
An Interior Algorithm for Nonlinear Optimization That

Combines Line Search and Trust Region Steps

R.A. Waltz∗ J.L. Morales† J. Nocedal∗ D. Orban∗

September 8, 2004

Abstract

An interior-point method for nonlinear programming is presented. It enjoys the
flexibility of switching between a line search method that computes steps by factoring
the primal-dual equations and a trust region method that uses a conjugate gradient
iteration. Steps computed by direct factorization are always tried first, but if they are
deemed ineffective, a trust region iteration that guarantees progress toward stationar-
ity is invoked. To demonstrate its effectiveness, the algorithm is implemented in the
Knitro [6, 28] software package and is extensively tested on a wide selection of test
problems.

1 Introduction

In this paper we describe an interior method for nonlinear programming and discuss its
software implementation and numerical performance. A typical iteration computes a pri-
mary step by solving the primal-dual equations (using direct linear algebra) and performs a
line search to ensure decrease in a merit function. In order to obtain global convergence in
the presence of nonconvexity and Hessian or Jacobian rank deficiencies, the primary step is
replaced, under certain circumstances, by a safeguarding trust region step. The algorithm
can use exact second derivatives of the objective function and constraints or quasi-Newton
approximations.

The motivation for this paper is to develop a new interior point algorithm, implemented
in the Knitro software package [28], which is more robust and efficient than either a pure
trust region or a pure line search interior approach. The algorithm implemented in the first
release of Knitro [6] is a trust region method that uses a null-space decomposition and
a projected conjugate gradient iteration to compute the step. This iterative approach has
the advantage that the Hessian of the Lagrangian need not be formed or factored, which is

∗Department of Electrical and Computer Engineering, Northwestern University. These authors were

supported by National Science Foundation grants CCR-9987818, ATM-0086579, and CCR-0219438 and

Department of Energy grant DE-FG02-87ER25047-A004.
†Departamento de Matemáticas, ITAM, México. This author was supported by Asociación Mexicana de

Cultura, A.C. and CONACyT grant 39372-A.

1

effective for many large problems. The disadvantage is that the projected conjugate gradient
iteration can be expensive when the Hessian of the Lagrangian of the nonlinear program
is ill-conditioned, in which case it is preferable to use direct linear algebra techniques to
compute the step.

By designing the algorithm so that it computes steps using direct linear algebra when-
ever the quality of these steps can be guaranteed, and falling back on a trust region step
otherwise, we can easily implement the new method within the existing Knitro package.
Moreover, since the algorithm can reduce to a pure line search or a pure trust region ap-
proach, we are able to implement two different interior methods in a unified algorithmic
and software framework.

The problem under consideration has the form

min
x

f(x) (1.1a)

s.t. h(x) = 0 (1.1b)

g(x) ≤ 0, (1.1c)

where f : R
n → R, h : R

n → R
l and g : R

n → R
m are twice continuously differentiable

functions. A variety of line search interior algorithms have been proposed [12, 16, 25, 27, 30],
several of which have been implemented in high-quality software packages [2, 25, 27]. The
search direction is computed in these algorithms by factoring the primal-dual system. In
order to achieve robustness, these line search approaches must successfully address two
issues:

• How to define the search direction when the quadratic model used by the algorithm
is not convex;

• How to handle rank deficiency (and near deficiency) of the Hessian of the Lagrangian
and constraint Jacobian.

The first issue is often addressed by adding a multiple of the identity matrix to the Hessian of
the Lagrangian in order to convexify the model. This strategy was first shown to be effective
in the context of nonlinear interior methods by the Loqo software package [25]. The second
issue is handled differently in each software implementation. The difficulties caused by
rank deficient constraint Jacobians are sometimes addressed at the linear algebra level by
introducing perturbations during the factorization of the KKT matrix [1]. Other approaches
include the use of `1 or `2 penalizations of the constraints, which provide regularization
[16, 24], and the use of a feasibility restoration phase [15, 27].

In this paper we describe a mechanism for stabilizing the line search iteration that is
different from those proposed in the literature. It consists of falling back, under certain
conditions, on a trust region step that is guaranteed to make progress toward feasibility
and optimality. A challenge is to design the algorithm so that there is a smooth transition
between line search and trust region steps. We will argue that the algorithm presented in this
paper is not more expensive than other approaches, has favorable convergence properties,
and performs well on standard test problems.

Notation. Throughout the paper ‖ · ‖ denotes the Euclidean norm.

2

2 Outline of the Algorithm

We consider an interior method that replaces the nonlinear program (1.1) by a sequence of
barrier subproblems of the form

min
z

ϕµ(z) ≡ f(x)− µ
m

∑

i=1

ln si (2.1a)

s.t. h(x) = 0 (2.1b)

g(x) + s = 0. (2.1c)

Here s > 0 is a vector of slack variables, z = (x, s), and µ > 0 is the barrier parameter. The
Lagrangian function associated with (2.1) is defined by

L(z, λ;µ) = ϕµ(z) + λT
h h(x) + λT

g (g(x) + s), (2.2)

where λh ∈ R
l and λg ∈ R

m are Lagrange multipliers and λ = (λh, λg). The first-order
optimality conditions for the barrier problem (2.1) can be written as

[

∇f(x) + Ah(x)T λh + Ag(x)T λg

SΛge− µe

]

=

[

0
0

]

, (2.3)

together with (2.1b) and (2.1c) and the restriction that s and λg be nonnegative. Here S
and Λg denote diagonal matrices whose diagonal entries are given by the vectors s and λg,
respectively, and Ah and Ag are the Jacobian matrices of h and g.

