-Scholes-Merton model, as well as in more general stochastic models in
finance, the price of an American option solves a parabolic variational inequality. When
the variational inequality is discretized, one obtains a linear complementarity problem
that must be solved at each time step. This paper presents an algorithm for the solution
of these types of linear complementarity problems that is significantly faster than the
methods currently used in practice. The new algorithm is a two-phase method that
combines the active-set identification properties of the projected SOR iteration with
the second-order acceleration of a (recursive) reduced-space phase. We show how to
design the algorithm so that it exploits the structure of the linear complementarity
problems arising in these financial applications and present numerical results that show
the effectiveness of our approach.

Key Words: American options pricing, linear complementarity, projected SOR method

∗Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-
Champain. This author was supported by National Science Foundation grant CMMI-0927367.
†Department of Industrial Engineering and Management Sciences, Northwestern University. This author

was supported by National Science Foundation grant DMS-0802720.
‡Departamento de Matemáticas, Instituto Tecnológico Autónomo de México. This author was supported

by Asociación Mexicana de Cultura AC and CONACyT-NSF grant J110.388/2006.
§Department of Electrical Engineering and Computer Science, Northwestern University. This author was

supported by National Science Foundation grant DMS-0810213 and Department of Energy grant DE-FG02-
87ER25047-A004.

1

1 Introduction

This paper concerns the numerical solution of American options pricing problems. Most op-
tions traded on option exchanges world-wide and a large fraction of options traded over-the-
counter are of the American-style. These include options on stocks of individual companies,
stock indexes, foreign currencies, interest rates, commodities, and energy. Options books
of a large financial institution may contain options on thousands of different underlying
assets, and perhaps several dozen different contracts (with expiration dates ranging from
days to years, and different strike prices). As the underlying asset prices change throughout
the trading day, the options prices change as well. Re-pricing a large options book in real
time may thus require re-computing thousands of option prices quickly. For such large scale
applications, fast numerical algorithms are essential.

When the prices of underlying assets are assumed to follow a diffusion process, such
as in the classical Black-Scholes-Merton model based on the geometric Brownian motion
process, or in extensions such as Heston’s stochastic volatility model, the pricing function
of an American-style option solves a parabolic variational inequality. After this system is
discretized in space and time, it yields a linear complementarity problem, which must be
solved at each time step. Thus, the fast solution of linear complementarity problems (LCPs)
is of great practical importance in computational finance. The most popular LCP method
in practice is the projected SOR iteration, or the closely related variant, the projected
Gauss-Seidel iteration [3]. The standard treatment of LCPs for American options pricing
can be found, for example, in [14] for the simple case of the Black-Scholes-Merton model
and in [8] for several more complicated settings.

Several new active-set methods [1, 13] have recently been proposed for solving these
LCPs more efficiently (interestingly, interior point methods are not well suited for this
application). Borici and Luethi [1] report promising results using a variant of the simplex-
like method for LCPs with Z-matrices [3]. Ikonen and Toivanen [9] develop and test four
other methods: a projected multigrid method, an operator splitting method, a penalty
method, and a component-wise splitting method. In their experiments, the best results are
obtained with the component-wise splitting method.

In this paper, we study a different algorithm that combines iterations of the projected
SOR method with reduced-space steps. This two-phase approach exploits the fact that the
projected SOR iteration often makes a quick estimation of the optimal active set, while the
reduced-space iteration can dramatically improve upon this estimate and yield a fast rate
of convergence. We illustrate the performance of this algorithm on both the Black-Scholes-
Merton model (using various values of volatility and maturity) and the Heston model [7] with
stochastic volatility. The algorithm studied in this paper is an adaptation of the method
recently developed by Morales et al. [11] for rigid body simulations. By tailoring this
approach to the structure of the linear complementarity problems studied in this paper, the
algorithm achieves speedups up to thirty one times on our tests in the Black-Scholes-Merton
model, and up to six times on our tests in the Heston model, compared to the projected
SOR method. The savings are particularly significant in the Black-Scholes-Merton model
with long maturity or high volatility.

2

2 Pricing American Options in the Black-Scholes-Merton model

Consider an American put option with strike price K > 0 and maturity time T > 0. If
the option is exercised when the underlying asset price is S, the option holder receives the
payoff Ψ(S) = (K − S)+ = max(K − S, 0). Similarly, the payoff function for an American
call option is Ψ(S) = (S − K)+. Let V (t, S) be the option value at time t ∈ [0, T] when
the asset price is S. We assume that V solves the following parabolic variational inequality
(see [10], [16]):

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV ≤ 0, t ∈ [0, T), S ∈ (0,∞),

V ≥ Ψ, t ∈ [0, T), S ∈ (0,∞),

(
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV) · (V −Ψ) = 0, t ∈ [0, T), S ∈ (0,∞),

subject to the terminal condition (payoff at maturity):

V (T, S) = Ψ(S), S ∈ (0,∞),

where σ is the volatility of the underlying asset, r is the risk free interest rate, and q is the
dividend yield paid by the underlying asset.

