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Abstract

We study the local convergence of a primal-dual interior point method for nonlinear
programming. A linearly convergent version of this algorithm has been shown in [2] to
be capable of solving large and difficult non-convex problems. But for the algorithm to
reach its full potential, it must converge rapidly to the solution. In this paper we describe
how to design the algorithm so that it converges superlinearly on regular problems.
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1. Introduction

There is at present a great deal of interest in the development of interior point methods
for solving nonlinear programming problems of the form

minimize  f(z)
subject to  h(z) =0
g(x) <0, (1)

where f: R®” = R, h: R® — RY, and g : R® — R! are smooth functions.

The case when (1.1) is a convex program can be solved by algorithms that are, to a great
extent, direct extensions of primal-dual interior point methods for linear programming.
However, the presence of non-convexity raises a number of obstacles that can be tackled
only by sophisticated methods that include many features not present in linear programming
algorithms. These include the exploitation of negative curvature directions, the handling of
ill-conditioning in the objective function, and the avoidance of stationary points that are
not minimizers.

Several algorithms have recently been proposed to solve non-convex nonlinear programs
(see [2], [3], [7], [8]). In this paper we study one of the most promising of these algo-
rithms, which is described in Byrd, Hribar and Nocedal [2], and which is based on a general
framework proposed by Byrd, Gilbert and Nocedal [1]. It has been shown in [2] that this
algorithm is robust, can make effective use of second derivative information and sparsity in
the problem, and that it is competitive with the LANCELOT algorithm in terms of function
evaluations. No attempt was made in [2] to make this new algorithm rapidly convergent,
and the goal of this paper is to develop the theoretical foundation for an implementation
that gives a superlinear rate of convergence.

The algorithm proposed in [2] is a barrier method. To describe it we begin by adding
positive slack variables s to the inequalities g(z) < 0, and by adding the penalty term
— ¢ In(s;) to the objective function f(z), so as to prevent the slack variables from
becoming negative. We thus obtain the barrier subproblem

minimize 1, (z, s)
st.  c(x,s) =0 (1.2)
s> 0,

where p > 0 is the barrier parameter and where
t
h(z
) = 1(0) -t o = (A7) ). (13)
i=1
The Lagrangian function associated with this barrier problem is
L(z,5,Ap, A1) = Yu(@, 8) + Nph(z) + A7 (g(z) + 9). (1.4)

The interior point algorithm uses an SQP method [9],[5] with trust region techniques to
find an approximate solution of the barrier problem (1.2). Once this is done, the barrier



parameter p is decreased, and a new barrier problem is approximately solved by the SQP
method.

Each step d of the SQP method is obtained by approximately solving the quadratic
program

1
minimize Vi, (z,s)"d + EdTWd
st Az, s)Td+c(z,s)=b (1.5)
ldls <A, ds>—7s.

Here
a0 = M 442 o

is the matrix of constraint gradients, S = diag(s1, ..., $¢), and b is a residual vector designed
to ensure that the constraints of (1.5) are compatible. The vector b is chosen to be as small
as possible, as described in [2], and its precise definition is not important in the discussion
that follows. We have written the step d in terms of its £ and s-components,

— dw
. ( h ) |
The trust region constraint makes use of the scaling matrix S, and is defined by

ldl[§ = llda|* + 15~ ds||* < A, (1.7)

where || - || denotes the Euclidean norm. We have also included the fraction to the boundary
rule ds > —7s which is commonly used in linear programming; here 7 is a parameter close
to 1 whose choice will be studied in this paper. The trust region radius A is chosen to
ensure decrease of the merit function

¢z, 5;0) = Yu(z,s) +vlle(z, s)2, v >0. (1.8)

The choice of the matrix W in the quadratic program (1.5) is important. If we define it

Wp = V%xL(IL‘,S,AE,A[) 0
P = 0 M572 )

as

then W is the Hessian of the Lagrangian (1.4) with respect to 2 and s, and the method will
generate primal search directions. On the other hand, if we define W to be

V2 L(z,s,\E, A 0
WPD:< e 0 A1) 5—1A>’ (1.9)

where A = diag(A1, ..., \¢), then the search direction will have primal-dual characteristics.
Since the primal-dual step is known to be better able to approach the solution, we focus on
it in this paper and we will assume that W is given by (1.9). The Lagrange multipliers Ag



and Ay are least squares estimates based on minimizing ||V, ¢ L(%k, sk, A, Ar)|l2. The way
in which these multipliers are computed is not important here, but we should note that we
may adjust A; to make it positive.