Applying Newton’s method to the system (2.3), (2.1b), (2.1c), from the current iterate
(z, λ) results in the primal-dual system

[

W (z, λ;µ) A(x)T

A(x) 0

] [

dz

dλ

]

= −

[

∇zL(z, λ;µ)
c(z)

]

, (2.4)

where we have defined

dz =

[

dx

ds

]

, dλ =

[

dh

dg

]

, c(z) =

[

h(x)
g(x) + s

]

(2.5)

and

A(x) =

[

Ah(x) 0
Ag(x) I

]

, W (z, λ;µ) =

[

∇2
xxL(z, λ;µ) 0

0 S−1Λg

]

. (2.6)

The new iterate is given by

z+ = z + αzdz, λ+ = λ + αλdλ. (2.7)

The steplengths αz and αλ are computed in two stages. First we compute

αmax

z = max{α ∈ (0, 1] : s + αds ≥ (1− τ)s} (2.8a)

αmax

λ = max{α ∈ (0, 1] : λg + αdg ≥ (1− τ)λg}, (2.8b)

3

with 0 < τ < 1 and typically close to one. (In our tests we use τ = .995.) The algorithm
then performs a backtracking line search that computes steplengths

αz ∈ (0, αmax

z], αλ ∈ (0, αmax

λ], (2.9)

providing sufficient decrease in a merit function (to be defined below). The procedure for
updating the barrier parameter µ is described in Section 3.5.

The iteration (2.4)-(2.7) provides the basis for most line search interior methods. This
remarkably simple approach must, however, be modified to cope with non-convexity and
to prevent convergence to non-stationary points [7, 26]. Instead of modifying the primal-
dual matrix, as is commonly done, we use a safeguarding trust region step to stabilize the
iteration, for two reasons. First, when W is not positive definite on the null-space of A
(the negative curvature case), adding to W a multiple of the identity matrix may introduce
undesirable distortions in the model and can also require several factorizations of the primal-
dual system. In the negative curvature case, we prefer to compute a descent direction using
a null space approach in which the tangential component of the step is obtained by using
a projected Krylov iteration, as is done with conjugate gradients in the Knitro package
[28], or using a Lanczos method, as is done in the GALAHAD package [19].

Second, we would like to take advantage of the robustness of trust region steps in the
presence of Hessian or Jacobian rank deficiencies. We have in mind trust region methods
that provide Cauchy decrease for both feasibility and optimality at every iteration. Since it
is known that, when line search iterations converge to non-stationary points, the steplengths
αz or αλ in (2.7) converge to zero, we monitor these steplengths. If they become smaller
than a given threshold, we discard the line search iteration (2.4)-(2.7) and replace it with a
trust region step. The resulting algorithm possesses global convergence properties similar
to those of the algorithms implemented in FilterSQP [15] and Knitro [5].

We outline the method in Algorithm 2.1. There φν(z) denotes a merit function using
a penalty parameter ν, and Dφν(z; dz) denotes the directional derivative of φν along a
direction dz. An inertia-revealing symmetric indefinite factorization [4] of the primal-dual
matrix in (2.4) provides its number of negative eigenvalues. If this number exceeds l + m,
then dz cannot be guaranteed to be a descent direction (see, e.g., [21, Lemma 16.3]), and
the primal-dual step is discarded.

4

Algorithm 2.1 Outline of the Interior Algorithm
Choose z0 = (x0, s0) and the parameters 0 < η, 0 < δ < 1 and an integer imax. Com-
pute initial values for the multipliers λ0, the trust-region radius ∆0 > 0, and the barrier
parameter µ0 > 0. Set k = 0.

Repeat until a stopping test for the nonlinear program (1.1) is satisfied
Repeat until a termination test for the barrier problem (2.1) is satisfied

Factor the primal-dual system (2.4) and record the number neig

of negative eigenvalues of its coefficient matrix.
Set LineSearch = False.
If neig ≤ l + m

Solve (2.4) to obtain the search direction d = (dz, dλ).
Compute αmax

z , αmax

λ using (2.8a),(2.8b).
If min{αmax

z , αmax

λ } > δ
Set j = 0, αT = 1.
Repeat while (j ≤ imax), (αT > δ) and LineSearch == False

If φν(zk + αTαmax

z dz) ≤ φν(zk) + ηαTαmax

z Dφν(zk; dz)
Set αz = αTαmax

z , αλ = αTαmax

λ .
Set zk+1, λk+1 using (2.7).
Compute ∆k+1 and set LineSearch = True.

Else

Set j ← j + 1.
Choose a smaller value of αT.

Endif

End Repeat

Endif

Endif

If LineSearch == False

Compute (zk+1, λk+1) using a globally convergent safeguarding
trust region method.
Compute ∆k+1.

Endif

Set µk+1 ← µk.
Set k ← k + 1.

End Repeat

Reset the barrier parameter µk so that µk < µk−1.
End Repeat

5

In our tests we choose η = 10−8, δ = 10−5, and imax=3. The initial multipliers λ0 are
computed by least squares. When the line search step is discarded (the last If-Endif block),
we compute one or more trust region steps until one of them provides sufficient reduction
in the merit function. If the first steplength is not acceptable, we may, under certain
circumstances, compute a second-order correction step before beginning the backtracking
line search. This is described in Section 3.2.