For the convenience of numerical implementation, we let ψ(x) = Ψ(Kex) and ū(t, x) =
V (T − t,Kex) (i.e., we make a state variable change x = ln(S/K), and transform the
terminal value problem into an initial value problem). Then ū(t, x) solves

∂ū

∂t
−Aū ≥ 0, t ∈ (0, T], x ∈ Ω, (1a)

ū ≥ ψ, t ∈ (0, T], x ∈ Ω, (1b)

(
∂ū

∂t
−Aū) · (ū− ψ) = 0, t ∈ (0, T], x ∈ Ω, (1c)

with the initial condition
ū(0, x) = ψ(x), x ∈ Ω, (1d)

where Ω = R and the operator A is given by

Af =
1
2
σ2∂

2f

∂x2
+ µ

∂f

∂x
− rf, µ = r − q − 1

2
σ2.

To numerically solve (1a-1d), we localize the problem to a bounded computational domain
Ω = [x, x̄] and impose the following boundary condition on ∂Ω = {x, x̄}:

ū(t, x) = ψ(x), t ∈ (0, T], x ∈ ∂Ω. (1e)

We follow [10] and [16] and consider the variational formulation of (1). Let ψ̄ be a C2

function such that ψ̄ = ψ on an open neighborhood of ∂Ω, and define u = ū − ψ̄. Then
from equation (10) of [16], u solves the following variational inequality:

u(0, x) = ψ(x)− ψ̄(x), x ∈ Ω, (2a)

3

u(t, x) = 0, t ∈ (0, T], x ∈ ∂Ω, (2b)

u(t, x) ≥ ψ(x)− ψ̄(x), t ∈ (0, T], x ∈ Ω, (2c)

and for any test function w ≥ ψ − ψ̄,

(
∂u

∂t
, w − u) + a(u,w − u)− (Aψ̄, w − u) ≥ 0, (2d)

where (·, ·) is the inner product in L2(Ω) and the bilinear form a(·, ·) is given by

a(u,w) =
1
2
σ2

∫ x̄

x

∂u

∂x

∂w

∂x
dx− µ

∫ x̄

x

∂u

∂x
wdx+ r

∫ x̄

x
uw dx.

We apply the linear finite element method to solve the variational inequality (2). Divide
[x, x̄] into m + 1 subintervals, each having length h = (x̄ − x)/(m + 1). Let xi = x + ih,
0 ≤ i ≤ m + 1, be the nodes, and let φ(x) = (x + 1)1{−1≤x≤0} + (1 − x)1{0<x≤1}. Define
the following piecewise linear finite element basis functions: φh,i(x) = φ((x − xi)/h). The
function φh,i(x) takes value 1 at node xi and zero at all other nodes. We seek a finite
element approximation uh to the solution of (2) in the space Vh spanned by the basis
functions {φh,1, · · · , φh,m}:

uh(t, x) =
m∑

i=1

ui(t)φh,i(x), t ∈ [0, T].

We consider test functions that are also in the space Vh. It is easy to verify using integration
by parts that (Aψ̄, w − u) = −a(ψ̄, w − u). For simplicity, we let ψ̄ = ψ. Although such
chosen ψ̄ is only piecewise differentiable for the American options we consider, numerical
results show that this choice is sufficient. Equation (2c) then requires that the coefficient
ui(t) of uh be non-negative:

ui(t) ≥ 0, 1 ≤ i ≤ m. (3a)

Note that by construction, the vanishing boundary condition (2b) is automatically satisfied.
The vanishing initial condition (2a) requires that

ui(0) = 0, 1 ≤ i ≤ m. (3b)

Denote the coefficient vector of uh by u(t) = (u1(t), · · · , um(t))>. Consider an arbitrary
test function w ≥ 0 in the space Vh with coefficient vector w = (w1, · · · , wm)>. Then from
(2d) we obtain

(w − u(t))> · [M · u̇(t) + A · u(t) + F] ≥ 0, ∀w ≥ 0, (3c)

where u̇(t) =
(

du1
dt , · · · ,

dum
dt

)>
; M = (Mij) with Mij = (φh,j , φh,i) is the mass matrix;

A = (Aij) with Aij = a(φh,j , φh,i) is the stiffness matrix; and F = (F1, · · · , Fm)> with

4

Fi = a(ψ, φh,i) is the load vector. For the Black-Scholes-Merton model, the matrices M and
A can be computed analytically:

A =


a0 a1

a−1 a0
. . .

