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Flexible Penalty Functions for Nonlinear Constrained Optimization
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We propose a globalization strategy for nonlinear constrained optimization. The method employs a “flex-
ible” penalty function to promote convergence, where during each iteration the penalty parameter can be
chosen as any number within a prescribed interval, rather than a fixed value. This increased flexibility
in the step acceptance procedure is designed to promote long productive steps for fast convergence. An
analysis of the global convergence properties of the approach in the context of a line search Sequential
Quadratic Programming method and numerical results for the KNITRO software package are presented.
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1. Introduction

In this paper we consider step acceptance mechanisms for nonlinear constrained optimization. For
simplicity, we frame our discussion in the context of the equality constrained problem

min
x∈Rn

f (x)

s.t. c(x) = 0,
(1.1)

where f : Rn → R and c : Rn → Rt are smooth functions, but consider ways in which our methods can
be applied to problems with inequality constraints in the last section. The main purpose of this paper
is to develop a globalization strategy designed to promote long productive steps and fast convergence,
supported by convergence guarantees to first order optimal points.

Most globally convergent iterative algorithms for problem (1.1) have the following general form. At
a given iterate xk, a step is computed in either the primal or primal-dual space based on local and/or
historical information of the problem functions. The step is then either accepted or rejected based on the
reductions attained in the nonlinear objective f (x), constraint infeasibility ‖c(x)‖, or some combination
of both measures. Here, ‖·‖ denotes a norm on Rt . The manner in which these reductions are quantified
and evaluated may have a significant impact on the types of steps accepted and the speed with which the
algorithm converges to a solution.

We motivate our proposed globalization strategy, i.e., step acceptance method, by outlining two
popular tools used for this purpose: exact penalty functions and filter mechanisms. The exact penalty
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function we consider in this paper combines the objective and a constraint infeasibility measure into a
function of the form

φπ(x) , f (x)+π‖c(x)‖, (1.2)

where π > 0 is a penalty parameter. During iteration k, a step is deemed acceptable only if a sufficient
reduction in φπk is attained for a suitable value of the penalty parameter. In contemporary algorithms,
the value for πk is chosen upon completion of the step computation procedure and the sequence {πk} is
typically monotonically increasing throughout the run of the algorithm. Figure 1 illustrates the region
of acceptable points from pk = (‖c(xk)‖, f (xk)), corresponding to the current iterate xk, in ‖c‖- f space.
A step dk is acceptable if the resulting point x̄ = xk + dk yields a pair (‖c(x̄)‖, f (x̄)) lying sufficiently
below the solid line through pk, where the slope of the line is defined by the current value of the penalty
parameter πk. The global convergence properties of such an approach were first shown by Han (1977)
and Powell (1978).
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FIG. 1. Boundary of the region of acceptable points from
pk for the penalty function φπk
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FIG. 2. Boundary of the region of acceptable points for a
filter with three entries

A filter mechanism, proposed by Fletcher & Leyffer (2002), avoids the definition of a parameter
to balance reductions in the objective with reductions in the constraints. In the spirit of multiobjective
optimization, a filter considers pairs of values (‖c(x)‖, f (x)) obtained by evaluating the functions ‖c‖
and f at all or some iterates preceding the current one. A pair (‖c(xi)‖, f (xi)) is said to dominate another
pair (‖c(x j)‖, f (x j)) if and only if both ‖c(xi)‖6 ‖c(x j)‖ and f (xi) 6 f (x j). The filter F is then defined
to be an index set corresponding to a list of pairs such that no pair dominates any other. A step dk from
xk is considered acceptable if the resulting point x̄ corresponds to a pair (‖c(x̄)‖, f (x̄)) such that either

‖c(x̄)‖¿ ‖c(xi)‖ or f (x̄)¿ f (xi) (1.3)

