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Abstract

The paper proposes a preconditioner for the conjugate gradient method (CG) that
is designed for solving systems of equations Ax = b; with different right hand side vec-
tors, or for solving a sequence of slowly varying systems Az = bi. The preconditioner
has the form of a limited memory quasi-Newton matrix and is generated using infor-
mation from the CG iteration. The automatic preconditioner does not require explicit
knowledge of the coefficient matrix A and is therefore suitable for problems where only
products of A times a vector can be computed. Numerical experiments indicate that
the preconditioner has most to offer when these matrix-vector products are expensive
to compute, and when low accuracy in the solution is required. The effectiveness of the
preconditioner is tested within a Hessian-free Newton method for optimization, and by
solving certain linear systems arising in finite element models.
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1. Introduction

We describe a technique for automatically generating preconditioners for the conjugate
gradient (CG) method. It is designed for solving either a sequence of linear systems

Az =b; i=1,... 1t (1.1)

in which the coefficient matrix is constant but the right hand side varies, or for solving a
sequence of systems
Apx = by k=1,...,t (1.2)

where the matrices A vary slowly and the right hand sides by are arbitrary. We assume in
both cases that the coefficient matrices are symmetric and positive definite.

The automatic preconditioner makes use of quasi-Newton updating techniques. It re-
quires that the first problem in (1.1) or (1.2) be solved by the unpreconditioned CG method,
and based on the information generated during this run, generates a preconditioner for
solving the next linear system in the sequence. More precisely, if {z;} and {r;} denote the
sequence of iterates and residuals generated by the CG method when applied to the first of
the systems in (1.1) or (1.2), we compute and store the vectors

Si = Tir1 — Tj, Yi = Tir1 — T, 1=1l1,...,0ln (1.3)

corresponding to m iterates of the CG process, where m is an integer selected by the user.
We then use these vectors to define a limited memory BFGS matrix H, which we call the
quasi-Newton preconditioner, and which will be used to precondition the CG method when
applied the next problem in the sequence (1.1) or (1.2). The parameter m determines the
amount of memory in the preconditioner, and is normally chosen to be much smaller than
the number of variables, so that the cost of applying the preconditioner is not too large.

The first question is how to select the m vectors (1.3) to be used in the definition of
the quasi-Newton matrix. The two strategies that have performed best in our tests are to
select the last m vectors generated during the CG iteration, or to take a uniform sample of
them. In this paper we will concentrate on the second strategy: we will save m vectors that
are approximately evenly distributed throughout the CG run. A detailed description of the
quasi-Newton preconditioner will be given in the next section, after we have reviewed the
main ideas of limited memory BFGS updating.

Our main interest is in accelerating the CG iteration used in Hessian-free Newton meth-
ods for nonlinear optimization. There one needs to solve systems of the form (1.2) where
Ay, is the Hessian of the objective function at the current iterate. Hessian-free Newton
methods assume that the Hessian of the objective function is not known explicitly, but that
products of A with a vector can be approximated by finite-differences of gradients, or by
means of automatic differentiation. In either case these products can be very expensive to
compute. After showing that the automatic preconditioner appears to be quite useful in a
Hessian-free Newton method, we explore its behavior on a different context by testing it in
the solution of linear systems arising in finite element models. In these tests we consider
both problems of the form (1.1) and (1.2).



The idea of saving information from the CG iteration in the form of a quasi-Newton
matrix is not new. Nash [15] constructs a limited memory matrix with memory m =
2, which is different from the one proposed here, to precondition the linear system of
equations arising in the Hessian-free Newton method for optimization. O’Leary and Yeremin
[21] explore the use of (full-memory) quasi-Newton matrices as preconditioners for the
solution of closely related linear systems. Byrd, Nocedal and Zhu [6] propose an optimization
algorithm in which information corresponding to the last m iterations of the CG method is
used to update a limited memory matrix. However, in that algorithm the limited memory
matrix is used only to compute a search direction and not as a preconditioner for the CG
method. The motivation for the automatic preconditioner proposed in this paper arose while
performing numerical tests with a Hessian-free Newton method for large scale optimization.
We observed that the 2-step preconditioner of Nash was effective only in a few test problems,
but that the technique proposed here gave improvements over a wide range of problems.
The objective of this paper is to suggest that the automatic preconditioner is well suited
not only in optimization, but in a wider context. Therefore we present our discussion in
the framework of the general problems (1.1)-(1.2).

2. The Quasi-Newton Preconditioner

In the BFGS updating formula for minimizing a function f (see e.g. [7, 8, 10]) we are
given a symmetric and positive definite n X n matrix Hj, that approximates the inverse of the
Hessian of f, and a pair of n-vectors sy = zx11— 2k, and yr = Vf(2ry1) — V f(zg) satisfying
the condition s{yk > 0. Using this we compute a new inverse Hessian approximation Hy
by means of the updating formula

Hyo1 = V" HyVio + prsisy, (2.1)
where
o =1/yisk,  Vi=1— pysp. (2.2)
We say that the matrix Hyy; is obtained by updating Hj once using the correction pair
{8k Yk}

Even if Hy, is sparse, the new BFGS matrix Hy 1 will generally be dense, so that storing
and manipulating it is prohibitive when the number of variables is large. To circumvent
this problem, the limited memory approach makes use of an alternative representation of
the updating process in which the quasi-Newton matrices are not explicitly formed.