. a1

a−1 a0

 , M =
h

6


4 1

1 4
. . .

. 1
1 4

 ,

where
a0 = a(φh,i, φh,i) =

2
3
rh+

1
h
σ2,

a±1 = a(φh,i, φh,i∓1) = ∓1
2
µ+

1
6
rh− 1

2h
σ2, µ = r − q − 1

2
σ2.

The matrix A is tri-diagonal but slightly non-symmetric. The load vector F can be easily
approximated by replacing ψ by its linear finite element interpolant.

For the temporal discretization of the ordinary differential system (3), we divide [0, T]
into N equal subintervals, each with length k = T/N . Let tj = jk, 0 ≤ j ≤ N , be the
temporal nodes. Denote u(tj) by uj . When a standard θ−scheme is used, we obtain the
following:

(w − uj)> · [(M + kθA)uj − (M− k(1− θ)A)uj−1 + kF] ≥ 0, ∀w ≥ 0,

u0 = 0, uj ≥ 0, 1 ≤ j ≤ N.

This is equivalent to the following linear complementarity problem (LCP) in the unknown
vector uj :

(uj)> · [(M + kθA)uj − (M− k(1− θ)A)uj−1 + kF] = 0, (4a)

(M + kθA)uj − (M− k(1− θ)A)uj−1 + kF ≥ 0, (4b)

u0 = 0, uj ≥ 0, 1 ≤ j ≤ N. (4c)

The commonly used implicit Euler scheme and Crank-Nicolson scheme correspond to θ = 1
and θ = 1/2, respectively. It is shown in [6] that an appropriate combination of the Crank-
Nicolson scheme with the implicit Euler scheme greatly improves the performance of the
numerical solution. This is known as the Rannacher scheme. More specifically, instead of
using the Crank-Nicolson scheme directly, we replace the first step by four quarter implicit
Euler steps (corresponding to θ = 1 and time interval 0.25k). We then proceed with the
Crank-Nicolson scheme in the remaining time steps (corresponding to θ = 1/2 and time
interval k). Our numerical results show that the Rannacher scheme performs better than
the standard Crank-Nicolson scheme.

Thus, to price American options in the Black-Scholes-Merton model, we need to solve
a sequence of LCPs (4).

5

3 Pricing American Options in Heston’s Model

In Heston’s stochastic volatility model [7], the asset price process St and the variance process
vt := σ2

t solve the following two-dimensional stochastic differential equation:

dSt = (r − q)Stdt+
√
vtStdW1(t),

dvt = κ(η − vt)dt+ ξ
√
vtdW2(t).

That is, the volatility σ that was assumed to be constant in the Black-Scholes-Merton model
is now stochastic and its square is assumed to follow the square-root diffusion process with
a mean-reverting drift. The two Brownian motions W1,W2 (Wiener processes) driving
the asset price process and the variance process are correlated, with correlation coefficient
ρ ∈ [−1, 1]. Here ξ > 0 is the volatility parameter of the variance process, r ≥ 0 is the risk-
free interest rate, q ≥ 0 is the dividend yield, κ > 0 is the rate of mean reversion, and η > 0
is the long run variance level (η is often denoted as θ in the literature). The infinitesimal
generator of the two-dimensional Markov process (St, vt) solving this stochastic differential
equation is given by:

Gf =
1
2
vS2 ∂

2f

∂S2
+ ρξvS

∂2f

∂v∂S
+

1
2
ξ2v

∂2f

∂v2
+ (r − q)S ∂f

∂S
+ κ(η − v)

∂f

∂v
.

The formulation of the variational inequality and its discretization proceeds along the
same lines as in the Black-Scholes-Merton model. The option price V = V (t, S, v) is now
a function of two state variables, the asset price S and its variance v, as well as time t.
Doing the same change of variables as in the Black-Scholes-Merton model, localizing the
problem to a bounded computational domain Ω = [x, x]× [v, v], and imposing the following
boundary condition

ū(t, x, v) = ψ(x), t ∈ (0, T], (x, v) ∈ ∂Ω,

we arrive at the variational formulation (2) with the following two-dimensional differential
operator

Af =
1
2
v
∂2f

∂x2
+ ρξv

∂2f

∂v∂x
+

1
2
ξ2v

∂2f

∂v2
+ (r − q − 1

2
v)
∂f

∂x
+ κ(η − v)

∂f

∂v
− rf

and bilinear form

a(u,w) =
∫ x

x

∫ v

v

(
1
2
v
∂u

∂x

∂w

∂x
+ ρξv

∂u

∂v

∂w

∂x
+

1
2
ξ2v

∂u

∂v

∂w

∂v
(5)

−(r − q − 1
2
v)
∂u

∂x
w − (κη − κv − 1

2
ξ2)

∂u

∂v
w + ruw

)
dvdx.