for all i ∈F , where by “¿” we mean that the value is less with respect to some appropriate margin.
Upon the acceptance of such a step, the pair (‖c(x̄)‖, f (x̄)) may be added to the filter, in which case
all points dominated by this pair are removed from F . Figure 2 illustrates the region of acceptable
points for a filter with three entries as that lying sufficiently below and to the left of the piecewise linear
function. The global convergence guarantees of such an approach have been shown when paired with
certain types of step computation methods; e.g., see Fletcher et al. (1998), Gonzaga et al. (2003), and
Wächter & Biegler (2005a,b).
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Penalty functions and filter mechanisms both have their own advantages and disadvantages. One
disadvantage of a penalty function relates to the monotonicity required when updating the penalty pa-
rameter π during the solution process. Nonmonotone updates for the penalty parameter are available
that maintain global convergence guarantees, but such methods often rely on ad hoc heuristics that even-
tually fall back on the convergence properties of monotone strategies, and so we do not discuss them
here. Depending on the specific update strategy used, π may at some point be set to an excessively large
value, even at a point that is relatively far from a solution. As a result, a large priority will be placed
on computing steps that produce sufficient reductions in constraint infeasibility, effectively “blocking”
steps that move away from the feasible region. This can be detrimental as empirical evidence has shown
that accepting steps that temporarily increase infeasibility can often lead to fast convergence. Figure 3
illustrates this blocking behavior of a penalty function, where we highlight the region of points that
would be rejected despite the fact that each corresponding step would have provided a reduction in the
objective f (and so may have been acceptable to a filter).

We note that a second disadvantage of a penalty function is that a low value of π may block steps
that improve feasibility but increase f . However, modern step acceptance strategies effectively deal with
this problem by defining local models of φπ (as will be seen in Section 3), with which an adequately
large value of π can be determined to avoid excessive blocking. Thus, our view is that the main weak-
ness of penalty-based strategies is the blocking effect illustrated in Figure 3, which can be particularly
detrimental when ‖ck‖ is zero, or at least small, while xk is far from optimal.
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FIG. 3. A region of points blocked by φπk
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FIG. 4. A region of points blocked by a filter with entry a

One disadvantage of a filter mechanism is that a step can be blocked by a filter entry, i.e., historical
information of the problem functions, when in fact the step is a productive move toward a solution in
a local region of the search space. This is particularly worrisome when steps are blocked that would
amount to a sufficient reduction in constraint infeasibility. Figure 4 depicts a filter with the single
entry a where the point pk = (‖c(xk)‖, f (xk)), corresponding to the current iterate xk, is shown as the
isolated point with an objective value sufficiently less than the filter entry. The shaded portion illustrates
one region of points that are blocked by the filter, despite the fact that a step into this region would
correspond to a reduction in constraint infeasibility from the current iterate (and so may be acceptable
for a penalty function approach with parameter πk).

In an extreme example, consider the case where the filter entry a in Figure 4 is a Pareto optimal
solution to the multiobjective optimization problem of minimizing the pair (‖c(x)‖, f (x)) over all x∈Rn.
A point is Pareto optimal if it cannot be dominated by any other point. Thus, if the current iterate again
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corresponds to the point pk in Figure 4, then all paths from pk to the feasible region must pass through
a region of points dominated by a in ‖c‖- f space. Feasibility can only be attained if a single computed
step were to fall beyond the region dominated by the filter entry or if a backup mechanism, such as a
feasibility restoration phase, were implemented.

In summary, both penalty functions and filters can be shown to block different types of productive
steps. A penalty function may suffer from high priority being placed on improving feasibility and con-
vergence can be slowed by forcing the algorithm to hug the feasible region. A filter mechanism, on the
other hand, may suffer from handling problem (1.1) too much like a multiobjective optimization prob-
lem, when in fact a certain priority on converging to the feasible region may be appropriate, especially
as the algorithm progresses.

2. Flexible Penalty Functions

In this section, we define a new step acceptance mechanism for nonlinear programming algorithms. By
observing the strengths and weaknesses of penalty functions and filters, we hope to emulate some of the
step acceptance behavior of both methods while attempting to avoid any blocking of productive steps.

During early iterations, the filter mechanism has the benefit that a variety of steps are considered
acceptable. For example, for a one-element filter, i.e., a filter containing only an entry corresponding to
the current iterate, a step will be accepted as long as a sufficient reduction in the objective or constraint
infeasibility is attained. This may be of use to promote long steps during early iterations when an
appropriate value for the penalty parameter may not yet be known. However, during later iterations, it
may be reasonable to assume that an appropriate value for the penalty parameter may be determinable
based on information computed throughout the run of the algorithm, which can be used to correctly
block steps from increasing constraint infeasibility. The use of a penalty function in later iterations may
also avoid the risk of blocking steps in the manner illustrated in Figure 4.

In an attempt to define a single mechanism that will capture all of these characteristics, and given
that the penalty function approach appears to be more flexible than a filter in that it permits a reweighting
of objective and constraint infeasibility measures, we present an improvement of the penalty strategies.