It follows from (2.1)-(2.2) that if an initial matrix H is updated m times using the BFGS
formula and the m pairs {s;,v;}, i = k —1,...,k —m, then the resulting matrix H(m) can
be written as

Hm) = (VI Vi) H (Ve Vi)
+ Pk-m (Vklll T Vkllm+1) Sk—ms;‘cpfm (kam+1 T kal)
+  Pk—m+1 (VkT—l T Vkllm+2) Sk—m-l-lsgferl (Ve—mt2 - Vi-1)



+ Pho1Sk—15h_1- (2.3)

Thus instead of forming H(m) we can store the scalars p; and the vectors {s;,y;}, i =
k—1,...,k—m which determine the matrices V;. A recursive formula described in [13, 19]
takes advantage of the symmetry in (2.3) to compute the product H(m)v, for any vector v,
with only 4mn floating point operations.

The so-called L-BFGS method described in [19, 12, 9] updates Hessian approximations
as follows. We first choose a sparse (usually diagonal) initial Hessian approximation H,
and define the first m approximations through (2.3) as H(1),...,H(m). At this stage the
storage is full, and to construct the new Hessian approximation, we first delete the oldest
correction pair from the set {s;,y;} to make room for the newest one, {sx,yr}. The new
Hessian approximation H (m+1) is defined by (2.3), using the new set of pairs {s;,y;}. This
process is repeated during all subsequent iterations: the oldest correction pair is removed
to make space for the newest one.

In this paper we are interested in solving positive definite linear systems Az = b, and
therefore the function to be minimized is the quadratic %xTAx—bTx, whose gradient is equal
to the residual r(z) = Az—b. Therefore when using the BFGS updating formula to minimize
this quadratic, it is appropriate to define s; and y; by (1.3). To find a preconditioner for
solving a sequence of problems of the form (1.1), with a constant coefficient matrix but
different right hand sides, we proceed as follows. We solve the first of the systems using the
unpreconditioned CG method. We save m correction pairs {s;,y;} generated during this
CG iteration and use (2.3) to define the preconditioner to be H(m). We solve the rest of the
linear systems in (1.1) using the preconditioned CG method with this fixed preconditioner.

A similar approach can be used for solving the sequence of slowly varying linear systems
(1.2). An alternative, in this case, is to generate a new preconditioner during the solution of
every linear system, so that the preconditioner is always based on the most recently solved
system in the sequence (1.2). We will report results using both approaches.

We have experimented with various strategies for selecting the correction pairs to be
saved. In analogy with nonlinear optimization we can simply save the last m pairs. But
a strategy that is more effective in some cases is to save the correction pairs at regular
intervals. Suppose that m > 1 and that ncg denotes the number of CG iterations performed
during the solution of the first linear system. If we define v = |ncg/(m — 1)|, then we
would like to save the pairs {sg,yx}, for & = 0,v,2v,,...,(m — 1)v. Even though this
cannot be done in practice since the number ncg of CG iterations is not known beforehand,
in Appendix 1 we describe an algorithm that dynamically stores the correction pairs so
that they are as evenly distributed as possible. This algorithm requires no extra storage
or computation, and in our tests gives essentially the same results as saving the correction
pairs at exactly uniform intervals.

Following the L-BFGS algorithm, we will always choose the initial matrix H in (2.3) to
be .
S U
yl

H= I, (2.4)



where [ denotes the last correction pair generated in the CG cycle.

We conclude this section by noting that limited memory updating is flexible enough
to accommodate information generated at any stage during the solution of the sequence
of problems (1.1) or (1.2). In particular the preconditioner could contain correction pairs
corresponding to different linear systems, but we will not explore this possibility here.

3. Application to the Hessian-free Newton Method

In this section we investigate the effectiveness of the automatic preconditioner within a
Hessian-free Newton method for solving the unconstrained optimization problem

minimize f(z). (3.1)

Here f is a twice continuously differentiable function of n variables. Our experiments will
be performed using Nash’s implementation [16, 17] of the Hessian-free Newton algorithm,
which we now briefly review.

Given the current estimate xjp of the optimal solution of (3.1), we generate a search
direction p; by approximately minimizing the quadratic model

Qelpr) = V() e + 52l V(i) (32)

The new iterate is then defined to be x4 = = + agpk, where the step size «, is computed
by means of a line search procedure; in our code we used the line search routine developed
by Moré and Thuente [14].

The approximate solution of (3.2) is obtained by applying the CG method to the system

V2 f(xr)p = =V f (), (3.3)
starting from the initial guess p,(co) = 0, and terminating if a direction of negative curvature
is detected or if the following stopping test is satisfied

(i—1)
i (1 — MW) < 0.5, (3.4)
Qr(py”)

where {p(V} denotes the sequence of CG iterates. This test aims to terminate the CG
iteration when the reduction in the quadratic model is judged to be so small that the
improvement in the quality of the search direction is not likely to offset the cost of computing
it.

In the Hessian-free Newton method [20, 17] it is assumed that the elements of the
Hessian matrix V2f are not available. One must therefore compute the matrix-vector
products required by the CG iteration by automatic differentiation, or as will be done in
our tests, approximate them by finite-differences,

Vf(zg + hv) = V£ (zy)
h 9’

V2 f(zp)v ~ (3.5)



where h = (1 + ||zk||2)\/€m, and ey denotes unit roundoff. The computational cost of a
matrix-vector product in the CG iteration therefore equals the cost of a gradient evaluation.
(Current software for automatic differentiation will normally be at least as expensive as
finite-differences).