One could consider an algorithm that, instead of switching between the two methods,
would follow a dog-leg approach. Cauchy and Newton steps would be computed at every
iteration, and the algorithm would move along a direction in the span of these two steps.
We have not followed such an approach for two reasons. First, computing a Cauchy step
that ensures progress toward feasibility and optimality requires the factorization of a system
different from the primal-dual matrix [5, 30]. Hence computing Cauchy and Newton steps at
every iteration is too expensive, and one should resort to the computation of Cauchy steps
only when needed. Second, a dog-leg approach is not well defined in the case of negative
curvature, where a Newton-CG iteration [23] is more appropriate. These observations and
the fact that the first release of Knitro implements a Newton-CG iteration motivated us
to follow the approach just outlined.

Many details of Algorithm 2.1 have not been specified and will be discussed next.

3 Complete Description of the Algorithm

In this section we discuss in detail the important aspects of the algorithm excluding the
safeguarding trust region steps, which are described in [6] and are computed in practice
with Knitro. Therefore, throughout this section we will focus mainly on the line search
steps.

3.1 Merit Function

The merit function is defined by

φν(z) = ϕµ(z) + ν‖c(z)‖, (3.1)

where ϕµ is the barrier function defined in (2.1a), the constraints c(z) are given by (2.5),
and ν > 0 is the penalty parameter, which is updated at each iteration so that the search
direction dz given by (2.4) is a descent direction for φν .

Our update rule for ν, proposed in [13], is inspired by trust region methods. Instead of
requiring only that the directional derivative of φν be negative, as is commonly done, we
choose ν based on the decrease in a quadratic/linear model of the merit function achieved
by the step d.

In trust region methods, a step d is acceptable if the ratio of actual to predicted reduction
of the merit function is greater than a given constant η > 0, that is,

ared(d)

pred(d)
> η.

6

In this paper we define
ared(dz) = φν(z) − φν(z + dz)

and
pred(dz) = −∇ϕµ(z)T dz −

σ

2
dT

z Wdz + ν (‖c(z)‖ − ‖c(z) + A(x)dz‖) , (3.2)

with

σ =

{

1 if dT
z Wdz > 0

0 otherwise.
(3.3)

Here W stands for W (z, λ;µ) and is defined in (2.6). If σ = 1, pred is the standard
quadratic/linear model of the merit function used in a variety of trust region methods; see
[9]. We allow σ to have the value zero because, as we argue below, including the term
dT

z Wdz in (3.2) when it is negative could cause the algorithm to fail.
Following [6, 13], we choose the penalty parameter ν so that

pred(dz) ≥ ρν‖c(z)‖, (3.4)

for some parameter ρ ∈ (0, 1). (In our tests we use the value ρ = 0.1.) From (3.2), (3.4),
and the fact that the step dz computed from (2.4) satisfies c(z) + A(x)dz = 0, we get that

ν ≥
∇ϕµ(z)T dz + σ

2
dT

z Wdz

(1− ρ)‖c(z)‖
≡ νTRIAL. (3.5)

The update rule for the penalty parameter ν is

ν+ =

{

ν if ν ≥ νTRIAL

νTRIAL + 1 otherwise.
(3.6)

To show that this choice of ν guarantees that dz is a descent direction for φν , we note
that (3.5) and the definition of σ imply that

∇ϕT
µdz − ν‖c(z)‖ ≤ −ρν‖c(z)‖.

Since the directional derivative of φν along dz is given by

Dφν(z; dz) = ∇ϕT
µdz − ν‖c(z)‖ (3.7)

(see, for example, [21, p. 545]) we have that

Dφν(z; dz) ≤ −ρν‖c(z)‖. (3.8)

Note, however, that this argument would not hold if σ were defined as 1 when dT
z Wdz < 0,

for then dz might not be a descent direction for the merit function. (When c(z) = 0, we
can set ν+ = ν because it is easy to show that in this case Dφν(z; d) < 0.)

We have experimented with other update procedures for ν that directly impose (3.8).
One of them is given by (3.5) but with σ always equal to 0 (see, for example, [9]). We have
observed that the rule described in this section, which may include curvature information
about the Lagrangian, gives consistently better results. Note that including the term dT

z Wdz

in (3.5) leads to larger estimates of the penalty parameter than when this term is not
included.

7

3.2 Line Search and Second-Order Correction

After computing the primal-dual direction (dz, dλ) defined by (2.4), we determine the
steplengths to the boundary, αmax

z and αmax

λ satisfying the inequalities (2.8a)-(2.8b). If
both are greater than the threshold δ, then we perform a backtracking line search that
generates a series of steplengths (stored in the parameter αT in Algorithm 2.1) until one of
the following two conditions is satisfied:

1. One of the steplengths αT < δ, or the maximum number imax of backtracks is reached.
In this case, the line search is aborted, the primal-dual direction d = (dz , dλ) is
discarded, and the algorithm invokes the safeguarding trust region method. In our
practical implementation we set imax = 3.

2. A steplength αT satisfies the Armijo condition

φν(z + αTαmax

z dz) ≤ φν(z) + ηαTαmax

λ Dφν(z; dz). (3.9)

In this case, the line search terminates successfully, and we define αz = αTαmax
z and

αλ = αTαmax

λ .