We discretize spatially using two-dimensional rectangular finite elements. We divide
[x, x] into m+ 1 equal intervals of length hx = (x− x)/(m+ 1) and [v, v] into n+ 1 equal
intervals of length hv = (v − v)/(n + 1). The nodes are (xi, vj) = (x + ihx, v + jhv),
i = 0, 1, · · · ,m + 1, j = 0, 1, · · · , n + 1. The rectangular two-dimensional finite element

6

basis functions are defined for any i = 1, · · · ,m and j = 1, · · · , n as the product of the
one-dimensional basis functions:

φij(x, v) = φhx,i(x)φhv ,j(v) = φ((x− xi)/hx)φ((v − vj)/hv),

where φh,i(·) and φ(·) are defined as previously. The basis function φij is equal to one at
the node (xi, vj) and zero at all other nodes. There are m × n nodes in [x, x] × [v, v]. We
arrange the nodes as follows: (x1, v1), (x1, v2), · · · , (x1, vn), (x2, v1), (x2, v2), · · · , (xm, vn).
Let Vh be the space spanned by the basis functions {φij,1≤i≤m,1≤j≤n}. We seek a finite
element approximation uh in Vh with non-negative time dependent coefficients:

uh(t, x, v) =
m∑

i=1

n∑
j=1

uij(t)φij(x, v), uij(t) ≥ 0, t ∈ (0, T].

We discretize temporally by the Rannacher scheme. Denote u(t) = (u11(t), · · · , u1n(t),
· · · , um1(t), · · · , umn(t))>, and uj = u(tj). The resulting discrete linear complementarity
problem has the form (4), as before. The mass matrix is block-tridiagonal and is given by

M =


M11 M12 0

M21 M11
. . .

. M12

0 M21 M11

 , M11 =
hxhv

9


4 1 0

1 4
. . .

. 1
0 1 4

 , M12 = M21 =
1
4

M11;

thus, there is a total of nine non-zero diagonals.
To compute the elements of the stiffness matrix A, we need to compute a(φkl, φij) for

1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n, with the bilinear form defined in (5). The integrands in
a(φkl, φij) are polynomials with the highest order terms x2v2 and xv3. For such integrands,
the 2× 2 Gaussian quadrature rule (tensor product of two-point Gaussian quadrature rules
for each coordinate) is exact and is used in our implementation. For fixed j and l, a(φkl, φij)
depends only on the difference i− k. Moreover, a(φkl, φij) = 0 for |i− k| > 1 or |j − l| > 1.
So A is also a block tri-diagonal matrix with tri-diagonal blocks:

A =


A11 A12 0

A21 A11
. . .

. A12

0 A21 A11


with a total of nine non-zero diagonals. It suffices to compute the blocks A11, A12, A21 with
a total of 3(3n− 2) non-zero values.

7

4 Description of the Algorithm

The linear complementarity problem (4) has the general form

zT (Bz + b) = 0, (6a)
Bz + b ≥ 0, (6b)

z ≥ 0, (6c)

where the m×m matrix B and the m−vector b are constant, and z ∈ Rm is the vector of
unknowns. A variety of algorithms have been proposed for solving problems of this form,
including matrix-splitting methods such as the projected SOR method, pivoting methods,
and interior point methods; see, e.g. [3, 8, 15]. The most popular method in the context of
American options pricing is the projected SOR method [14], which is given as follows.

Projected SOR Method
Initialize z0 ≥ 0; set k ← 0.
repeat until a stop test is satisfied:

for i = 1, . . . ,m
∆zi = 1

Bii

(
bi +

∑
j<iBijz

k+1
j +

∑
j≥iBijz

k
j

)
;

γi = (1− ω)zk
i + ω(zk

i −∆zi);
zk+1
i = max{0, γi};

end
k ← k + 1

end repeat

This method is simple to implement and has a small computational cost per iteration on
the problems considered in this paper, but may converge slowly and is difficult to parallelize
due to its sequential nature.

Convergence can be accelerated by employing a two phase method that first applies the
projected SOR iteration to obtain a guess of the active set, and then performs a reduced-
space phase in which the components of z corresponding to the active set are kept at zero
and the other components are chosen so as to satisfy (6a)-(6b). The cycle of projected SOR
and subspace minimization iterations is repeated until an acceptable solution of the linear
complementarity problem (6) is found.