We make use of the automatic preconditioner as follows. During the first iteration of the
Hessian-free Newton method we apply the unpreconditioned CG method to compute the
first search direction, and build a quasi-Newton preconditioner H(m), as discussed in §2,
and using the uniform sampling strategy described in the Appendix. This preconditioner
is used to compute the next search direction, and during this second iteration we construct
a new preconditioner H(m). This process is repeated every iteration of the Hessian-free
Newton method: the search direction is always computed by means of the preconditioned
CG method using the preconditioner constructed at the previous iteration. The starting

point for every CG run is pg)) = 0.

3.1. Experiments with Selected Problems

We begin by focusing on the 5 problems listed in Table 1 whose Hessian matrices possess
5 distinct classes of eigenvalue distributions. Liu, Marazzi and Nocedal [11], describe these
eigenvalue distributions and how they evolve as the iterates approach the solution. Other
characteristics of the 5 problems are discussed in Nash and Nocedal [18]. The number of
variables in all these test problems is n = 100. All the numerical results reported in this
paper were performed on a DEC ALPHA2100 workstation with 128 Mb of main memory,
and using double precision FORTRAN; machine accuracy is approximately 10716,

The optimization iteration was terminated when

IV f (zr)ll2 < 107" max{L, [z |2} (3.6)

The results are summarized in Table 1, for various values of the memory parameter m in
the preconditioner. We report the number of iterations (iter) of the Hessian-free Newton
method, the number of function and gradient evaluations (fg) performed during the line
search, and the number of CG iterations (cg). Recall that every iteration of the CG method
requires one gradient evaluation.

Our main interest in these results lies in the number of CG iterations; the number of
function/gradient evaluations in the line search and the number of iterations of the Hessian-
free Newton method vary somewhat randomly due to the nonlinearities in the problem and
due to the inner termination test (3.4). We observe from Table 1 that a substantial reduction
in the number of CG iterations was obtained, in all problems, for m = 8.

No further gains were achieved by increasing m to 16 (or beyond). The reason for this is
partly explained by Table 2 which reports the average number of CG iterations per Newton
iteration. Note that since the preconditioner makes use of the correction pairs generated
by the CG method, and since Table 2 shows that the average number of CG iterations is
small, increasing the storage beyond 10 corrections will have no effect most of the time.
This explains, in particular, why for several problems the results for m = 8 and m = 16 are
identical.



m=0 m=4 m=8 m=16
problem | iter fg cg | iter fg cg | iter fg cg | iter fg cg
cvar-2 51 52 871 | 51 52 760 | 48 49 578 | 41 42 610
penalty-3 | 25 29 142 | 21 25 7L 20 24 72| 20 24 72
tridiag 24 25 166 | 24 25 119| 20 21 8| 20 21 83
QOR 13 14 52 | 13 14 32| 13 14 32| 13 14 32
SQRT(2) | 37 43 640 | 34 43 416| 31 37 380 | 36 42 359
‘ Total ‘ 150 163 1871 | 143 159 1398 | 132 145 1145 | 130 143 1156

Table 1. Performance of the Hessian-free Newton method for various values of
the memory parameter m in the preconditioner.

‘ problem ‘ m=0 ‘ m=4 ‘ m=8 ‘ m= 16 ‘

cvar-2 17.0 | 149 | 12.0 14.9
penalty-3 5.7 3.4 3.6 3.6
tridiag 6.9 5.0 4.2 4.2
QOR 4.0 2.5 2.5 2.5
SQRT(2) | 173 | 12.2| 123 10.0

Table 2. Average number of CG iterations per Newton step for the results of Table 1.

Table 1 suggests that the preconditioner is successful. To quantify its effectiveness in a
more controlled setting, we perform the following tests using problems cvar-2 and penalty-3
(similar results are obtained with the other test problems). For each function we select
an intermediate iterate generated by the Hessian-free Newton method, and at that point
compute the Hessian matrix using finite-differences. This iterate is selected so that the
Hessians are positive definite at that point. For each of the two problems, we solved the 51

linear systems
Ax =1b;, 1=0,...,50, (3.7)

where A denotes the Hessian matrix and where the right hand side vectors b; were randomly
generated with components in the interval [0,1]. We solve the first system Az = by using
unpreconditioned CG, and construct preconditioners H(m) for various values of m. We
then solved the remaining systems Az = b;, ¢ = 1,...,50 using the preconditioned CG
method. In all cases, the starting point was zp = 0 and the CG iteration was terminated
by means of the residual test recommended in [2]:

[I7klloo < ([ Allooll2£]loo + [[b][00) TOL. (3-8)

In Table 3 we report the results for two values of the parameter TOL.

We observe that for a tight tolerance, TOL; = 1077, the benefit of the preconditioner
can be modest, as in the problem cvar-2, but that for the relaxed tolerance TOLy = 1073
the savings in the number of CG iterations are substantial. These results are typical of



cvar-2 penalty-3
m || TOL; | TOL; || TOL; | TOL,
0 61 37 26 12
4 71 7 22 5
8 54 6 15 2
12 || 52 3 15 2
18 || 49 3 15 2
20 || 46 1 15 2

Table 3. Solving systems with a fixed coefficient matrix and multiple right hand
sides. Number of CG iterations for two tolerances, TOL; = 10~7, TOLy = 1073.

what we have observed using other coefficient matrices and right hand side vectors. They
suggest that the quasi-Newton preconditioner is well suited in settings similar to that of the
Hessian-free Newton method, where the stopping test for the CG iteration often demands
low accuracy.

In all these tests we have reported only the number of CG iterations, and not com-
puting times. This is because our objective in introducing the automatic preconditioner
is to reduce the number of gradient evaluations which often render Hessian-free Newton
methods impractical. We should mention, however, that the cost of applying the precondi-
tioner, which is 4mn floating point operations, may constitute a substantial portion of the
optimization process if the evaluation of the gradient is inexpensive. We will return to this
point in the next section.