The backtracking line search proceeds as follows. For j = 0 we set αT = 1 as indicated
in Algorithm 2.1. For j = 1, if the previous iteration was a line search iteration, we set
αT = 1/2; otherwise, if it was a trust region iteration, we set

αT = min

(

1

2
,

∆

‖dz‖

)

,

where ∆ is the current trust region radius. For j > 1, the new trial steplength is updated
by αT ← αT/2.

The merit function (3.1) may reject steps that make good progress toward the solution,
a phenomenon known as the Maratos effect. This deficiency can be overcome by applying
a second-order correction step (SOC), which is a Newton-like step that aims to improve
feasibility [14].

We apply the second-order correction when the first trial steplength αT = 1 is rejected
and if the reason for the rejection can be attributed solely to an increase in the norm of
the constraints, that is, the second term in (3.1). More specifically, if the Armijo condition
(3.9) is not satisfied for αT = 1, and if ϕµ(z + αmax

z dz) ≤ ϕµ(z), then before computing a
shorter steplength we attempt a second-order correction step dsoc = (dsoc

z , dsoc

λ) by solving

[

W AT

A 0

] [

dsoc
z

dsoc

λ

]

=

[

−∇ϕµ(z) − αmax
z Wdz −AT [λ + αmax

λ dλ]
−c(z + αmax

z dz)

]

, (3.10)

where A = A(x) and W = W (z, λ;µ). Using it, we define the combined step

d̄z = αmax

z dz + dsoc

z , d̄λ = αmax

λ dλ + dsoc

λ , (3.11)

8

and let d̄z = (d̄x, d̄s) and d̄λ = (d̄h, d̄g). Next, we determine the largest positive scalars
γsoc

z , γsoc
λ ∈ (0, 1], such that

s + γsoc
z d̄s ≥ (1− τ)s (3.12a)

λg + γsoc
λ d̄g ≥ (1− τ)λg, (3.12b)

where τ is the same constant as in (2.8), and we define

zsoc = z + γsoc
z d̄z, λsoc = λ + γsoc

λ d̄λ.

If φν(z
soc) < φν(z), then we accept the second-order correction step. Otherwise, we discard

dsoc and continue the backtracking line search along the primal-dual step (dz , dλ) by selecting
a new steplength (case j = 1 in Algorithm 2.1).

Note that in the left-hand side of (3.10), the matrices A and W are unchanged when
compared to the system from which d itself was computed—they are not evaluated at
z + αmax

z dz. The right-hand side does not require any additional constraint evaluations
because c(z +αmax

z dz) has been evaluated to measure the desirability of d. Since the factor-
ization of the coefficient matrix has been performed during the computation of d, the total
cost of the SOC step is one forward solve and one backsolve, plus one additional evalua-
tion of the merit function (i.e., one additional function/constraint evaluation) to test the
acceptance of the SOC point.

3.3 Slack Resets

Given the form (3.1) of the merit function,

φν(z) = f(x)− µ

m
∑

i=1

ln si + ν‖c(z)‖,

and the fact that for fixed µ > 0, the function −µ ln si is a decreasing function of si, the
algorithm resets certain slack components after each trial step in order to promote accep-
tance of the step by the merit function, while at the same time improving the satisfaction of
the constraints. This reset is performed after a line search or trust region step is computed,
and is as follows. Before the trial point z+ = z +αzdz is tested for acceptance by the merit
function, the slack components s+

i = si + αz[ds]i for which the inequality −gi(x
+) > s+

i is
satisfied are reset to the value

s+

i = −gi(x
+). (3.13)

Thus (3.13) increases the slacks, thereby decreasing further the barrier term in (3.1) and
improving the satisfaction of the constraints (2.1c), which decreases the penalty term ‖c(z)‖.
Hence, this reset may only cause the merit function to decrease further.

3.4 NLP Stopping Test

Ideally, the stopping test should be invariant under the scaling of the variables, the objective,
and constraints. Achieving complete scale invariance is difficult, however, and in cases when

9

certain quantities approach zero, it is not desirable. The following tests attempt to achieve
a balance between practicality and scale invariance.

The stopping tolerances εopt and εfeas are provided by the user. (In our tests they are
both set to 10−6.) The algorithm terminates if an iterate (x, s, λ) satisfies

‖∇f(x) + Ah(x)T λh + Ag(x)T λg‖∞ ≤ max{1, ‖∇f(x)‖∞}ε
opt (3.14a)

‖Sλg‖∞ ≤ max{1, ‖∇f(x)‖∞}ε
opt (3.14b)

‖(h(x), g(x)+)‖∞ ≤ max{1, ‖(h(x0), g(x0)
+)‖∞}ε

feas, (3.14c)

where g(x)+ = max{0, g(x)} and x0 is the starting point. When the maximum is not
achieved by 1, the scaling factor in (3.14a) makes this test invariant to scalings in f , c
and to linear changes of the variable x. The factor 1 is needed to safeguard the test when
‖∇f(x)‖ is zero or nearly zero. The complementarity test (3.14b) is based on the fact that
the scale of s is dependent on the scale of c and the magnitude of λg is proportional to
‖∇f‖/‖A‖. Thus (3.14b) is invariant to the scaling of f and c. (A more complex scaling
factor employing ‖A‖ would make it invariant to linear changes in the variables, but we use
the same scaling factors in (3.14a)-(3.14b) for simplicity.)