Let us describe this approach in more detail. Suppose that after performing a few
iterations of the projected SOR method, ` components of z are zero. (We assume without
loss of generality that these are the first ` components of z.) We then improve this estimate
by fixing the first ` components of z at zero and computing the remaining components so
that (6a)-(6b) are satisfied. Given this zero structure of z and the fact that z ≥ 0, conditions
(6a)-(6b) imply that the last m− ` components of the vector Bz + b must be zero, i.e.,

P (Bz + b) = 0 with P :=
[

0 Im−`

]
. (7)

The zero structure of z also implies that z = P TPz, and thus (7) can be expressed as

B̂ẑ + b̂ = 0, (8)

8

where
B̂ = PBP T , b̂ = Pb, ẑ = Pz.

Next, we solve the square system (8) to obtain a vector ẑ+. Since some of the components
of ẑ+ could be negative, which would conflict with (6c), we project ẑ+ onto the nonnegative
orthant by setting

ẑ+ ← max(0, ẑ+). (9)

This projection can cause some elements of the new vector ẑ+ to become zero. If so, we
apply the reduced-space phase again to a problem of the form (8), but of smaller dimension.
The reduced-space phase is repeated in this manner until the solution of (8) contains only a
few negative components (say, at most 20), meaning that the active-set prediction changes
little. We denote by z0 ∈ Rm the iterate computed at the end of the cycle of reduced-space
iterations. (The nonzero components of z0 are given by the final value of ẑ+.) The proposed
algorithm is summarized as follows.

Algorithm I: Projected SOR with Reduced-Space Phase

Choose an initial point z0, a parameter ∆ac > 0, and set z ← z0 ≥ 0.
repeat

Perform ksor iterations of the projected SOR Method, starting from z0 to
obtain an iterate z;

repeat (Reduced-Space Phase)
Define ẑ to be the subvector of z whose components are positive;
Let m̂ denote the dimension of the vector ẑ;
Form and solve the m̂× m̂ reduced system (8) to obtain ẑ+;
Set ẑ+ ← max(0, ẑ+);
Set nz ← number of zero components in ẑ+;
if nz ≥ ∆ac

Set z ← ẑ+;
else

Define the new iterate z0 ∈ Rm by placing ẑ+ in appropriate positions
and setting all other elements to zero; break;

end if
end repeat

end repeat

In our experiments, we set ksor = 3 and ∆ac = 20. We terminate Algorithm I when two
consecutive SOR iterates differ by less than a prescribed constant; see Section 5.

The success of the method depends crucially on the repeated application of the reduced-
space phase. It greatly accelerates the estimation of the optimal active set and endows the
method with a fast rate of convergence. The technique used in the solution of the linear
system (8) has an important effect on the overall computing time. For the Black-Scholes-
Merton model, it is appropriate to apply a direct factorization technique, since the coefficient

9

matrix is tridiagonal, whereas for the Heston model it is more effective to employ iterative
linear algebra techniques, as discussed in the next section.

5 Numerical Experiments

In this section we report the results of numerical experiments comparing the projected
SOR (P-SOR) method and the method proposed in this paper (Algorithm I) on the Black-
Scholes-Merton and Heston models. All computations reported in this paper were performed
on a 32-bit quad-core Intel 2.66GHz system with 4GB of RAM, running RHEL 4, using
Fortran 77.

Tests with the Black-Scholes-Merton Model.

We consider pricing American put options in the Black-Scholes-Merton model with the
following parameters:

r = 5%, q = 0%,K = 100.

We make the computational domain large enough and compare the two linear complemen-
tarity solvers. The P-SOR method and Algorithm I require an initial guess for the solution
of a linear complementarity problem. For the first time step we set the initial guess to zero.
For the jth time step in (4a-4c), we use the solution uj−1 obtained in the (j − 1)th time
step as the initial guess for uj . The P-SOR method and the new algorithm were terminated
when two consecutive iterates in the projected SOR iteration satisfy ‖zk+1 − zk‖∞ ≤ ε for
a sufficiently small error tolerance level ε. The tridiagonal linear systems (8) are solved by
means of an LU factorization of matrix B. More specifically, we exploit the fact that B is
a Toeplitz matrix, and that all matrices B̂ in (8) inherit that property, and have smaller
dimension. Therefore, the LU factorization is computed just once, at the beginning of
Algorithm I. The relaxation parameter for the P-SOR method was chosen as in [9]:

ω =
2

1 +
√

1− ρ2
, with ρ = max

i

1
Bii

∑
j 6=i

|Bi,j |.