As mentioned in §2, the preconditioner saves the correction pairs at uniform intervals
throughout the CG run. If instead we build the preconditioner by using the last m pairs
of the CG iteration, the results described in this section would not be quite as good, but
overall similar, to the ones obtained with the uniform sampling technique. In the next
section, however, we will report experiments in which saving the last m correction pairs is
a significantly inferior strategy.

3.2. Extensive Tests

We now test the efficacy of the automatic preconditioner by solving a set of uncon-
strained problems from the CUTE collection [4]. We will use this experiment to report on
one of the many variants of the sampling techniques we have tried. In addition to collecting
m correction pairs during the CG cycle using the sampling technique, we will also store the
correction pair produced by the outer iteration of the optimization algorithm,

Sk = Tk41 — Tk, Yk = Vfrr1 — Vg

The results obtained with this strategy are shown in Table 4. Without storing the outer
correction pair the results are slightly less successful, and will not be reported here.



problem n | iter fg cg | iter fg cg | iter fg cg
ARWHEAD 1000 6 7 15 6 7 12 6 7 12
BDQRTIC 100 | 16 17 69| 15 16 52| 17 18 52

BROYDNYD | 1000 | 114 267 1061 | 105 273 634 | 106 273 712
CRAGGLVY | 1000 | 20 20 98 | 22 22 68 | 23 23 74
DIXMAANA | 1500 6 6 14 6 6 13 6 6 13

DIXMAANE | 1500 | 22 23 266 | 22 23 198 | 23 24 186
DIXMAANG | 1500 | 21 21 209 | 27 29 200| 29 31 182
DIXMAANH | 1500 | 21 21 207 | 26 26 184 | 24 24 158
DIXMAANI 1500 | -2 -2 -2 64 65 2616 | 63 64 2572
DIXMAANL | 1500 | -2 -2 -2 227 229 2749 | 213 215 2586

DQDRTIC 1000 6 6 16 6 6 13 6 6 13
DQRTIC 500 | -2 -2 -2 22 24 451 22 24 45
EIGENALS 110 38 39 233 36 39 218 | 29 32 147
EIGENBLS 110 | -2 -2 -2 1124 193 1020 | 135 198 1039
EIGENCLS 462 | -2 -2 -2 128 177 1491 | 121 172 1528

ENGVALL1 1000 | 11 11 25 9 9 18 9 9 18
FREUROTH | 1000 | 11 17 28 11 14 22| 11 14 22
GENROSE 500 | -2 -2 -2 1 366 669 1982 | 365 646 2000
MOREBV 1000 5 6 70 5 6 67 5 6 68
NONDQUAR | 100 | 56 67 323 | 62 101 392 | 56 91 320

PENALTY1 1000 | -3 -3 -3 | 41 46 84| 41 46 84
PENALTY3 100 -3 -3 3 023 31 59| 23 31 99
QUARTC 1000 | -3 -3 -3 24 27 49 | 24 27 49
SINQUAD 1000 | 67 84 248 | 22 35 58 | 22 35 58
SROSENBR | 1000 9 10 22 9 10 19 9 10 19

TQUARTIC | 1000 3 3 8 3 3 7 3 3 7
TRIDIA 1000 | 46 46 1306 | 35 35 570 | 34 34 575

Table 4. Performance of the Hessian-free Newton method on a set of problems
from the CUTE collection. The code -2 indicates that more than 3000 CG
iterations were performed. The code -3 indicates that the line search routine
performed more than 20 iterations without decreasing the objective function.




problem n | iter fg cg cpu | iter fg cg cpu |iter fg cg cpu

MinSurA | 2500 | 16 19 178 189 | 15 19 101 14.1 15 18 103 15.5

G-L 2D 400 | 136 149 2948 829 | 76 93 1716 54.8 | 58 65 1308 45.9

Table 5. Performance of the Hessian-free Newton method on two problems of
MINPACK-2 collection of problems. CPU time is reported in seconds.

In these experiments the preconditioner is successful, not only in reducing the total
number of CG iterations, but also in improving the reliability of our optimization method.

We conclude our numerical study in the optimization setting by considering two prob-
lems from the MINPACK-2 collection [1]. The preconditioner was the same as the one used
to generate the results in Table 4. We now also report CPU time to illustrate the effect of
the preconditioner on the Newton iteration. The results are presented in Table 5.

4. Experiments with Finite Element Matrices

Our numerical experiments with nonlinear optimization test problems suggest that the
quasi-Newton preconditioner holds much promise. To continue our evaluation of its perfor-
mance, we would like to test it on matrices that have different eigenvalue distributions from
the ones studied so far, and that are representative of an important class of applications.
To this end we have selected several linear systems arising in the finite element models of
Belytschko et al [3]. The first two matrices used in our experiments, A;,, A1,, were obtained
from a 1-dimensional model consisting of a line of 2-node elements with support conditions
at both ends, and a linearly varying body force. A;, has dimension n = 50 and A;, has
dimension n = 451. The right hand side vector in these systems, which we denote by ¢y, is
defined by

a=ct=0 ¢ =i/(n—1)x10% i=2,...,n—1, (4.1)

where superscripts indicate components of a vector.