The scale factor for feasibility is difficult to choose. If the constraints are linear, then
‖(h(0), g(0)+)‖∞ is an appropriate normalization factor because it measures the magnitude
of the right hand side vectors of all constraints. But since h(0) or g(0) may not be defined
in some problems, we use the initial point, x0.

3.5 Update of µ and Barrier Stopping Test

The sequence of barrier parameters {µk} must converge to zero, and should do so quickly if
possible. Superlinear rules for decreasing µ have been studied in [11, 17, 22, 29], but they
employ various parameters that can be difficult to select in practice. We use instead the
following simple strategy for updating µ that has performed as well in our tests as have
more complicated superlinear rules. If the most recent barrier problem was solved in less
than three iterations, we set

µk+1 = µk/100;

otherwise
µk+1 = µk/5.

We now discuss the termination test for the barrier problem. Our experience is that
the choice of this stopping test significantly affects the efficiency and robustness of interior
methods. For the current value of µ, we choose tolerances εopt

µ and εfeas
µ (defined below) and

impose the following barrier stopping tests:

‖∇f(x) + Ah(x)T λh + Ag(x)T λg‖∞ ≤ max{1, ‖∇f(x)‖∞}ε
opt

µ (3.15a)

‖Sλg − µe‖∞ ≤ max{1, ‖∇f(x)‖∞}ε
opt

µ (3.15b)

‖(h(x), g(x) + s)‖∞ ≤ max{1, ‖(h(x0), g(x0)
+‖∞}ε

feas

µ . (3.15c)

10

Note that the scaling factors are identical to those used for the NLP stopping test (3.14a)-
(3.14c) and that the left-hand sides of these two tests differ only in the use of the additional
term −µe in (3.15b) and the use of g(x) + s rather than g(x)+ in (3.15c).

As we shall see, the tolerances εopt
µ and εfeas

µ will be chosen to be proportional to µ most
of the time and thus become tighter as µ decreases. We want to avoid letting µ, εopt

µ , and
εfeas
µ take unnecessarily small values because this can lead to significant roundoff errors.

Therefore we determine the values of µ, εopt
µ , and εfeas

µ for which satisfaction of the barrier
stopping test automatically implies satisfaction of the NLP stopping test.

Since the scaling factors and left-hand sides for (3.14a) and (3.15a) are identical, any
point that satisfies (3.15a) automatically satisfies (3.14a) for all values εopt

µ ≤ εopt. Also,
from (3.15b) we have that for a given complementary pair si[λg]i that satisfies the barrier
stopping test

si[λg]i ≤ µ + max{1, ‖∇f(x)‖∞}ε
opt

µ ,

and in order to also satisfy the NLP stopping test (3.14b), it must satisfy

si[λg]i ≤ max{1, ‖∇f(x)‖∞}ε
opt.

Therefore an iterate (x, s) that satisfies (3.15b) also satisfies (3.14b) as long as

εopt

µ ≤ εopt − µ/(max{1, ‖∇f(x)‖∞}). (3.16)

Hence a point that satisfies the barrier KKT stopping conditions (3.15a),(3.15b) also satisfies
the NLP KKT stopping conditions (3.14a),(3.14b) for all values of εopt

µ that satisfy

εopt

µ ≤ εopt − µ. (3.17)

Note that this condition is only valid when the right-hand side of (3.17) is non-negative
(i.e., µ ≤ εopt).

For feasibility, since s > 0, we have that

‖g(x)+‖∞ ≤ ‖g(x) + s‖∞.

Therefore from (3.14c) and (3.15c) it follows that for all

εfeas

µ ≤ εfeas (3.18)

the NLP feasibility test (3.14c) will be satisfied if the barrier feasibility test (3.15c) is
satisfied.

Subject to the minimum values given by (3.17)-(3.18), we set εopt
µ and εfeas

µ equal to θµ,
where θ is a fixed algorithm parameter (currently θ = 1). The barrier stopping tolerances
are then determined by the following formulas:

εopt

µ = max{θµ, εopt − µ} (3.19)

εfeas

µ = max{θµ, εfeas}. (3.20)

This choice ensures that we do not oversolve the barrier subproblem, but it does not
place any lower bound on the barrier parameter µ. Although an overly small value of µ

11

will not cause us to oversolve the barrier subproblem because of the limits on the barrier
tolerances established above, we still want to prevent µ from becoming unnecessarily small
because this can lead to failure of the iteration.

From (3.19) and (3.20), satisfaction of the barrier stopping test implies satisfaction of
the NLP test if µ ≤ min{εopt/(1 + θ), εfeas/θ}. Currently θ = 1; but to ensure that we do
not restrict µ unduly, we enforce a minimum value of µ based on the NLP tolerance

µmin =
min{εopt, εfeas}

100
. (3.21)

3.6 Transition to and from Safeguarding Steps

If the line search step is not acceptable, the safeguarding trust region algorithm is invoked.
It is desirable to provide this algorithm with a trust region radius ∆k that reflects current
problem information. This strategy is particularly important when two safeguarding trust
region steps are separated by a long sequence of line search steps. In addition to preserv-
ing the global convergence properties of trust region methods, the size of ∆k affects the
backtracking line search, as explained in Section 3.2.