Tables 1-4 present the results for the two methods applied to the Black-Scholes-Merton
model with high volatility (σ = 0.4) or low volatility (σ = 0.2), and with long maturity
(T = 5) or short maturity (T = 0.5). The first two columns give the number of spatial
steps m + 1 and the number of time steps N . The third column gives the relaxation
parameter determined as above for the Crank-Nicolson steps (the relaxation parameter
for the first four Euler steps is determined similarly and is not reported). The fourth
column reports the pricing error in the maximum norm evaluated at 41 points: S = Kex,
x = −0.22,−0.21, · · · , 0.18, which correspond to 41 asset prices in an approximation domain
of interest [80, 120]. Benchmark prices are computed using the Hilbert transform method
of [5] with an accuracy of about 10−6. For each method, we report the total computing
time in seconds (CPU) and the number of iterations of the projected SOR method (Iter).
For the new algorithm we also report the number of reduced-space iterations (Red iter).

10

Projected SOR Algorithm I

m + 1 N ω Error Iter CPU(s) CPU(s) Iter Red iter

90 5 1.53 2.1E-02 32 0.001 0.000 6 1
90 10 1.41 9.4E-03 27 0.000 0.001 4 1
90 20 1.28 4.0E-03 22 0.001 0.000 4 1
90 40 1.16 3.2E-03 16 0.002 0.001 4 1

180 5 1.73 2.0E-02 60 0.002 0.000 8 2
180 20 1.53 3.1E-03 42 0.005 0.001 5 1
180 80 1.28 6.2E-04 23 0.009 0.002 4 1
180 320 1.06 3.2E-04 11 0.017 0.009 4 1

360 10 1.80 6.7E-03 99 0.011 0.001 8 2
360 40 1.64 1.1E-03 60 0.024 0.002 4 1
360 160 1.41 2.4E-04 31 0.047 0.009 4 1
360 640 1.16 9.0E-05 15 0.092 0.033 4 1

Table 1: Black-Scholes-Merton: σ = 0.2, T = 0.5, x = −0.3, x̄ = 0.6, ε = 10−8. At-the-
money put price 4.655684.

Projected SOR Algorithm I

m + 1 N ω Error Iter CPU(s) CPU(s) Iter Red iter

150 5 1.73 3.0E-02 78 0.002 0.000 9 2
150 20 1.53 5.0E-03 54 0.005 0.001 6 1
150 80 1.28 1.2E-03 31 0.010 0.002 4 1
150 320 1.06 5.4E-04 15 0.020 0.008 4 1

300 10 1.80 1.2E-02 129 0.013 0.002 10 3
300 40 1.64 2.1E-03 81 0.028 0.003 6 1
300 160 1.41 4.4E-04 42 0.055 0.008 4 1
300 640 1.16 1.6E-04 21 0.108 0.029 4 1

600 20 1.85 4.7E-03 204 0.074 0.005 10 3
600 80 1.73 8.8E-04 114 0.150 0.011 5 1
600 320 1.53 1.8E-04 57 0.291 0.030 4 1
600 1280 1.28 4.9E-05 28 0.568 0.113 4 1

Table 2: Black-Scholes-Merton: σ = 0.4, T = 0.5, x = −0.5, x̄ = 1.0, ε = 10−10. At-the-
money put price 10.141399.

11

Projected SOR Algorithm I

m + 1 N ω Error Iter CPU(s) CPU(s) Iter Red iter

190 5 1.82 2.6E-02 111 0.005 0.000 7 2
190 10 1.75 2.0E-02 96 0.006 0.000 6 1
190 20 1.67 1.1E-02 79 0.010 0.001 5 1
190 40 1.57 3.6E-03 62 0.014 0.002 4 1

380 5 1.90 2.6E-02 215 0.018 0.001 11 3
380 20 1.82 8.6E-03 154 0.037 0.002 7 2
380 80 1.67 1.3E-03 90 0.078 0.006 4 1
380 320 1.45 3.5E-04 45 0.155 0.020 4 1

760 10 1.93 1.8E-02 360 0.096 0.005 13 4
760 40 1.87 2.0E-03 233 0.205 0.009 7 2
760 160 1.75 3.5E-04 124 0.417 0.022 4 1
760 640 1.57 1.1E-04 61 0.811 0.077 4 1

Table 3: Black-Scholes-Merton: σ = 0.2, T = 5, x = −0.3, x̄ = 1.6, ε = 10−10. At-the-
money put price 9.897570.