Our method can be motivated by observing the iterative nature of the penalty parameter update
implemented in some current algorithms; e.g., see Waltz et al. (2006). At the start of iteration k, a
specific value πk−1 of the penalty parameter is carried over from the previous iteration. If the algorithm
were to maintain this value, then only a step corresponding to a move into the region sufficiently below
the solid line in Figure 5 would be acceptable. However, upon the calculation of dk, the algorithm may
determine that an increase of the penalty parameter to some value π̄k > πk−1 may be appropriate, in
which case only a step corresponding to a move into the region sufficiently below the dashed line in
Figure 5 would be acceptable. Rather than automatically set πk ← π̄k, a simple heuristic that maintains
the global convergence properties of the algorithm is to first compute the function values for x̄ = xk +dk,
namely ‖c(x̄)‖ and f (x̄). If (‖c(x̄)‖, f (x̄)) lies sufficiently below the dashed line in Figure 5, then we
may accept the step and indeed set πk ← π̄k. However, if (‖c(x̄)‖, f (x̄)) lies sufficiently below the solid
line, then the step could be considered acceptable for setting πk ← πk−1, effectively avoiding an increase
in the penalty parameter. In summary, such a strategy does not consider a single value of π at xk, but
rather may select from a pair of values depending on the actual reductions attained by the step. Thus,
we can view the region of acceptable points as that lying below the solid or dashed line in Figure 5.

An extension of this idea forms the basis of the method we now propose. Consider the collection of
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FIG. 5. Illustration of the iterative nature of penalty parameter updates

penalty functions
φπ(x) , f (x)+π‖c(x)‖,

π ∈ [π l ,πu],
(2.1)

for 0 < π l 6 πu. We define a step to be acceptable if a sufficient reduction in φπ has been attained for
at least one π ∈ [π l ,πu]. Clearly, if π l is always chosen to equal πu, then this approach is equivalent
to using a penalty function with a fixed π during each iteration. Alternatively, if π l ≈ 0 while πu is
very large, then this approach has the form of a one-element filter. In general, the region of acceptable
points is that given by the region down and to the left of the piecewise linear function illustrated in
Figure 6, where the kink in the function always occurs at pk = (‖c(xk)‖, f (xk)), corresponding to the
current iterate xk. As the penalty parameter π is allowed to fluctuate in the interval [π l ,πu], we refer to
(2.1) as a “flexible” penalty function.
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FIG. 6. Boundary of the region of acceptable points from pk for a flexible penalty function over [π l
k,π

u
k ]

Let us expound further on the relationship between our approach and some techniques that employ
a filter by saying that the region of acceptable points in Figure 6 has features similar to the “slanting
envelope” around a filter entry proposed by Chin & Fletcher (2003) and considered later in a paper by



6 of 19 F. E. Curtis and J. Nocedal

Li (2006). However, despite the fact that the shape of the acceptable regions are similar in some areas of
the ‖c‖- f plane, the important difference between our flexible penalty function and these and other filter
mechanisms is that we do not maintain a collection of previous infeasibility measure/objective value
pairs. The step acceptance criteria we propose for a flexible penalty function depend only on π l

k, πu
k , and

constraint and objective information at the current iterate xk.
The practical behavior of standard penalty function techniques depends heavily on the update strat-

egy for the single parameter π . For a flexible penalty function, we need only consider the update
strategies for two parameters: π l and πu. As different requirements in terms of convergence guarantees
are necessary for each of these boundary values, and as they have significantly different practical effects,
we have the ability to design their updates in a manner suitable for accepting long productive steps.

We present a concrete strategy for updating π l and πu in the following section, as certain details are
better described once features of the chosen step computation procedure are outlined.

NOTATION: In the remainder of our discussion, we drop functional notation once values are clear from
the context and delimit iteration number information for functions as with variables; i.e., we denote
fk , f (xk) and similarly for other quantities. We define ‖ · ‖ to be any fixed norm.

3. A Line Search SQP Framework

In this section we describe a precise globalization strategy for problem (1.1) based on the flexible penalty
function (2.1) in the context of a line search Sequential Quadratic Programming (SQP) method.