The third matrix used in our tests, Ay, is the stiffness matrix from a two-dimensional
finite element model of a cantilever beam. The beam is fixed at one end, and a shear load
is applied at the other end. The finite element mesh consists of an even array of elements
in the z and y-coordinates [3]. The right hand side vector for this two-dimensional model
will be denoted by dp; it has zeros in all positions except that

d3t = d5® = di0% = d}*0 = i = —8000. (4.2)

We also generated 5 matrices Ay, , ..., As, by perturbing the mesh for the cantilever model
Ay, along one of the coordinate directions. The size of the perturbation increases linearly
with every new matrix in the sequence: it is 1% in Ay, and 10% in As,.

The characteristics of the matrices are shown in Table 6, where \,,;;, and A\, denote
their extreme eigenvalues.



problem | origin n | Amin Amaz

Ay, 1D 50 | 1.0 | .20 x 1010
Ay, 1D 451 | 1.0 | .18 x 10
As, 2D 170 | 1.0 | .13 x 107

Ay, 2D pert | 170 | 1.0 | .13 x 10°
As, 2D pert | 170 | 1.0 | .14 x 10°
As, | 2D pert | 170 | 1.0 | .14 x 10°
As, 2D pert | 170 | 1.0 | .14 x 10°
Ay, | 2D pert | 170 | 1.0 | .15 x 10°

Table 6. Characteristics of the finite element test problems.

The first matrix, Aj,, has one eigenvalue of size A = 1, one of size A = .2 x 107, and the
rest are distributed in a wide gap and cluster near the largest eigenvalue, A = .2 x 10'°. The
second matrix A;, has a similar eigenvalue distribution, except that the smallest eigenvalue
A = 1 has multiplicity two. The matrix Ay, from the two dimensional model has a cluster
of 10 eigenvalues at A = 1; the next eigenvalue is located at A = .54 x 10%, and the rest
form several clusters between A = 107 and A = .13 x 10°. We illustrate the eigenvalue
distributions of these test matrices in Figure 1.

In the experiments with finite element matrices reported next, the CG iteration was
terminated using the residual test (3.8), where the value of the parameter TOL will be
specified later on. The preconditioner was constructed using the uniform sampling strategy
described in the Appendix.

4.1. Multiple Right Hand Sides

We first test the efficiency of the quasi-Newton preconditioner in solving a sequence of
problems (1.1), in which the coefficient matrix is constant but the right hand side varies.
To do so, we applied the unpreconditioned CG method to the first system Az = by. The
information generated during this run was used to construct 5 quasi-Newton preconditioners
H(m), for m = 4,8,12, 16,20, as described in §2. For each preconditioner H(m), we solved
the remaining systems Az = b;, 1 = 1,...,50, using the preconditioned CG method. The
first right hand side vector by was defined as ¢y or dy, depending on whether the matrices
correspond to the one or two-dimensional models (see (4.1)-(4.2)). The other 50 right hand
sides, by, . .., bsg were obtained according to the following recursion, which starts with j = 0.
Using bj as a “seed”, we obtain bj;1 by introducing perturbations of size 5%, with random
signs, to each of the nonzero components of b;.

The results are presented in Table 7. We report the average number of CG iterations
(rounded to the nearest integer) needed to meet the stopping test (3.8) with TOL = 10",
We present results for two initial points, zo = 0 and z¢ = 10%e, where e = (1,1,...,1)7.

We observe that the preconditioner is successful in reducing the number of CG iterations
in both the 1-dimensional and 2-dimensional models. To illustrate how the preconditioner

10



Ay, Ay, Ay,
20=0|zo=10% || 2o =0 | 2o = 10%e || 2o =0 | zo = 10%¢
m iter iter iter iter iter iter
0 49 25 447 225 56 93
4 43 22 291 185 48 68
8 23 12 126 89 26 56
12 16 6 125 80 28 36
16 12 4 62 41 27 30
20 12 5 63 41 21 24

Table 7. Results for finite element matrices using multiple right hand sides. The
table reports average number of CG iterations for 50 runs, using different values
of the memory parameter m, and for two different initial points.

transforms the spectrum of the coefficient matrix A;,, we plot in Figure 1 the eigenvalues of
H(m)A,,, for m = 16,49, as well as the spectrum of the original matrix A;,. We note that
even though H(16)A;, is only slightly better conditioned than A, its eigenvalues are more
tightly clustered. We also observe that the condition number of H(49)A;, is .52 x 107 with
just one eigenvalue A = 0.19 x 10~® and a cluster of 49 eigenvalues A = 1; this is expected,
given the properties of quasi-Newton updating and the fact that A, is of dimension 50.

It is natural to ask whether the preconditioner provides a reduction in cpu time — and
not just in CG iterations — in these finite element test problems. It turns out that since our
test matrices are very sparse, the cost of applying the preconditioner is too high to offset
the reduction in the number of CG iterations in these experiments. More specifically, the
product Av, which is the most computationally expensive part of the unpreconditioned CG
method, requires approximately 3n multiplications for the 1-dimensional model and 14n
multiplications for the 2-dimensional model. In contrast, the product of the preconditioner
H(m) and a vector requires 4mn multiplications independently of the matrix structure.
As a result, one is not able to obtain reductions in cpu time for any of the values of m
listed in Table 7. Nevertheless these results indicate that for matrices having the same
eigenvalue distribution as our test matrices, but with a substantial number of nonzero
elements, significant reductions in computing time can be achieved with the quasi-Newton
preconditioner. For the rest of the paper we will continue to assume that the cost of
computing Av is much higher than the cost of applying the quasi-Newton preconditioner,
and will report only the number of CG iterations.