The algorithm uses the following strategy. If the most recent step was a successful line
search step, dzk

, we set
∆k+1 = 2αzk

‖dzk
‖. (3.22)

Otherwise, if the most recent step was either a trust region step or a rejected line search
step, the trust region radius is updated according to standard trust region update rules.
In our implementation we follow the update strategy given in [6]. Also, in order to try to
avoid the repeated computation of unsuccessful line search steps, if a trust region iteration is
rejected, subsequent iterations are computed with the trust region method until a successful
step is obtained.

Numerical experience indicates that this simple strategy keeps the trust region informa-
tion up to date and avoids oscillations in the size of ∆k.

3.7 Solution of the Primal-Dual Equations

The primal-dual system (2.4) is solved by using the symmetric indefinite factorization imple-
mented in the HSL library routine MA27 [20]. This routine provides the number of negative
eigenvalues, neig, of the primal-dual system. An important practical consideration is the
choice of the pivot tolerance. We set it initially to 10−8 because such a small pivot tolerance
can yield significant savings in computing time. If MA27 returns a message of singularity,
we increase it by a factor of 10 and compute a new factorization; this process is repeated if
necessary until the maximum allowable pivot tolerance of 0.5 is reached. If the singularity
message persists with the maximum pivot tolerance, the step is computed by using the
latest factorization.

We also occasionally use iterative refinement. If the norm of the relative residual of
the primal-dual system provided by the computed solution is greater than some threshold,
we apply a maximum of five iterative refinement steps to try to decrease this residual and
improve the solution.

12

3.8 Quasi-Newton Approximations

The algorithm includes several quasi-Newton options for problems in which second deriva-
tives cannot be computed or when such a computation is too expensive. A quasi-Newton
version of the primal-dual step is obtained by replacing ∇2

xxL in (2.6) by a quasi-Newton
approximation B. Our algorithm implements dense BFGS and SR1 methods as well as a
limited memory BFGS method.

In all these methods we initialize B to be the identity matrix. The correction pairs
(y,∆x) required by the quasi-Newton updating formula are obtained as follows. After
computing a step from (z, λ) to (z+, λ+), we define

y = ∇xL(x+, λ+)−∇xL(x, λ+)

∆x = x+ − x.

The pair (y,∆x) is then substituted into the standard definitions of the BFGS and SR1
updates to define B. In order to ensure that the BFGS method generates a positive definite
matrix, the update is skipped if yT ∆x ≤ 0. (A damping procedure is also an option.) SR1
updating is safeguarded by using standard rules; see, for example, [21, §8.2].

For large problems it is desirable to use limited memory updating to avoid the storage
and manipulation of a dense n× n matrix. We have implemented a limited memory BFGS
method using the compact representations described in [8]. Here B has the form

B = ξI + NMNT , (3.23)

where ξ > 0 is a scaling factor, N is an n × 2p matrix, M is a 2p × 2p symmetric and
nonsingular matrix, and p denotes the number of correction pairs saved in the limited
memory updating procedure. (Typical values of p are 5, 10, 20.) The matrices N and M
are formed by using the vectors {∆xk} and {yk} accumulated in the last p iterations.

Since the limited memory matrix B is positive definite and A has full rank (otherwise we
revert to the trust region step), the primal-dual matrix is nonsingular, and we can compute
the solution to (2.4) by formally inverting the coefficient matrix. The computational cost is
decreased by exploiting the low-rank structure of B. The inverse of the primal-dual matrix
can be written as

















ξI 0 AT
h AT

g

0 S−1Λg 0 I
Ah 0 0 0
Ag I 0 0









+









N
0
0
0









[

MNT 0 0 0
]









−1

≡ [C + UV T]−1.

Applying the Sherman-Morrison-Woodbury formula, we can write the right-hand side as

C−1 − C−1U
(

I + V T C−1U
)−1

V T C−1. (3.24)

The computation of the primal-dual step (2.4) therefore requires the solution of systems of
the form Cz = b, which is done by means of the HSL routine MA27. The matrix inside the
parentheses in (3.24) is small (of dimension 2p× 2p) and can be factored at negligible cost.

13

4 Numerical Results

The algorithm described in the previous sections has been implemented in the Knitro

package. We refer to the new algorithm as Knitro-Direct because in practice the majority
of the iterations are obtained by factoring the primal-dual system. We compare it with
the trust region algorithm in Knitro 3.0, henceforth called Knitro-CG. We use the CUTEr

collection [3, 18] as of June 5, 2003, from which 968 problems have been retained; the
remaining problems have been discarded because they require too much memory.

All tests were performed on a 2.8 GHz Pentium Xeon, with 3 Gb of memory running
Red Hat Linux. Knitro 3.0 is written in C and Fortran 77 and was compiled by using
the gcc and g77 compilers with the “-O” compilation flag and was run in double precision.
Limits of 15 minutes of CPU time and 3000 outer iterations were imposed for each problem;
if one of these limits was reached, the algorithm was considered to have failed. The stopping
tolerances in (3.14a)-(3.14c) were set as εopt = εfeas = 10−6. For details on the convergence
criteria used in Knitro 3.0, see [28].

We report results using the logarithmic performance profiles proposed by Dolan and
Moré [10]. Let tp,s denote the time to solve problem p by solver s. We define the ratios

rp,s =
tp,s

t∗p
, (4.25)

where t∗p is the lowest time required by any code to solve problem p. If a code does not solve
a problem, the ratio rp,s is assigned a large number, M . Then, the logarithmic performance
profile for each code s, is

πs(τ) =
no. of problems s.t. log2(rp,s) ≤ τ

total no. of problems
, τ ≥ 0. (4.26)

This performance profile will also be used to analyze the number of function evaluations
required by the four codes.