As mentioned before, the step d of the SQP method is an approximate solution of
the quadratic program (1.5). It is computed by means of a projected conjugate gradient
iteration on (1.5). Indefiniteness is handled by stopping the conjugate gradient iteration as
soon as a direction of negative curvature is found, and by following this negative curvature
direction to the boundary of the trust region [11]. Once a step d is computed, we test if
it provides sufficient reduction in the merit function ¢. If not, we reduce the trust region
and compute a new step by resolving the quadratic program (1.5) with this smaller trust
region. But if the step provides a sufficient reduction in the merit function, we set

T =x4d,; st =s+ds, (1.10)

where the superscript 4+ denotes the new iterate. We then check whether the barrier problem
has been approximately solved by testing the inequality

“F#(x—i_a 3+7 AE($+7 5+)7 AI($+7 5+)) “ < € (111)
for some stopping tolerance €,, where

V() + Ap(@)Ap + Ag(z)As

_ SAr — pe _
Fu(z) = h(z) , 2= (x,8, g, A1) (1.12)
g9(x) + s
with e = (1,1,...,1)”, and where the functions Ag(z,s) and Aj(z,s) are least squares

estimates of the multipliers. The barrier parameter p is decreased as soon as (1.11) is
satisfied. Note that F},(z) represents the optimality conditions for the barrier problem
(1.2). We should emphasize that the iterates of the interior point algorithm are given by
(1.10); this means that each step of the SQP iteration defines a step of the algorithm.

This broad outline of the algorithm will be sufficient for our purposes because we will
study here only its local convergence properties. Byrd, Gilbert and Nocedal [1] have an-
alyzed the global behavior of the primal version of this method, and found it to be quite
satisfactory. Since we expect that the good global convergence properties of the interior
point method can produce an iterate close to a KKT point, we will assume in this paper
that an iterate with associated multipliers,

2k = (Tk, Sky AE, AI) (1.13)
has been generated in a neighborhood of a minimizer z* satisfying the following conditions.
Assumptions I.

1. (Stationarity) The vector z* = (z*,s*, A\};, A7) is a KKT point for the nonlinear pro-
gram (1.1), i.e. Fy(2*) =0, A} > 0 and s* > 0.



2. (Smoothness) The Hessian matrices V2f(z), V?hi(z), i = 1,---,q, Vgj(z), j =
1,---,t, are locally Lipschitz continuous at z*.

3. (Regularity) The active constraint gradients
{Vhi(z*),i=1,---,q} U{Vg;(z"), j € B}
are linearly independent, where B = {j : g;(z*) = 0}.

4. (Optimality) The second order sufficiency conditions for optimality are satisfied at z*:
for all v # 0 satisfying Vh;(z*)Tv =0, i = 1,---,q, and Vg;(z*)Tv =0, j € B, we
have that v’ V2, L(z*)v > 0.

5. (Strict complementarity) s* + A5 > 0.
As the iterates zj generated by the interior point algorithm given in [2] approach the

solution z*, the step produced by the algorithm will approach more and more the z and
s-components of the pure primal-dual step given by

F(2)dy = —Fyu(2), (1.14)
where F), is defined by (1.12), and
V2,L 0 Au(z) Agz)
o= s 0 0 o (1.15)
Al(z) T 0 0

This is of course a Newton step on the system F,(z) = 0. Even though the interior point
algorithm proposed in [2] does not compute a step d by directly solving this system, but by
means of a projected conjugate gradient method applied to (1.5), one can show that near
the solution z*, its step d satisfies

F(2)d = =Fu(2) 4y, (1.16)

for a certain residual vector r,. Therefore d is an inexact Newton step, and is related to
the pure primal-dual step by
d=dy +[F,(2)] "ru. (1.17)

The magnitude of the residual vector must be controlled carefully. In the implementation
described in [2], the CG iteration is stopped as soon as ||r,|| < p. But, as we will see,
to obtain a faster rate of convergence we will need to decrease the magnitude of r, more
rapidly.