4.2. Slowly Varying Systems

Next we consider the family of problems A z = by, for k¥ = 0,1,...,5, using the
perturbations of the 2-dimensional finite element matrix As,. We solve the first system
Ao,z = by using unpreconditioned CG, and construct 5 quasi-Newton preconditioners H (m)
for m = 4,8,12,16,20. Each of these is used to solve the five remaining systems using the

11



n = 50. Eigenvalues A;;, A —

A0E1 20E7 20 E 10
n = 451. Eigenvalues A;;, A —

A0E1 022 E6 A8 E 11
n = 170. Eigenvalues Ay, A —

A0E1 054 E4 A3 E9
n =50. Eigenvalues H(16)A4;, A —

=

10 E-8 26080 ITE1
n =50. Eigenvalues H(49)A;, A —

A9 E -8 A0E1

Figure 1: Eigenvalue distributions of three finite element matrices, and the effect of precon-

ditioning on A, 19



m A20 Agl A22 A23 A24 A25 A20 A21 A22 A23 A24 A25
41 56 | 50 | 51 | 51 | 52 | 53 93 | 70 | 71 | 72 | T3 | 75
8 56 | 27 | 28 | 29 | 31 | 31 93 | 58 | 59 | 61 | 62 | 63

12 56 | 20 | 22 | 22 | 26 | 27 93 | 37 | 37 | 38 | 39 | 40

16 || 56 19 21 22 23 24 93 32 32 32 34 | 36

20| 56 | 18 | 19 | 20 | 26 | 28 93 | 256 | 26 | 26 | 28 | 30

Table 8. Results on a sequence of slowly varying linear systems arising from the
2-dimensional finite element model. The table presents the number of iterations
of the preconditioned CG method to solve each of the systems. The starting
point for solving all the systems is given by .

g =0 zo = 10%e
m A20 Agl A22 A23 A24 A25 A20 A21 A22 A23 A24 A25
4 56 | 41 | 41 | 46 | 47 | 46 93 4 ) 4 4 )
8 56 | 20 | 24 | 25 | 26 | 26 93 4 4 7 4 )
12 ) 56 | 17 | 18 | 19 | 19 | 20 93 Y 6 8 9 9
16 || 56 17 | 18 15 | 21 18 93 ) 7 8 9 10
20| 56 | 17 | 18 | 15 | 19 | 17 93 Y bt 7 8 8

Table 9. A variation of the results in Table 8. The initial point for solving system
Ao, x = by, is now taken as the solution of previous system, Ay, x = by_;. The
initial point for the first system Ay z = by is given by zo.

preconditioned CG method. The CG iteration was stopped by (3.8) with TOL= 10~". The
first right hand side vector is defined to be dy (see (4.2)), and the remaining right hand
sides dy, ..., ds were constructed as before by adding, every time, perturbations of +5% to
the non-zero elements in each of the vectors in the sequence {d;}.

In the first set of experiments, reported in Table 8, the same starting point g was used
for all the systems Ay, = by. We experimented with two choices for this starting point,
zo = 0 and zy = 10%e. In the second set of experiments, reported in Table 9, the initial
point for solving each system A, z = by was chosen to be the solution of previous system,
Ao, x = bp_1. Recall that the system Ay is always solved by unpreconditioned CG.

Table 8 shows that the preconditioner is effective. The fact that the number of iter-
ations increases slightly as we move along a row of the table is not surprising. Since the
preconditioner was generated from the first matrix Ay, and the matrices Ay, differ more
and more from it as the subscript & increases, the preconditioner becomes “older” for each
new system. Table 9 indicates that using the solution of Ay,  « = by_; as the initial point
for the new system As, = by, has been advantageous.

We repeated the tests of Tables 8 and 9 refreshing the preconditioner after every so-
lution. To be more precise during the solution of each system Ay x = b, we construct a
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m A20 Agl A22 A23 A24 A25 A20 A21 A22 A23 A24 A25
41 56 | 50 | 44 | 51 | 55 | 49 93 | 70 | 73 | 67 | 73 | 68
8 56 | 27 | 34 | 41 | 33 | 33 93 | 58 | 49 | 52 | 47 | 51

12] 56 | 20 | 31 | 37 | 24 | 31 93 | 37 | 41 | 42 | 43 | 37

16 || 56 19 | 31 | 21 | 37 | 27 93 | 32 | 32 | 32 | 34 | 36

20| 56 | 18 | 26 | 23 | 32 | 22 93 | 256 | 43 | 30 | 31 | 32

Table 10. A variation of the results given in Table 8. A new preconditioner is
now computed after every solution. The right hand side vectors were the vectors
b;. The starting point for solving all the systems is given by .

g =0 zo = 10%e
m A20 Agl A22 A23 A24 A25 A20 Agl A22 A23 A24 A25
41 56 | 41 | 38 | 48 | 40 | 59 93 4 3 1 1 2
81 96 | 20 | 37 | 32 | 34 | 33 93 4 2 1 2 1
12 || 56 17 1 26 | 32 | 27 | 39 93 ) ) ) 4 2
16 || 56 | 17 | 24 | 24 | 28 | 26 93 ) 4 6 3 2
20 | 56 17 | 19 14 | 19 16 93 ) 4 4 4 2

Table 11. A variation of the results given in Table 9. A new preconditioner is now
computed after every solution. The initial point for solving system Ay, z = by,
is taken as the solution of system As, 2 = by_;. The initial point for the first
system Ag x = by is given by zo.

preconditioner, and use it to solve the next system Ap, . & = byy (as in the Hessian-free
Newton method). We have made an exception to this strategy when the CG method re-
quired only one or two iterations to meet the stopping test, since building a preconditioner
with m = 1,2 is not useful. In this case we use the preconditioner most recently generated.
The results are given in Tables 10 and 11.