Let us begin by formalizing a basic SQP method. The Lagrangian function for problem (1.1) is

L (x,λ ) , f (x)+λ T c(x), (3.1)

and the first-order optimality conditions are

∇L (x,λ ) =
[

g(x)+A(x)T λ
c(x)

]
= 0, (3.2)

where g(x) , ∇ f (x), A(x) is the Jacobian of c(x), and λ ∈ Rt are Lagrange multipliers. The line search
SQP methodology applied to problem (1.1) defines an appropriate displacement dk in the primal space
from an iterate xk as the minimizer of a quadratic model of the objective subject to a linearization of the
constraints. The quadratic program has the form

min
d∈Rn

f (xk)+g(xk)T d + 1
2 dTW (xk,λk)d (3.3a)

s.t. c(xk)+A(xk)d = 0, (3.3b)

where

W (x,λ )≈ ∇2
xxL (x,λ ) = ∇2

xx f (x)+
t

∑
i=1

λ i∇2
xxci(x)

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian. Here, ci(x) and λ i denote
the ith constraint function and its corresponding dual variable, respectively. If the constraint Jacobian
A(xk) has full row rank and W (xk,λk) is positive definite on the null space of A(xk), then a solution dk
to (3.3) is well-defined and can be obtained via the solution of the linear system (see Nocedal & Wright
(2006)): [

W (xk,λk) A(xk)T

A(xk) 0

][
dk
δk

]
=−

[
g(xk)+A(xk)T λk

c(xk)

]
. (3.4)
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The new iterate is then given by
xk+1 ← xk +αkdk,

where the steplength coefficient αk ∈ (0,1] is given by a globalization procedure. Here, we intend to
employ the flexible penalty function (2.1), requiring appropriate update strategies for π l and πu. In the
following discussion, let us assume that ‖ck‖ 6= 0 for each k. We comment on suitable updates for π l

k
and πu

k in the special case of ‖ck‖= 0 at the end of this section.
First, consider the parameter πu. A large value of πu indicates that the algorithm considers almost

any step that provides a sufficiently large reduction in constraint infeasibility to be acceptable. Thus,
as approaching the feasible region is a necessity for any algorithm for solving problem (1.1), we may
choose to initialize πu to a large value and increase it only when necessary. This can be done by updating
πu in a manner currently used for setting π in some contemporary penalty function approaches. The
technique we have in mind makes decisions based on a model mπ of the penalty function φπ , and in
effect will increase π (or, in our case, πu) if and only if the computed step indicates that a large increase
in the objective is likely to result from a reduction in constraint infeasibility.

Let us define a local model of φπ around the current iterate xk as

mπ(d) = fk +gT
k d +

ω(d)
2

dTWkd +π‖ck +Akd‖,

where

ω(d) ,
{

1 if dTWkd > 0
0 otherwise (3.5)

(e.g., see El-Hallabi (1999), Byrd et al. (1999), Omojokun (1989), and Waltz et al. (2006)). Notice
that mπ contains a linear or quadratic model of the objective f and a linear approximation of constraint
infeasibility. With this approximation, we can estimate the reduction in φπ attained by dk by evaluating

mredπ(dk) , mπ(0)−mπ(dk)

=
[−gT

k dk− ωk
2 dT

k Wkdk
]
+π‖ck‖. (3.6)

As the step dk satisfies the linearized constraints in problem (3.3), it follows that the model predicts no
increase in constraint infeasibility, as evidenced by the nonnegative contribution of the last term in (3.6).
Our model of the objective, however, may indicate that an increase or decrease in f (corresponding to a
negative or positive value, respectively, of the term in square brackets in (3.6)) is likely to occur along
dk. Overall, we consider the reduction in the model mπ attained by dk to be sufficiently large if

mredπ(dk) > σπ‖ck‖, (3.7)

for some 0 < σ < 1, which can be seen to hold if

π >
gT

k dk + ωk
2 dT

k Wkdk

(1−σ)‖ck‖
, χk. (3.8)

Various algorithms will in fact enforce inequality (3.7), and so will set π according to (3.8) for all k.
It turns out that our desired properties of πu can also be achieved by constructing an update around

the term χk. In particular, we propose a scheme of the form

πu
k ←

{
πu

k−1 if πu
k−1 > χk

χk + ε otherwise, (3.9)
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where ε > 0 is a small constant. In this manner, πu will be increased during an iteration if and only if
an increase in the model objective, reflected by a positive numerator in (3.8), indicates that an increase
in f is likely to occur in conjunction with a move toward the feasible region, implied by the fact that the
step satisfies the linearized constraints in (3.3).