Our analysis will focus on the iteration zt = z + d, where d is given by (1.16). This
is an idealization of the iteration of the interior point algorithm described in [2], but the
results obtained here will be directly applicable to that algorithm. To partly bridge this



gap, we will also consider the effect of resetting )\E and )\}" based on least squares estimates
at (z7,sT).

Notation. Throughout the paper z and z* will denote the current and new iterates,
respectively. Assumptions I imply that, in a neighborhood of the minimizer z*, and for all
sufficiently small values of y, the barrier problem (1.2) associated with each barrier function
1, has a unique minimizer which we denote by 2*(1). We will write

and since F'(z) = F),(z) for any pu, we will use the former for simplicity. Throughout the
paper || - || denotes the Euclidean norm.

2. Some Conditions for Superlinear Convergence

Since the Jacobian F),(z) defined by (1.15) is independent of the barrier parameter 4, so
is the region of convergence of the Newton iteration (1.14). As a result, the algorithm can
be designed so that near the solution z*(u) of the barrier problem, each step d converges
superlinearly to z*(u). The goal of this section is to show that the step also converges
superlinearly to the solution z* of the nonlinear program (1.1). We begin by stating the
following well-known result.

Lemma 2.1 (/6] and page 73 of [10]). If Assumptions I hold, there exists a neighborhood
N(z*) ={z: ||z — z*|| < &} such that for all z € N(z*) the Jacobian F'(z) is invertible and

IE" ()] < M, (2.1)
for some constant M > 0. Moreover for all z,2' € N(z*) we have that
IF" (2)(z = 2') = F(2) + F()Il < L(l|z = 2'||*), (2.2)
for some constant L > 0.

The following lemma is a direct result of the implicit function theorem. It states that
the solution z* (1) of the barrier problem (1.2) is a Lipschitz continuous function of p.

Lemma 2.2 (page 128 of [10]) Suppose that Assumptions I hold. Then there is i > 0 such
that for all p < [, the system F,(z) = 0 has a solution z*(u) € N(z*), where N(z¥) is
defined in Lemma 2.1. Moreover

12%(p) = 2| < Cp, (2.3)
where O, (2)
_ B (-t EelZ
c max [F"(2)] o |

s a constant independent of p.



The next result gives a standard inexact Newton analysis of the step generated by the
interior point method.

Theorem 2.3 Suppose that Assumptions I hold; let N(z*) be the neighborhood defined in
Lemma 2.1, and i be the threshold value defined in Lemma 2.2. Then for any z € N(z¥)
and p < [i,

Iz = 2 (W)l < ML||z = 2*(u)|> + M|lr,ll, (2.4)

where M and L are defined by (2.1)-(2.2), and r, is the residual of the CG iteration and is
defined by (1.17).

Proof. Since z*(u) is the minimizer of the barrier problem associated with ¢, we have that
F,(z*(p)) =0, and thus
F(2" (1) = 11(0,¢,0,0)"".

Using this, recalling (1.14), (1.17) and the equality F), = F", we have that

=2 ) = z+d—2"(n)
= [F'(2)]7'F'(2)(z — 2" (n)) + d
= [F'(2)]7'F'(2)(z — 2" () + dn + [F'(2)] '
= [F'(2)] " |F'(2)(z — 2"(n)) — F(2) +u(0,e,0,0)T]
+F' ()] 7y
= [F'(2)] 7" [F'(2)(z — 2" (1)) — F(2) + F (2" ()]
+[F'(2)] " 7y (2.5)

By Lemma 2.2, for all 0 < g < @ the barrier minimizers satisfy z*(u) € N(z*). We
therefore have from (2.5), (2.1) and (2.2) that if z € N(z*) then (2.4) holds. 0

The following technical lemma states that ||F),(z)|| can be used as a measure of the
distance between z and the solution z*(u) of the barrier problem.