The results of Tables 10 and 11 are better than those of Tables 8 and 9, particularly in
that there is no longer a trend for the number of CG iterations to increase as we move along
a row of the table. Nevertheless the gains are less significant than one would expect. We
should note that when the preconditioner is built during an unpreconditioned CG run, the
number of CG iterations is larger, and the pairs {sg, yx } represent a better sample than that
obtained during a preconditioned CG run. Indeed, if the preconditioner is so effective that
the number of CG iterations is very small, then collecting information from this run may
not be advantageous, as we mentioned above. Our conclusion is that the decision of when to
refresh the preconditioner is not simple, and dynamic strategies that balance the currency
of the information with the amount of information available could be quite effective. We
will, however, not pursue this question here.

Tables 8-11 indicate that using the previous solution as the starting point for a new run

14



b random b random, b' =b" =0

m || TOL=10"7 | TOL =10"Y || TOL = 107 | TOL = 10~°
0 50 50 48 49

4 7 39 45 46

8 6 34 41 42

12 6 29 37 38

16 6 27 34 34
20 5 25 29 30

Table 12. Constructing the preconditioner using the last m correction pairs. Number of
CG iterations for two types of right hand side vectors b and for two levels of accuracy
TOL.

(a “hot start”) sometimes, but not always, leads to a substantial reduction of CG iterations.
We should also point out that the results for 2y = 0 in Table 11 show that the hot start
benefits from preconditioning, as can be seen by reading the results one column at a time.
But for zy = 10%¢ in Table 9, preconditioning does not help the hot start strategy.

4.3. Comparing Sampling Strategies

We will now perform some tests to compare the strategy of saving correction pairs at
uniform intervals during the CG run, with that of saving the last m pairs. In the first
experiment we use the matrix A;, from the 1-dimensional finite element model, and solve
systems of the form (1.1) where the matrix is fixed and the right hand sides vary. The
initial point was x¢p = 0 and the right hand sides were chosen to have random components
in the interval [0, 1]. The preconditioner is first constructed using the last m iterations of
the CG method. The results are presented in the 2nd and 3rd columns of Table 12, for two
values of the tolerance TOL in (3.8). It is remarkable that the preconditioner is extremely
effective when TOL= 10~7, which is a fairly tight accuracy, but that it gives only modest
gains when TOL= 107?. We then modified the right hand sides by setting their first and
last components to zero. The results, which are markedly different, are given in the last
two columns of Table 12.

We can explain these results by considering the properties of the matrix A;,, which is
given by

[ 1 0 0 0 0 0]
0 a —a/2 0 0 0
0 —a/2 a —a/2 0 O
Ab=10 0 -a/2 a 0o 0
L0 0 0 0 - —a/2 a ]

where a = 1079, Since the first row is el , the first component of the solution x equals the
first component b' of the right hand side vector. It is not difficult to show that since all the
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b random b random, b' =b" =0
m || TOL=10"7 | TOL =10"Y || TOL = 107 | TOL = 10~°
0 50 50 48 49
4 10 34 36 44
8 25 35 37 33
12 17 22 19 24
16 12 18 14 19
20 15 18 13 16

Table 13. Constructing the preconditioner sampling m correction pairs. Number of CG
iterations for two types of right hand side vectors b and for two levels of accuracy TOL.

entries in b are not greater than 1, all other components of z are of order 1076, Therefore
for these random right hand side vectors we can expect the solutions to be closely aligned
with the first coordinate direction e;. Since the preconditioner is able to incorporate the
curvature along ey, it forces the CG iteration to immediately point towards the solution.
As a result the CG iteration will terminate quickly if the required accuracy is not too
high. These are the most favorable conditions for the automatic preconditioner. But if
the tolerance is set to be TOL= 1079, it will be necessary that the components of the
solution along the other coordinate directions be estimated well, and the limited memory
preconditioner is only able to provide some of the needed information.

The solution will no longer be closely aligned with e if the first component of the right
hand side vector is set to zero. One can show that in this case the solution will have signifi-
cant components along all the coordinate directions, except for the first component which is
zero. The problem thus becomes particularly difficult for limited memory preconditioning.
This is confirmed by the last two columns of Table 12 which show very modest gains in
performance. Note also that the performance is now insensitive to the stopping tolerance.

In Table 13 we repeat the tests reported in Table 12, but using a uniform sampling
strategy. The latter clearly performs better than saving the last m pairs, except for the
first case (b random TOL= 10~7), which as we have explained, represents a special case.

To continue our comparison of sampling strategies, we repeat in Table 14 the experiments
of Table 7 with the two-dimensional finite element matrix Ay, using two different starting
points. We compare the strategy of saving the last m pairs (“last”) with that of uniform
sampling. It is clear that the latter performs much better in this experiment.

Our computational experience, both in the optimization setting and in finite element
calculations, is that saving the last m corrections usually gives comparable performance
to the uniform sampling technique. But as we have just shown, there are cases when
uniform sampling is superior. It is difficult to provide theoretical arguments in favor of
either strategy, but we now report the results of controlled tests that further support the
uniform sampling technique.
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o =0 zo = 10%e

m || last | uniform || last | uniform
0| 56 56 93 93
4| 74 48 90 68
8| 71 26 87 56

12 || 56 28 83 36

16 || 44 27 7 30

20 || 43 21 72 24

Table 14. Average number of iterations of the CG method for the matrix A, and multiple
right hand sides. Comparison of two sampling strategies in the formation of the precon-
ditioner: saving the last m iterations and sampling at uniform intervals. Results for two
starting points are given.