First, we compare in Figure 1 the relative performance of Knitro-Direct and Knitro-CG
in terms of number of function/constraint evaluations, on the 968 problems from CUTEr.
In this and the figures that follow, we plot πs as a function of τ . Observe that the two
algorithms are remarkably similar in terms of robustness and efficiency, and a profile based
on iterations is almost identical to that given in Figure 1. We note that, even though
these two algorithms are quite different in the way they generate steps, they share many
other features, including common NLP and barrier stop tests, merit function, second-order
correction, and barrier parameter update strategy.

Next, we compare computing times. Since timing results are uninteresting and can be
unreliable on small problems that are solved very quickly, we consider only those problems
for which n + m̄ ≥ 1000, where m̄ is the number of equality and general inequalities (ex-
cluding bounds). Figure 2 gives the performance profile for all CUTEr problems with this
size restriction.

One might expect that Knitro-Direct will require less computing time than Knitro-CG on
problems in which the Hessian of the Lagrangian of the nonlinear program is ill-conditioned

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

π s
 (

 τ
)

2τ

Comparison of Knitro-Direct and Knitro-CG (function evaluations)

Knitro-Direct
Knitro-CG

Figure 1: Comparing number of function evaluations for Knitro-Direct and Knitro-CG on
968 CUTEr problems.

(causing a very large number of CG iterations) and where factoring the KKT matrix is not
excessively expensive. A detailed examination of the results shows that this is the case, but
we note that the problems in which Knitro-Direct has a clear advantage in speed are also
characterized by the fact that negative curvature was rarely encountered.

For example, when considering the 29 problems in which Knitro-Direct was at least
10 times faster than Knitro-CG, typically 90% of Knitro-CG’s time was taken by the CG
iteration (i.e., the Hessian-vector products and backsolves involving the projection matrix),
and only in one of those problems did Knitro-Direct report negative curvature. On the other
hand, in the runs in which Knitro-Direct required much more computing time than Knitro-
CG, the factorization of the primal-dual matrix was very expensive (requiring typically 85%
of the total time or more) or negative curvature was encountered frequently.

4.1 Transition Between Algorithms and Negative Curvature

Table 1 provides statistics on the transition to trust region steps. It is based on the 788
CUTEr problems in which Knitro-Direct reported finding an optimal solution. The table
gives the percentage of iterations in which the trust region step was invoked, and then gives a
breakdown of this number in terms of the three factors that can cause this in Algorithm 2.1:
(i) negative curvature was encountered, that is, neig > l + m; (ii) the line search did not
succeed in reducing the merit function after 3 backtracking steps (backtrack), or (iii) the
primal-dual step was too long in the sense that min{αmax

z , αmax

λ } ≤ δ (cut-back). The first

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

π s
 (

 τ
)

2τ

Comparison of Knitro-Direct and Knitro-CG (CPU time)

Knitro-Direct
Knitro-CG

Figure 2: CPU time for Knitro-Direct and Knitro-CG on 420 CUTEr problems for which
n + m̄ ≥ 1000.

Prob. Type # probs TR invoked neg curv backtrack cut-back

All 788 22.9% 15.9% 6.0% 1.0%

Inequality 481 22.3% 13.8% 7.1% 1.4%

Table 1: Frequency and reason for invoking trust region step.

row of this table looks at the whole set of 788 problems, while the second row looks only at
the 481 problems from this set that have at least one inequality constraint or bound (such
that the cut-back procedure for the primal-dual step is relevant). As Table 1 shows, the
great majority of steps taken in the Knitro-Direct algorithm are direct steps. Moreover, the
iteration reverts to trust region steps mainly because negative curvature is detected, and
not because of the occurrence of very short steplengths.

4.2 Quasi-Newton Options

We first analyzed the performance of the three quasi-Newton options in Knitro-Direct on
all small and medium-size problems in CUTEr, that is problems with n + m̄ < 1000. This
size restriction is necessary because Knitro-Direct-BFGS and Knitro-Direct-SR1 implement
dense quasi-Newton approximations to the Hessian of the Lagrangian. Knitro-Direct-LM
refers to the limited memory BFGS option storing 20 correction pairs (i.e., p = 20 in the

16

notation of §3.8). Figure 3 compares these three options in terms of function/constraint
evaluations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

π s
 (

τ)

2τ

Comparison of Knitro-Direct Quasi-Newton Options (function evaluations)

Knitro-Direct-BFGS
Knitro-Direct-LM

Knitro-Direct-SR1

Figure 3: Number of function evaluations for 3 quasi-Newton versions of Knitro-Direct on
548 CUTEr problems for which n + m̄ < 1000.

In these tests the SR1 method performs slightly better than BFGS. More significantly,
the limited memory BFGS method is very similar in performance to its dense counterpart.
This, and the fact that it is applicable to large problems, suggests that it can be used as
the default quasi-Newton option in Knitro-Direct.

Next, we compare in Figure 4 the performance, in terms of function evaluations, of
the following 4 methods: (i) Knitro-Direct with exact Hessian (labeled Knitro-Direct); (ii)
Knitro-Direct with limited memory BFGS updating (Knitro-Direct-LM); (iii) Knitro-CG
using limited memory BFGS (Knitro-CG-LM); and (iv) Knitro-CG with an option [28] in
which Hessian-vector products are computed by finite differences of gradients (Knitro-CG-
FD). As before, in the limited memory methods we stored 20 correction pairs. Here we use
the complete test set of 968 problems of all sizes.