Lemma 2.4 Let M and N(z*) be defined in Lemma 2.1 and i be defined in Lemma 2.2.
Then Yz sufficiently close to z*(u), and Vu < fi,

|2 — 2" (Wl <2M||Fu(2)ll, [Fu(2)] <2Qz — 2" (n)l], (2.6)
where
Q= sup [[F'(2)]. (2.7)
2EN(2z*)

Proof. By Taylor’s theorem, we have

Fu(z) = Fu(z) = Fu(2" () = F'(2" () (z — 2" (1) + o(llz — 2" (w)])- (2.8)

Using this, (2.1) and (2.7), and Lemma 2.2, it follows that Vz € N(2*) and Vu < fi,

IFu() < NE' (" (m)lllz = 2" (w)ll + o(llz = 2" (w)]])
< Qllz =25 (Wl + olllz = 2" (w)]) (2.9)



and

lz ="l = F' ()] Fulz) + olllz — 2" ()] ]
< MIELG)] +olllz = 2" (w)]])]
M|[Eu(2)[l + o(M][z — 2" (w))- (2.10)

We can assume, without loss of generality, that

o(llz = 2" (W) < min{@, ﬁ}llz — 25 ()l

Substituting this into (2.9) and (2.10), we complete the proof.
O
The following theorem presents a strategy for decreasing the barrier parameter and
controlling the size of the residual, so as to achieve a fast rate of convergence near the
solution z*.

Theorem 2.5 Suppose that Assumptions I hold, and let z be an iterate sufficiently close
to z* at which the barrier parameter is decreased from pu to pu*. Suppose that the residual
in (1.16) satisfies

7t || < Mu | s (2) 14, (2.11)
for some positive constants My, . Then if u= = o(||F(2)]]) and a > 0, the step will be

superlinearly convergent to z*; moreover, if u= = O(|F(2)||?) and a > 1, the step will be
quadratically convergent.

Proof.

I+ () = 1IF(2) = n*(0,e,0,0)7|
1F ()] + Viut

Vipt

N

Since the assumption pu+ = O(||F(2)||?) or p+ = o(||F(2)||) implies that

Vipt
e Y

we can assume that N
\/Ziu <1.
1 (2)]|
Then

[1E+(2) || < 2] F(2)]]- (2.12)



Using this, Theorem 2.3 and Lemma 2.2, we deduce that

Iz =2 < lzT =2 () + 125 (uF) = 27
< ML|lz = 2 (u")IP + Ml || + Cp*
* * * 2
< MLz = 2| + |l2" = 2" (WH)I]? + MM | Fs (2) |+ + Opt
< ML (2||z — 2*|]2 2|2 — z*(,u+)H2) + MM, ||Fye (2) [
+Cu*
< 2ML||z — 2*|? + 2MLC?(u")? + 2" T MM, || F(2)||'
+Cu*
< 2ML||z — 2| + 2" MM, | F(2)]| " +
(2MLCa+1)Cu™. (2.13)

The second inequality in (2.6) with © = 0 gives
1F ()] <2Qlz — 2", (2.14)
Using this and (2.13) it follows that

IF ()]

2ML||z — 2*|| + 2' T M M, o=

ut
+(2MLCE +1) 07—
[

OIML|z — 2% + (4Q)' T* MM, ||z — 2*||*

IN

ut
+(2MLCE +1) 07—
[

OIML||z — 2*|| + (4Q)" MM, ||z — z*||*
+
_ %

IN

Using this, we see that the conditions
a>0, u* =o(|F(x)), (2.15)

imply that the right hand side is o(1) so that the step is superlinearly convergent. Moreover,
(2.14) and the conditions
a>1, p=O0(|F()|), (2.16)

imply that the right hand side is O(]|z — z*||), so that convergence is quadratic. 0
The conditions given in this theorem are not the only possible (or practical) ones. One
can show, for example, that the theorem is valid if the residual satisfies the bound

It Il < M ()",

for some positive constants o, M.