4.4. On the Sample Size.

When the number of correction pairs available to form the preconditioner is small, the
two strategies (uniform sampling and using the last m corrections) will clearly give similar
results. Therefore in the following tests we will force the CG algorithm to perform an
increasingly large number of iterations, and observe the effect that this has on the quality
of the preconditioner.

More specifically we study whether the preconditioner benefits from having a larger
sample of corrections to choose from, for a given amount of memory m. In the tests
described next, we will consider the solution of a sequence of finite element systems with
multiple right hand sides. We will fix the value of m, apply the unpreconditioned CG for
a fixed number maxCG of CG iterations to the first system in the sequence, and build the
preconditioner using the sampling technique. We then solve the rest of the linear systems
using this preconditioner, terminating the CG iteration by means of (3.8). To study the
benefit of a larger sample size, we repeat this test for various values of maxCG.

The results are given in Tables 15-17. Note that, for a given value of m, the precondi-
tioners differ in that they use an increasingly wider sample of CG iterations. We observe
that if the amount of memory is small (m = 4) the quality of the preconditioner appears to
be independent of the sample size maxCG. But for larger values of m the sample size has a
beneficial effect.

5. Final Remarks

We have presented a quasi-Newton preconditioner for accelerating the conjugate gra-
dient method, when this is applied to a sequence of linear systems with positive definite
coefficient matrices. Our numerical experiments indicate that the preconditioner may be
useful when the coefficient matrices A are not very sparse, or when A is not explicitly avail-
able and products of A times vectors are expensive to compute. The motivation for this
work arose from the desire to accelerate the CG iteration used in a Hessian-free Newton
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maxCG | m=4| m=8| m=16
10 42 41 41
20 38 33 32
30 31 26 22
40 31 22 16
50 43 24 13

Table 15. Results for test matrix A;, using multiple right hand sides. The
table reports the number of iterations to achieve convergence for 50 runs, using
different values of the memory parameter m and of the CG iteration limit maxCG.
Initial point (¥ = 0.

maxCG || m=4 | m=8| m=16
250 245 209 198
300 254 192 159
350 246 160 113
400 275 114 69
450 287 125 60

Table 16. The experiment reported in Table 15 using the test matrix A, .

maxCG | m=4| m=8| m=16
20 57 52 50
30 49 43 41
40 32 25 22
50 48 26 19
60 48 26 19

Table 17. The experiment reported in Table 15 using the test matrix Asg,.
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method for nonlinear optimization, and in that context the new preconditioner appears to
provide substantial savings. Our experiments with finite element models suggest that the
preconditioner may prove to be useful in other areas of application, but more research is
required to establish this firmly.

We have experimented with several other strategies for selecting the correction pairs.
One idea that deserves to be mentioned is to use the m pairs with the smallest Rayleigh
quotient,

SiTyi

[lsil1>”
Even though this strategy has not proved to be more successful in our tests than the other
selection schemes described in the paper, it may be effective in some areas of application.
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providing a Matlab code that generates the finite element models used in §4, Eric Schwabe
for a very useful discussion on the algorithm appearing in the Appendix, and Richard Waltz
for running the tests reported in Table 5. We would also like to thank a referee for suggesting
the experiments reported in Tables 15-17.

6. Appendix

We now present a formal description of the sampling algorithm (mentioned in §2) that
collects the pairs {sg,yr} as uniformly as possible, with the restriction that at most m pairs
be stored at any stage. We denote the set of correction pairs that have been stored as P.
We will assume that m is an even number since this simplifies the algorithm and is not
restrictive in practice.

The sampling algorithm runs parallel to the CG method. Once a pair {sg, yx} has been
computed by the CG method, the sampling algorithm examines the iteration index k£ and
decides if the pair should be included in P. When a new pair is accepted, the algorithm
checks the available space, and if the number of pairs in P is m, then a pair is chosen to
leave P. The algorithm is started by inserting into P the first m pairs generated by the CG
process. After this, the entering and leaving pairs are chosen to keep an almost uniform
distribution at any time.

Algorithm SAMPLE
Choose an even number m; set k < 0 and cycle < 1.
REPEAT:

Starting

while £ < m,

o get {sp,yp}
e Add {sg,yi} to P
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e b+ k+1

end while
Deletion/Insertion.

if k can be expressed as k = (& + 1 —1)2%< for an integer I of the form [ =
1,2,...,% then
e Store /
e Compute the subscript of the leaving pair as k' = (21 — 1)2¢vcle—1
e Delete {sp,y } from P
Add {sg,yr} to P

m

e if [ =7 then set cycle < cycle +1
end if

k+—k+1

END REPEAT

Note that the first pair (k = 0) generated in the CG iteration always remains in P. This
has no particular significance, and it is easy to change the algorithm so that this is not the
case.

We now discuss some properties of the sampling algorithm. After the initialization, in
which the first m pairs are stored, the algorithm performs deletion an insertion operations
controlled by the variable cycle. For a given value of cycle, the algorithm stores 3 new
pairs spaced by a distance of 2°¥“¢, and deletes the same of number of pairs. Deletion
takes place in such a way that the space created between two consecutive pairs is 2¢v¢le,
Therefore when cycle attains a new value, the distribution ceases to be uniform and there
is a transition period during which a new uniform distribution is generated; this is achieved
at the end of the second loop. It follows that the larger m is, the longer it will take to move

from one uniform distribution to the next.
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