By using the model mπ to set a value for the penalty parameter, the resulting sequence of values
can be shown to remain bounded under common assumptions due to certain desirable properties of
the quadratic subproblem (3.3). (This phenomenon, which remains important for our flexible penalty
function approach in the context of πu, can be observed more precisely in our proof of Lemma 3.6 in
the following section.) A drawback of this technique, however, is that such a model may not always
accurately reflect changes in the objective and constraint values. For example, mredπ may suggest that
a move along dk corresponds to a decrease in constraint infeasibility and an increase in the objective,
when in fact the opposite may occur if one were to take the full step dk. As such, the penalty parameter
may be set to a large value that results in excessive blocking in later iterations. Further motivation for
incorporating a flexible penalty function, therefore, results from the fact that an excessively large value
for πu

k is less of a concern if the penalty parameter is able to fluctuate over an interval [π l
k,π

u
k ] during the

line search – especially if the mechanism for choosing π l
k is not based on local models of the functions

at all.
The method we propose for setting π l is such a technique. In particular, we choose to have π l

k set
in a manner that reflects the actual reductions in f and ‖c‖ attained during the previous iteration k− 1
(where π l

0 is provided as a small initial value).
To motivate the details of the scheme we propose, consider the numbered regions illustrated in

Figure 7, where the position and shape of each portion depends on the parameters π l
k (set during iteration

k− 1) and πu
k , and the location of the point pk = (‖c(xk)‖, f (xk)). A step into region I would not be

acceptable to the flexible penalty function (2.1), as opposed to a step into region II, III, or IV, which
would be acceptable. Our strategy for setting π l

k+1 will depend on the region in ‖c‖- f space to which

l
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FIG. 7. Distinct regions defined by the current state of a flexible penalty function

the step αkdk moved upon the conclusion of the line search. If a sufficient reduction in φπ l
k

was obtained
(i.e., the step was into region III or IV), then we say that the reductions in f and/or ‖c‖ are sufficient
for the current state of the flexible penalty function and so we set π l

k+1 ← π l
k. Otherwise, (i.e., if the
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step was into region II), π l will be increased. This has the logical interpretation that we only become
more restrictive by blocking steps that increase infeasibility when the algorithm is confronted with steps
that indicate that actual moves toward the feasible region correspond to actual increases in the objective
(thus freeing ourselves from being bound by parameters set based on models or other local information).
The precise update after a step into region II is given by

π l
k+1 ←min

{
πu

k ,π l
k +max

{
0.1

(
ν−π l

k

)
,ε l

}}
(3.10)

where ε l > 0 is some small constant and

ν =
f (xk +αkdk)− f (xk)

‖c(xk)‖−‖c(xk +αkdk)‖
. (3.11)

Here, the definition of ν ensures that the value for π l
k+1 depends on the actual reductions in the objective

and constraint infeasibility attained by αkdk, where it can be seen that ν ∈ [π l
k,π

u
k ] after a step into

region II. We introduce the damping factor 0.1 so that the value for π l will increase only gradually, thus
blocking as few future steps as possible while still ensuring convergence.

Our procedures for updating the state of the flexible penalty function (2.1) are now set. Before
presenting the algorithm in detail, however, let us remark on an important detail of the line search
procedure for computing αk. With Dφπ(dk) denoted as the directional derivative of φπ along dk, we
require that αk satisfy the Armijo condition

φπ(xk +αkdk) 6 φπ(xk)+ηαkDφπm
k
(dk),

for some π ∈ [π l
k,π

u
k ],

(3.12)

where 0 < η < 1 and πm
k ∈ [π l

k,π
u
k ]. Note that we have defined a parameter πm

k for calculating a single
value of the directional derivative, which must be chosen to ensure that this term is sufficiently negative
for each k. This could be achieved by choosing πm

k = πu
k for all k (see Lemma 3.5). However, as seen in

Theorem 18.2 of Nocedal & Wright (2006), the directional derivative is given by

Dφπm
k
(dk) = gT

k dk−πm
k ‖ck‖, (3.13)

and so larger values of πm
k will make this term more negative. As fewer values of αk will satisfy (3.12)

for more negative values of Dφπm
k
(dk), we would like to choose πm

k in the interval [π l
k,π

u
k ] so that this

term is negative enough to ensure sufficient descent, while also being as close to zero as possible so as
to allow the largest number of acceptable steplengths. We use

πm
k ←max{π l

k,χk}, (3.14)

which, along with (3.9) and the fact that π l
k 6 πu

k−1 (see (3.10)), ensures πm
k > χk and πm

k ∈ [π l
k,π

u
k ].

Overall, we have described the following algorithm.