Now let us consider the strategy used in [2] and described in Section 1, where given a
primal vector (z,s), we compute least squares multiplier estimates Ag(z,s) and A7(z,s),
prior to computing the new step d. Assuming that the barrier parameter is decreased
from  to pT at this point, the multipliers are obtained by minimizing ||F,+(z)||. Then
Assumption I-3 implies that, near (z*,s*), the resulting vector z = (x,s, A\, A\;) satisfies
|lz—2*| = O(||(x, s) — (x*, s*)||+uT). This fact immediately gives us the following statement
about the convergence of that algorithm.

Corollary 2.6 2.1 Suppose that Assumptions I hold, that each step is computed using val-
ues of (Ag,Ar) based on least squares estimates, and that the residual in (1.16) satisfies
(2.11). Let (z,s) be a primal vector sufficiently close to (x*,s*) at which the barrier param-
eter has been decreased from pu to u. Then if u* = o(||F(2)||) and a > 0, the step from
(z,5) to (xF,sT) will be superlinearly convergent to (z*, s*); moreover, if ut = O(||F(2)|?)
and o > 1, the step will be quadratically convergent.

The results presented in this section ignore the fact that the slack variables must remain
positive. How to ensure this is the focus of the next section.

3. Feasibility

In primal-dual methods for linear programming, the step generated by the algorithm may
violate the bounds on the slacks, and it is thus common to use a backtracking line search
to ensure that the slacks remain sufficiently positive [13]. The interior point algorithm
for nonlinear programming [2] which is the focus of this paper employs trust regions and
computes the search direction by means of the conjugate gradient (CG) method. Because
this CG iteration has the property that its estimates of the step d are of increasing norm
[11], one can safely terminate the CG iteration if any of these estimates lies outside the
trust region. It is desirable to preserve this feature and to avoid the need for a backtracking
line search. To this end we will study under what conditions can we guarantee that the step
keeps the slacks sufficiently positive, and can therefore be used directly in the trust region
method.

Throughout this section we will assume that at the current iterate z, the barrier opti-
mality test (1.11) is satisfied, and will analyze the step d taken from z. This step attempts
to minimize the barrier problem associated with 1,,+. We begin by specializing the estimate
given by Theorem 2.3 in this case.

Theorem 3.1 Suppose that Assumptions I hold. If z is sufficiently close to z* and p™ is
sufficiently small, then

I = 2" (WO < M (e + p)* + Mry+l, (3.1)

where M’ is a positive constant and M is the constant defined in Lemma 2.1.



Proof. By Theorem 2.3, there exists a neighborhood N(z*) and a value g > 0 such that
Vz € N(z*) and for p* < p,

I =2 ()l < MLz = 2 (u5)|” + Mllry+|

< MLz =2 ()| + 12" () — 2" (O]
+M|r |- (3.2)

By Lemma 2.2 the minimizers of the barrier problems associated with 1), and 1+ satisfy

125(p) = 2" (WD)l < 2" (w) = 271 + [l (™) — 27
< Clp+ph)
< 2Cu, (3.3)

where the last inequality follows from the fact that the sequence of barrier parameters is
decreasing. Using this in (3.2), recalling the stopping test (1.11), and (2.6), we have that

lzF =" ()| < MLz = 2" () +2Cn)* + Mlry+|

< ML (2M||F,(2)|| + 2Cu)* + M|r,+||
< ML (2Me, +2Cu)* + M||r,+ ||
< M'(ey+p)? + My,

where M’ = 4M L (max{C, M})*.

O
This theorem and the definition (1.13) of z implies, in particular, that
+ N+ ! 2
s — — < M€y + p)* + M+,
CT N Z Z
or N
+ 1% ! 2
s 2 5eimy [t 1 - M ] (3.4)

where A (u™) is the optimal inequality constraint multiplier for the barrier problem associ-
ated with ¢+, i.e. Af(ut) = [Aj(u)];. Thus if the stopping tolerance €, and the residual
|7+ || are sufficiently small, the slacks are forced to be sufficiently positive. Note that (3.4)
suggests that a quadratic decrease in p may lead to a violation of feasibility. To see this,
suppose that the last term in (3.4) is of order O(u?). Then

+ wr 2
st > -0 3.5
' 0w (3.5)
and if we choose put = O(u?), then right hand side in (3.5) could become negative. Of
course this argument is not rigorous because the constant implicit in the O(u?) term is
unknown, and because the inequalities leading to (3.4) may not be tight.