Projected SOR Algorithm I

m + 1 N ω Error Iter CPU(s) CPU(s) Iter Red iter

400 5 1.90 4.4E-02 227 0.020 0.001 13 4
400 20 1.82 9.3E-03 161 0.040 0.003 7 2
400 80 1.67 2.1E-03 94 0.085 0.007 5 1
400 320 1.45 5.3E-04 47 0.169 0.021 4 1

800 10 1.93 2.0E-02 380 0.105 0.006 16 5
800 40 1.87 4.3E-03 244 0.225 0.010 7 2
800 160 1.75 9.4E-04 130 0.457 0.025 4 1
800 640 1.57 2.1E-04 64 0.890 0.081 4 1

1600 5 1.98 4.4E-02 858 0.292 0.020 43 14
1600 40 1.93 4.3E-03 471 0.868 0.028 11 3
1600 320 1.82 4.1E-04 176 2.474 0.095 4 1
1600 2560 1.57 4.3E-05 60 6.644 0.622 4 1

Table 4: Black-Scholes-Merton: σ = 0.4, T = 5, x = −0.8, x̄ = 3.2, ε = 10−10. At-the-
money put price 24.462532.

12

Since an LCP is solved at every time step, Tables 1-4 report the average performance over
all LCPs solved.

We note that the new algorithm is significantly faster than the projected SOR method.
Although the computing time of the new algorithm increases with the number of time steps
N , the savings in CPU time are quite substantial in all cases. Borici and Luethi [1] report
that their simplex method is between 2 and 9 times faster than the projected SOR method
in their tests, whereas Algorithm I is up to 31 times faster in our tests. In particular, greater
improvement over the projected SOR is observed when the option time to maturity or the
volatility is large.

The stop test ‖zk+1 − zk‖∞ ≤ ε with ε ranging from 10−8 to 10−10 may seem overly
stringent. However, it was necessary to reduce the stop tolerance to these levels so that the
P-SOR method was able to achieve the reported accuracy.

A well known method for pricing American options in the Black-Scholes-Merton model
is the Brennan-Schwartz algorithm [2]. This method solves the LCPs using the LU decom-
position with projection. In the Black-Scholes-Merton model, the coefficient matrix of the
LCPs is tridiagonal. This makes the LU decomposition efficient in this case. Unfortunately,
in more general option pricing models such as the Heston’s model, the coefficient matrix of
the LCPs is not tridiagonal any longer and the LU decomposition is not applicable. This
limits the applicability of the Brennan-Schwartz algorithm and requires the development of
more general algorithms, such as the one proposed in this paper.

Tests with the Heston Model.

We now compare the performance of the two methods on the Heston model described
in Section 3. The parameters for the model are as follows:

r = 5%, q = 0%, K = 100, T = 1, ρ = −0.5, ξ = 0.1, κ = 4, v0 = η = 0.06.

Here v0 is the initial variance level. Since the coefficient matrix in the Heston model is
banded, its factorization gives rise to significant fill-in. It is therefore attractive to use
an iterative method in the reduced-space phase, and we choose the generalized minimum
residual method (GMRES) preconditioned by an incomplete LU factorization; see e.g. [12].
Specifically, we employed GMRES with a restart parameter of 5, and the modified LU
decomposition (MILU) using no fill-in, i.e., MILU(0). The P-SOR method and the new
algorithm were terminated when two consecutive projected SOR iterates satisfy ‖zk+1 −
zk‖∞ ≤ ε = 10−6 (this stop tolerance was sufficient in these experiments to achieve the
reported accuracy). GMRES stops when ||rj ||/||r0|| ≤ ε/10, where || · || is the Euclidean
norm, rj is the current residual, and r0 is the initial residual. It is not simple to estimate
the optimal value of the projected SOR relaxation parameter in this case. In Table 5 we
display the results for ω = 1. The pricing error is again in the maximum norm evaluated at
the same 41 points as in the Black-Scholes-Merton model. Benchmark prices are obtained
with an accuracy of around 3× 10−6 by solving the system using large enough numbers of
steps in the space and in time. The results show that our method has greatly reduced the
number of iterations and achieves a speedup of up to six times in the above tested cases.

13

Projected SOR Algorithm I

m + 1 n + 1 N Max Error Iter CPU(s) CPU(s) Iter Red iter

140 28 5 3.8E-02 200 0.16 0.09 11 3
140 28 10 1.5E-02 136 0.18 0.11 9 2
140 28 20 6.0E-03 89 0.21 0.15 8 2
140 28 40 2.6E-03 60 0.26 0.21 7 2
140 28 80 1.4E-03 40 0.35 0.34 6 1

280 56 10 1.2E-02 501 2.63 0.84 13 4
280 56 20 4.1E-03 311 2.89 1.02 11 3
280 56 40 2.0E-03 181 3.16 1.27 8 2
280 56 80 8.0E-04 101 3.44 1.97 7 2
280 56 160 4.0E-04 55 3.72 3.47 7 2

560 112 20 3.9E-03 1093 50.97 8.62 14 4
560 112 40 1.6E-03 619 54.14 10.58 11 3
560 112 80 7.4E-04 334 56.62 13.16 9 2
560 112 160 3.4E-04 176 58.96 20.79 7 2
560 112 320 1.6E-04 92 61.62 34.57 7 2

Table 5: Heston: x = −0.4, x̄ = 1.0, v = 0.01, v̄ = 0.15, ε = 10−6. At-the-money put price
7.798628 (v0 = 0.06).