Algorithm 3.1 Line Search SQP Method with a Flexible Penalty Function

Initialize x0,λ0, 0 < π l
0 6 πu

−1, 0 < ε,ε l , and 0 < η ,σ < 1
for k = 0,1,2, . . . , until a convergence test for problem (1.1) is satisfied

Compute fk,gk,ck,Wk, and Ak and set αk ← 1
Compute (dk,δk) via (3.4)
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If ck 6= 0, set πu
k according to (3.9) and πm

k by (3.14); else, set πu
k ← πu

k−1 and πm
k ← πm

k−1
until the Armijo condition (3.12) holds for some π ∈ [π l

k,π
u
k ], set αk ← αk/2

If the Armijo condition (3.12) holds for π = π l
k, set π l

k+1 ← π l
k; else, set π l

k+1 by (3.10)
Set (xk+1,λk+1)← (xk,λk)+αk(dk,δk)

endfor

A practical implementation of the line search procedure of Algorithm 3.1 is attained by the obser-
vation that, during iteration k, the Armijo condition (3.12) is satisfied for π ∈ [π l

k,π
u
k ] if and only if it

is satisfied for either π = π l
k or π = πu

k . Thus, the line search for a given step dk can be performed
simply by evaluating the reductions attained in φπ l

k
and φπu

k
. We also note that in the special case of

‖ck‖= 0 during iteration k, we maintain πu
k ← πu

k−1 as in this case the directional derivative Dφπ(dk) is
independent of π (see (3.13)). We can also trivially set πm

k ← π l
k and maintain π l

k+1 ← π l
k since in this

setting region II of Figure 7 is empty.

3.1 Global Analysis

In this section we explore the global convergence properties of Algorithm 3.1 under the following as-
sumptions.

ASSUMPTIONS 3.1 The sequence {xk,λk} generated by Algorithm 3.1 is contained in a convex set Ω
and the following properties hold:

(a) The functions f and c and their first and second derivatives are bounded on Ω .

(b) The constraint Jacobians Ak have full row rank and their smallest singular values are bounded
below by a positive constant.

(c) The sequence {Wk} is bounded.

(d) There exists a constant µ > 0 such that over all k and for any u ∈ Rn with u 6= 0 and Aku = 0 we
have uTWku > µ‖u‖2.

These assumptions are fairly standard for a line search method; e.g., see Han (1977) and Powell
(1983). Assumption 3.1(b), however, is strong, but we use it to simplify the analysis in order to focus
on the issues related to the incorporation of a flexible penalty function. Assuming that Wk is positive
definite on the null space of the constraints is natural for line search algorithms, for otherwise there
would be no guarantee of descent.

Our analysis hinges on our ability to show that the algorithm will eventually compute an infinite
sequence of steps that sufficiently reduce the penalty function φπ l for a fixed π l > 0, which we achieve
by following the approach taken in Byrd et al. (2007) for an inexact SQP method. In particular, we
consider the decomposition

dk = uk + vk (3.15)

where the tangential component uk lies in the null space of the constraint Jacobian Ak and the normal
component vk lies in the range space of AT

k . The components are not to be computed explicitly; the
decomposition is only for analytical purposes. We refer to uk, which by definition satisfies Akuk = 0, as
the tangential component and vk as the normal component.

We first present a result related to the length of the primal step dk and the sequence of Lagrange
multiplier estimates {λk}.
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LEMMA 3.1 For all k, the primal step dk is bounded in norm. Moreover, the sequence of Lagrange
multipliers {λk} is bounded.

Proof. Under Assumptions 3.1, it can be shown that the primal-dual matrix in (3.4) is nonsingular and
that its inverse is bounded in norm over all k (e.g., see Nocedal & Wright (2006)). Thus, the relation

[
dk

λk +δk

]
=−

[
Wk AT

k
Ak 0

]−1 [
gk
ck

]

implies that ‖(dk,λk + δk)‖ 6 γ‖(gk,ck)‖ holds over all k for some constant γ > 0. The results then
follow from αk 6 1 and the fact that Assumption 3.1(a) implies that ‖(gk,ck)‖ is bounded over all k. ¤

The next result ensures a precise bound on the length of the normal component vk with respect to
the current value of the infeasibility measure.

LEMMA 3.2 There exists γ1 > 0 such that, for all k,

‖vk‖2 6 γ1‖ck‖. (3.16)

Proof. From Akvk = Akdk =−ck and the fact that vk lies in the range space of AT
k , it follows that

vk =−AT
k (AkAT

k )−1ck,

and so
‖vk‖6 ‖AT

k (AkAT
k )−1‖‖ck‖.

The result follows from the facts that Assumption 3.1(a) states that ‖ck‖ is bounded and Assump-
tions 3.1(a) and (b) imply that ‖AT

k (AkAT
k )−1‖ is bounded. ¤

We now turn to the following result concerning an important property of the tangential steps.