We can now give conditions on the choice of the parameter 7 which controls the fraction
to the boundary rule, and on the strategy for decreasing p, that ensure that the new slacks
are sufficiently positive.

10



Theorem 3.2 Suppose that Assumptions I hold, and that the parameters u+,eﬂ,ru+ and
T are chosen so that )
+e,)° + |7
(et e+l o

o (3.6)

and

. +e€
limsup (1 —7) <NN+“> <L (3.7)
Then if z is sufficiently close to z*, if ||[F,(2)|| < €u, and if p is sufficiently small, the step
d will satisfy the fraction to the boundary rule st > (1 —7)s.

Proof. The limit (3.7) implies that for sufficiently small y,

(1-7) (%) <(1-0) (3.8)

for some constant 0 < o < 1. Since u* < p and €, > 0, (3.8) implies
1—7<(1-0)% (3.9)

Given an index ¢, we divide our analysis into two cases.

Case I: Suppose that A7 = 0, where \; denotes the i-th component of A;. In this case
Assumption I-5 implies that s} > 0. By Lemma 2.2 and Theorem 3.1,

+ * * +
si = s —|si—s;
> sp =l =2 () = et — 2 ()
> sp = [Cpt 4+ M (e + ) + M| -

For 1 and thus p* sufficiently small, (3.6) implies that ||r,+| is small, and we can assume
that the term inside the square brackets is less than os;. In addition, we can assume that
for all z sufficiently close to z*,

si<s;/(1—o0).
Therefore

st

ZL>(1-0)?, (3.10)

S

and thus by (3.9), s; satisfies the fraction to the boundary rule.

Case II: Suppose that A\f > 0. The step to the new value s* is determined by (1.15)-
(1.16), and the second block of that equation reads

Aids, + sidy, = u+ — ;s + T‘Z-+, (3.11)

or
)\Z'Szr = u+ — Sid)\i + ’f’;r, (3.12)

11



where r;'r denotes the i-th component of r,+. Assumption I-5 implies that s; = 0; using
this, Lemma 2.3 and the fact that the barrier test is satisfied at z, we have

si=si—sf < |z — 2| S2M|F ()| < 2M(|Fu(2)]| + Vi) < 2M (e, + Vip).

This and (3.12) give

+ + ey 4T
5 _ M sl i (3.13)
S; >\i3i
ph = 2M (e, + Vip)lld]| = I+ |
> : (3.14)
NiS;
Now using (1.17), (1.14), (1.12), (2.1), (1.11) and Lemma 2.1 we can bound ||d|| by
]l = NF' ()7 (= Fpur (2) +7t) |
< NE NI = Fulz) + (0 = 1)(0,€,0,0)7 | + [Ir,+ ]
< NE = B+ 10t = 1)(0,,0,0)7 | + [l ]
< M (eu+2Viu+lry+) -
Substituting this in (3.14) yields
st = Mg+ ) = Mallrye|
s; Aisi
o # = max{My, Ma} [(ep + p)° + 7l
- AiS;
+ 2
Wt €y) +|r,+
= (;:) ll—maX{Mg,M4}( M)u* Iy : (3.15)

where M3 = 2M? max{4t,1}, and My = 1 +2M? sup(e,, + Vp). If (3.6) holds, then we can
assume that )
et 6 + el

pt B

max{Mg, M4}

Substituting this into (3.15), we have

Now, by (1.12) and the stopping rule

Nisi < o+ 1Fu(@)) < o+ (3.16)
so that N .
S ( a ) (1 - o) (3.17)
Si I



This and (3.8) show that the fraction to the boundary rule is satisfied.