On the other hand, the speedup is not as significant as in the Black-Scholes-Merton model
where a much faster direct solver is available for solving (8).

We should note that the benefits of the MILU(0) preconditioner are quite substantial.
For example, for the case where m + 1 = 560, n + 1 = 112, N = 320, the (average) time
required by the unpreconditioned GMRES method to solve the linear systems (8) was 259
seconds, compared to 28 seconds for the preconditioned GMRES method. The average
number of GMRES iterations decreased from 120 to 5 by employing preconditioning. We
experimented with various levels of fill-in and drop tolerances for the incomplete MILU
factorization and observed that the choice MILU(0) (no fill-in) was the most efficient overall.

Finally, it is practically very relevant to compute the early exercise boundary of an
American option. For example, in Heston’s model, this corresponds to a surface, where for
any given time to maturity t and variance level v (or volatility

√
v), there is an asset price

level S∗(t, v) so that the American put option should be exercised only if the underlying
asset price is less than or equal to S∗(t, v). Figure 1 shows the early exercise boundary for
the American put option we consider. When the time to maturity t is zero, S∗(0, v) = K
for any variance level v. For t > 0, S∗(t, v) is smaller for larger v, as expected. Note that
we have plotted the early exercise boundary in terms of the time to maturity and volatility.

6 Final Remarks

We presented an algorithm for solving linear complementarity problems arising in American
options pricing, and have demonstrated that it is highly efficient in practice. The crucial
component in the new algorithm is a (recursive) subspace minimization phase that greatly
accelerates the active-set prediction made by a projected SOR iteration. The subspace
phase can be tailored to the structure of the linear complementarity problem; we have

14

Figure 1: Early exercise boundary for the American put option in Heston’s model.

shown how to do so for the classical Black-Scholes-Merton model as well as for Heston’s
stochastic volatility model.

Acknowledgment. The authors are grateful to Jong-Shi Pang for his comments and advice
during the preparation of this manuscript.

References

[1] A. Borici and H-J. Luethi. Fast solutions of complemenatirty formulations in American
put pricing. Journal of Computational Finance, 9(1), 2005.

[2] M. J. Brennan and E. S. Schwartz. The valuation of American put options. Journal
of Finance, 32(2):449–462, 1977.

[3] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem.
Academic Press, London, 1992.

[4] L. Feng, P. Kovalov, V. Linetsky, and M. Marcozzi. Variational methods in derivatives
pricing. In J.R. Birge and V. Linetsky, editor, Handbooks in Operations Research and
Management Science, volume 15, pages 301–342, Amsterdam, 2008. Elsevier.

[5] L. Feng and X. Lin. Pricing Bermudan options in Lévy process models. Working paper
University of Illinois at Urbana-Champaign, 2009.

15

[6] M. Giles and R. Carter. Convergence analysis of Crank-Nicolson and Rannacher time-
marching. Journal of Computational Finance, 9(4):89–112, 2006.

[7] S. Heston. A closed-form solution for options with stochastic volatility with applications
to bond and currency options. Review of Financial Studies, 6(2):327–343, 1993.

[8] J. Huang and J-S. Pang. Option pricing and linear complementarity. Journal of
Computational Finance, 2:31–60, 1998.

[9] S. Ikonen and J. Toivanen. Efficient numerical methods for pricing American op-
tions under stochastic volatility. Numerical Methods for Partial Differential Equations,
24(1):104–126, 2007.

[10] P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the pricing of
american options. Acta Applicandae Mathematicae, pages 263–289, 1990.

[11] J.L. Morales, J. Nocedal, and M. Smelyanskiy. An algorithm for the fast solution of
symmetric linear complementarity problems. Numerische Mathematik, 111:251–266,
2008.

[12] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,
Boston, USA, 1996.

[13] A.H. Siddiqi, P. Manchanda, and M. Kocvara. An iterative two-step algorithm for
American option pricing. IMA Journal on Managment Mathematics, 11:71–84, 2000.

[14] P. Wilmott, S. Howison, and J. Dewynne. The Mathematics of Financial Derivatives.
Cambridge University, Press, Cambridge, UK, 1995.

[15] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.

[16] X. L. Zhang. Numerical analysis of American option pricing in a jump-diffusion model.
Mathematics of Operations Research, 22(3):668–690, 1997.

16