LEMMA 3.3 There exists a constant γ2 > 0 such that, over all k, if ‖uk‖2 > γ2‖vk‖2 then 1
2 dT

k Wkdk >
µ
4 ‖uk‖2.

Proof. Assumption 3.1(d) implies that for any γ2 > 0 such that ‖uk‖2 > γ2‖vk‖2 we have
1
2 dT

k Wkdk = 1
2 uT

k Wkuk +uT
k Wkvk + 1

2 vT
k Wkuk

> µ
2 ‖uk‖2−‖uk‖‖Wk‖‖vk‖− 1

2‖Wk‖‖vk‖2

>
(

µ
2
− ‖Wk‖√γ2

− ‖Wk‖
2γ2

)
‖uk‖2.

Thus, with Assumption 3.1(c) we have that the result holds for some sufficiently large γ2 > 0. ¤
With the above results, we can now identify two types of iterations. Let γ2 > 0 be chosen large

enough as described in Lemma 3.3 and consider the sets of indices

K1 , {k : ‖uk‖2 > γ2‖vk‖2}
and K2 , {k : ‖uk‖2 < γ2‖vk‖2}.

Our remaining analysis will be dependent on these sets and the corresponding quantity

Θk ,
{ ‖uk‖2 +‖ck‖, k ∈ K1,
‖ck‖, k ∈ K2.

The quantity Θk will help us form a common bound for the length of the primal step and the quantity
Dφπm

k
(dk).
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LEMMA 3.4 There exists γ3 > 1 such that, for all k,

‖dk‖2 6 γ3Θk,

and hence,
‖dk‖2 +‖ck‖6 2γ3Θk. (3.17)

Proof. For k ∈ K1, Lemma 3.2 implies

‖dk‖2 = ‖uk‖2 +‖vk‖2 6 ‖uk‖2 + γ1‖ck‖.

Similarly, Lemma 3.2 implies that for k ∈ K2

‖dk‖2 = ‖uk‖2 +‖vk‖2 < (γ2 +1)‖vk‖2 6 (γ2 +1)γ1‖ck‖.

To establish (3.17) we note that Θk +‖ck‖6 2Θk for all k. ¤
The next result bounds the quantity Dφπm

k
(dk), where πm

k is defined by (3.14).

LEMMA 3.5 There exists γ4 > 0 such that, for all k,

Dφπm
k
(dk) 6−γ4Θk.

Proof. Recall that by Theorem 18.2 in Nocedal & Wright (2006) we have

Dφπm
k
(dk) = gT

k dk−πm
k ‖ck‖. (3.18)

If ‖ck‖= 0, then (3.4) yields
Dφπm

k
(dk) = gT

k dk =−dT
k Wkdk.

Lemmas 3.2 and 3.3 then imply ‖vk‖= 0 and k ∈ K1, and so

Dφπm
k
(dk) =−dT

k Wkdk 6− µ
2 ‖uk‖2

and the result holds for γ4 = µ
2 .

Now suppose ‖ck‖ 6= 0. Here, (3.8), (3.18), and the fact that (3.14) implies πm
k > χk, yields

Dφπm
k
(dk) 6−ωk

2 dT
k Wkdk−σπm

k ‖ck‖. (3.19)

By Lemma 3.3 and (3.5), we have that ωk = 1 for k ∈ K1 and thus

Dφπm
k
(dk) 6− µ

4 ‖uk‖2−σπm
k ‖ck‖.

Similarly, for k ∈ K2 we have from (3.5) and (3.19) that

Dφπm
k
(dk) 6−σπm

k ‖ck‖.

The result holds for γ4 = min{ µ
4 ,σπm

k }, which is positive as πm
k > π l

k > π l
0 > 0 for all k. ¤

An important property of Algorithm 3.1 is that under Assumptions 3.1 the sequence {πu
k } remains

bounded. We prove this result next.

LEMMA 3.6 The sequence {πu
k } is bounded above and πu

k remains constant for all sufficiently large k.
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Proof. Recall that πu
k is set during iteration k of Algorithm 3.1 to satisfy (3.8), which is equivalent to

saying that (3.7) will be satisfied, as in

−gT
k dk− ωk

2 dT
k Wkdk +(1−σ)πu

k ‖ck‖> 0. (3.20)

If dT
k Wkdk > 0, then ωk = 1 by (3.5) and so (3.4) and Lemma 3.1 imply that there exists γ5 > 0 such that

−gT
k dk− 1

2 dT
k Wkdk = 1

2 dT
k Wkdk− cT

k (λk +δk) >−γ5‖ck‖.