4. Solving the Barrier Problem in One Step

We now describe conditions that ensure that the barrier stopping test is satisfied after
just one step zt = z+d, where d is defined by (1.16). We assume that z satisfies || F),(z)|| <
€y, and therefore that at z the barrier parameter is reduced to p™.

Using Lemma, 2.4 and Theorem 3.1 we have that for all z € N(z*) and p™ < i

1F,+ () < 20M" (e + 1)? + 2QM ||+ .

The barrier stopping test will be satisfied if the right hand side is less than €,+. Since

+ 1)? +
%Mﬂ@+m”4@wm4§mw&wwﬂmm<&”MZ W“qu

/J‘+
we can simply impose the condition

R e
€

(4.1)
ut

Suppose, for example that the tolerance €, is proportional to u, i.e. €, = 0u, €,+ = O™
for some positive constant #. Then (4.1) is equivalent to

2

+ ||r

w el g, (4.2)
/-’L+
Note that this limit will not hold if the barrier parameter decreases quadratically.

Finally, we consider the variant to the algorithm where, after computing ™ and s™ from
(1.16) we compute least-squares Lagrange multiplier estimates Ag(z™,s™) and A;(z™,sT)
by minimizing || F,+||. Tt is clear that the stopping test is still satisfied since the least squares
criterion implies

1Fu (27, 87, Ap(z ™, s7), Ar(a™, s < 1 Fr (7))

5. Practical Implementations

We would like the step of the interior point algorithm to satisfy the following three
conditions near the solution z* of the nonlinear programming problem: (i) it should keep
the slack variables sufficiently positive, (ii) it should satisfy the barrier stopping test, (iii)
it should provide a superlinear rate of convergence.

We have seen in Theorem 3.2 that feasibility is obtained if

2
s+ )+l o
//L+

(5.1)
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and

. ©+e
limsup (1 —7) < M+“> <1 (5.2)
In the previous section we have shown that the barrier stopping test is satisfied after one
step if (4.1) holds:

ORI e

5.3

(53)
We have also shown in Theorem 2.5 that superlinear convergence is obtained if

pt=o(lFGN), el < Mil[Fy ()19, > 0. (5.4)

Therefore the main goal of this section is to find strategies that will satisfy (5.1)-(5.4).
The free parameters in the algorithm are ¢, (for the barrier stopping test), ||| (for con-
trolling the inexactness of the step computation), 7 (for controlling the fraction to the
boundary), and the rate at which the barrier parameter p is decreased. For simplicity we
will assume that €, €,+ are given by

€ =0u, €+ =0u", 0€0,V1). (5.5)
In this case (5.1) and (5.3) are both implied by the condition

2
+
BTl “f“*“ 0, (5.6)
1

and (5.2) becomes

%) (1—7)(1+06) < 1. (5.7)
p

We can define ™ as a function of the previous barrier parameter, u* = p*(u), or as a
function of the current iterate, u™ = p*(z). We will consider both options. Before we
describe superlinearly convergent strategies we consider the following parameter settings
based on a linear decrease in y, and which are similar to those used in [2].

lim sup (

Strategy 1: (Linear decrease of u.)
We select § =1 in (5.5), and set

pt=ap, ye(0,1), 7€(0,1);

i.e. p decreases by a constant factor at every iteration, and 7 is constant. We control the
residual by means of
|| < Mypt®, My >0, a>0.

Let us verify that this ensures that the step is feasible and satisfies the barrier stopping
test. Since p — 0, we have

2+ e p? + Myt
pt - i
1
= ;[M + Mip®] = 0. (5.8)
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Therefore (5.6) is satisfied. Also since

L (1—-7)(1+0)

<M+> (1—7)(1+6) T (5.9)
we can satisfy (5.7) by forcing the right hand side of (5.9) to be strictly less than 1. This can
be done, for example, by choosing 8 = 1, 7 = 0.995 and v = 0.2, which are the parameter
settings in [2]. This strategy will therefore produce a step that, near the solution, keeps the
slack sufficiently positive and satisfies the barrier stopping test. The rate of convergence
will, however, be only linear.