As expected, the quasi-Newton versions are less robust and efficient than the second
derivative options, but their performance is acceptable. Of 968 problems, Knitro-Direct
with second derivatives solved 788 problems, whereas Knitro-Direct with limited memory
BFGS solved 693. We note that the finite-difference option is only slightly less efficient, in
terms of function evaluations, than the methods using exact second derivatives. However,
if gradient evaluations are expensive, this option may be inefficient in terms of CPU time.

Acknowledgments. We thank Guanghui Liu and Marcelo Marazzi for their work on an

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

π s
 (

τ)

2τ

Comparison of Various Second Derivative Options (function evaluations)

Knitro-Direct
Knitro-CG-FD

Knitro-Direct-LM
Knitro-CG-LM

Figure 4: Number of function evaluations for options using exact Hessian, limited memory
quasi-Newton, and finite differences on 968 CUTEr problems.

early version of this software. We also thank Richard Byrd for several useful conversations
on the design of this algorithm.

References

[1] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior Point
Methods in Mathematical Programming, pages 189–252, Dordrecht, The Netherlands,
1996. Kluwer Academic Publishers.

[2] J. Betts, S. K. Eldersveld, P. D. Frank, and J. G. Lewis. An interior-point nonlinear
programming algorithm for large scale optimization. Technical report MCT TECH-
003, Mathematics and Computing Technology, The Boeing Company, P.O. Box 3707,
Seattle WA 98124-2207, 2000.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Transactions on Mathematical Software,
21(1):123–160, 1995.

[4] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems
of linear equations. SIAM Journal on Numerical Analysis, 8(4):639–655, 1971.

18

[5] R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical Programming, 89(1):149–
185, 2000.

[6] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999.

[7] R. H. Byrd, M. Marazzi, and J. Nocedal. On the convergence of Newton iterations to
non-stationary points. Mathematical Programming, Series A, 99:127–148, 2004.

[8] R. H. Byrd, J. Nocedal, and R. Schnabel. Representations of quasi-newton matrices
and their use in limited memory methods. Mathematical Programming, 49(3):285–323,
1991.

[9] A. R. Conn, N. I. M. Gould, and Ph. Toint. Trust-region methods. MPS-SIAM Series
on Optimization. SIAM publications, Philadelphia, Pennsylvania, USA, 2000.

[10] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, Series A, 91:201–213, 2002.

[11] J.-P. Dussault. Numerical stability and efficiency of penalty algorithms. SIAM Journal
on Numerical Analysis, 32(1):296–317, 1995.

[12] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and
theory of the Newton interior-point method for nonlinear programming. Journal of
Optimization Theory and Applications, 89(3):507–541, June 1996.

[13] M. El-Hallabi. A hybrid algorithm for nonlinear equality constrained optimiza-
tion problems: global and local convergence theory. Technical Report TR4-99,
Mathematics and Computer Science Department, Institut National des Postes et
Télécommunications, Rabat, Morocco, 1999.

[14] R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, Eng-
land, second edition, 1987.

[15] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math-
ematical Programming, 91:239–269, 2002.

[16] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM Journal on Optimization, 8(4):1132–1152, 1998.

[17] N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence
of primal-dual interior-point algorithms for nonlinear programming. SIAM Journal on
Optimization, 11(4):974–1002, 2001.

[18] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr and sifdec: A Constrained and
Unconstrained Testing Environment, revisited. ACM Trans. Math. Softw., 29(4):373–
394, 2003.

19

[19] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD, a library of thread-safe
fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw.,
29(4):353–372, 2003.

[20] Harwell Subroutine Library. A catalogue of subroutines (HSL 2002). AEA Technology,
Harwell, Oxfordshire, England, 2002.

[21] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, 1999.

[22] F. Potra. Q-superlinear convergence of the iterates in primal-dual interior-point meth-
ods. Mathematical Programming B, 91(1):99–116, 2001.

[23] T. Steihaug. The conjugate gradient method and trust regions in large scale optimiza-
tion. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[24] A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban, and C. T. Lawrence. A primal-
dual interior-point method for nonlinear programming with strong global and local
convergence properties. SIAM Journal on Optimization, 14(1):173–199, 2003.

[25] R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13:231–252, 1999.

[26] A. Wächter and L. T. Biegler. Failure of global convergence for a class of interior point
methods for nonlinear programming. Mathematical Programming, 88(3):565–574, 2000.

[27] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Technical Report
RC 23149, IBM T.J. Watson Research Center, Yorktown Heights, NY, March 2004.

[28] R. A. Waltz and J. Nocedal. KNITRO user’s manual. Technical Report OTC 2003/05,
Optimization Technology Center, Northwestern University, Evanston, IL, USA, April
2003.

[29] H. Yabe and H. Yamashita. Q-superlinear convergence of primal-dual interior point
quasi-Newton methods for constrained optimization. Journal of the Operations Re-
search Society of Japan, 40(3):415–436, 1997.

[30] H. Yamashita. A globally convergent primal-dual interior-point method for constrained
optimization. Technical report, Mathematical System Institute, Inc., Tokyo, Japan,
May 1992. Revised March 1994.

20