Strategy 2: (u™ as a function of p.)
Here we set
pt=p"t 0<8 <1, r=1-—p", B>,
and control the residual by
[r ]l = p't?, a >0 (5.10)
We first verify that conditions (5.6) and (5.7) are satisfied. Since 0 < 0 <  and p — 0, we

have

(%) (1=m)(140) = (1+0)u%7 = 0.
1
Also since a > §, § < 1, and p — 0, we have

pt el gt e
ut o M1+6

Therefore we have ensured feasibility and satisfaction of the barrier stopping test.
Now we show that superlinear convergence is obtained. Since the stopping test (1.11)
is satisfied at z with €, = 0u, we have

IF)I > [110,e,0,0)" || = [ Fu(2)]
> Vip—e¢,
= (Vt—0)u. (5.11)

Hence = O(||F(2)||), and since u* = o(p), we have that the first of the conditions in (5.4)
is satisfied. Further by (5.10) and (5.11) we have that

p 1+
e ) < (%) . (5.12)

We also have that
IF+ (2l > IIFE)] = n7(0,e,0,0)7]

= [IF()| - Viu'
_ Vit
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By the first of the conditions in (5.4), we can assume that

Vipt 1
I1F(2)] 2

so that P
1B (o)) > L2

Using this in (5.12), we have

2 1+a o
Il < () IR @I,

which completes the proof of the second of the conditions in (5.4). Therefore, the step is
superlinearly convergent.

The next strategy seems to be more attractive because the barrier parameter is selected
according to how much reduction one has made in the optimality conditions of the nonlinear
program.

Strategy 3: (u™ is a function of 2.)
Choose
pt=FE, 0<s<l,  r=1-|[F)|°, B>,

and control the residual by means of
lrt I = 1Eu+ (1, a >4

We first verify that (5.6) holds. Since the barrier stopping test is satisfied at z with
€, = Op, we have

IFEI < 1F )]+ [11(0,¢,0,0)7
< eyt Vip
< 2Vt (5.13)
Using this and (2.12) we have
17t 2 F ()|
pto T PR
= 2 F(x)|*°
S 21+o¢(2\/i)a751ua75‘ (5.14)

This converges to zero as u — 0, because o > §. Using (5.11) and recalling that 6 < 1, we
also have that

p? p?
Wt EE

1 1-6
= Wimgt
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which, together with (5.14), gives (5.6).
Next, from (5.13) and 8 > 4, we have

(L) a=na+o) = uF@I*0+o)

ut
< @V (14 0) — 0,

which gives (5.7).
It is easy to see that (5.4) holds. In conclusion, Strategy 3 ensures that the step is feasi-
ble, that the barrier stopping test is satisfied and that the rate of convergence is superlinear.

Rather than basing the choice of the barrier parameter on the norm of the optimality
conditions, ||F(z)||, we can make it depend only on the portion corresponding to comple-
mentarity. More specifically, if the stopping tolerance is given by (5.5) with 8 < 1, and if 7
and r,+ are defined as in Strategy 3, then we could set

t

+ o146 + . 144
H _(fg%A’Sl) ; or i —[(;Azsl)/t] . (5.15)

These are similar to some of the rules used in linear programming algorithms [13]. That
(5.15) ensures feasibility of the step, satisfaction of the barrier stooping test, and superlinear
convergence follows from the fact that (1.11) forces each term \;s; to be of magnitude p; it
is then simple to verify that the arguments given for Strategy 3 hold.

6. Final Remarks

We have presented sufficient conditions for achieving superlinear convergence in the
context of the interior point method described in [2]. The analysis differs from [12, 4] in
that we wish to ensure that the step generated by the algorithm keeps the slacks sufficiently
positive (so that a backtracking line search is therefore not needed) and in that we focus
on how to satisfy an inner barrier stopping test.

Our analysis assumes that the regularity conditions stated in Assumptions I hold. We
have taken care, however, to make specific reference to the constants M, @), L,C, which
characterize the condition number of the KKT system and other problem characteristics.
This will enable us, in a future study, to investigate the effect that degeneracy, near-
degeneracy and ill-conditioning have on various aspects of the algorithm.
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