Similarly, if dT
k Wkdk < 0, then ωk = 0, k ∈ K2, and ‖dk‖2 6 γ3‖ck‖ by Lemma 3.4. Then, Assump-

tions 3.1, (3.4), and Lemma 3.1 imply that there exists γ6,γ ′6 > 0 such that

−gT
k dk− ωk

2 dT
k Wkdk = dT

k Wkdk− cT
k (λk +δk) >−γ6(‖dk‖2 +‖ck‖) >−γ ′6‖ck‖.

These results together imply that for all k,

−gT
k dk− ωk

2 dT
k Wkdk >−max{γ5,γ ′6}‖ck‖,

and so (3.20), and equivalently (3.7), is always satisfied if

πu
k > max{γ5,γ ′6}/(1−σ).

Therefore, if πu
k̄ > max{γ5,γ ′6}/(1−σ) for some iteration number k̄ > 0, then πu

k = πu
k̄ for all k > k̄.

This, together with the fact that whenever Algorithm 3.1 increases πu it does so by at least a positive
finite amount, proves the result. ¤

A similar result can be shown for the parameter π l .

COROLLARY 3.1 {π l
k} is bounded above and π l

k remains constant for all sufficiently large k.

Proof. By Lemma 3.6, πu
k is constant for all sufficiently large k. Then, we have by (3.10) that if π l is

increased, then it is done so by at least a finite constant amount, or it is set equal to πu. Thus, the result
follows from (3.10) and the fact that there can only be a finite number of increases of π l . ¤

The previous lemmas can be used to bound the sequence of steplength coefficients.

LEMMA 3.7 The sequence {αk} is bounded below by a positive constant.

Proof. Let us rewrite the Armijo condition (3.12) for convenience as

φπ(xk +αkdk)−φπ(xk) 6 ηαkDφπm
k
(dk) (3.21)

for π ∈ [π l
k,π

u
k ]. Suppose that the line search fails for some ᾱ > 0, which means that (3.21) does not

hold for any π ∈ [π l
k,π

u
k ]. In particular,

φπm
k
(xk + ᾱdk)−φπm

k
(xk) > ηᾱDφπm

k
(dk),

where we recall that πm
k ∈ [π l

k,π
u
k ]. As seen on page 541 of Nocedal & Wright (2006), it can be shown

under Assumptions 3.1 that for some γ7 > 0 we have

φπm
k
(xk + ᾱdk)−φπm

k
(xk) 6 ᾱDφπm

k
(dk)+ ᾱ2γ7πm

k ‖dk‖2,

so
(η−1)Dφπm

k
(dk) < ᾱγ7πm

k ‖dk‖2.
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Lemmas 3.4 and 3.5 then yield
(1−η)γ4Θk < ᾱγ3γ7πm

k Θk,

so
ᾱ > (1−η)γ4/(γ3γ7πm

k ) > (1−η)γ4/(γ3γ7πu
k ).

Thus, αk is never set below (1− η)γ4/(2γ3γ7πu
k ), which is bounded below and away from zero by

Lemma 3.6, in order to satisfy the Armijo condition (3.12) for some π ∈ [π l
k,π

u
k ]. ¤

We are now ready to present the main result of this section.

THEOREM 3.2 Algorithm 3.1 yields

lim
k→∞

∥∥∥∥
[

gk +AT
k λk

ck

]∥∥∥∥ = 0.

Proof. By Corollary 3.1 the algorithm eventually computes, during a certain iteration k∗ > 0, a finite
value π∗ beyond which the value of the parameter π l will never be increased. This means that for all
sufficiently large k, the Armijo condition (3.12) is satisfied for π l = π∗, or else π l would be increased
(see the second-to-last line of Algorithm 3.1). From Lemmas 3.5 and 3.7, we then have that for all
k > k∗

φπ∗(xk)−φπ∗(xk +αkdk) > γ8Θk

for some γ8 > 0. Therefore, (3.17) implies

φπ∗(xk∗)−φπ∗(xk) =
k−1

∑
j=k∗

(φπ∗(x j)−φπ∗(x j+1))

> γ8

k−1

∑
j=k∗

Θ j

> γ8
2γ3

k−1

∑
j=k∗

(‖d j‖2 +‖c j‖),

and so
lim
k→∞

‖dk‖= 0 and lim
k→∞

‖ck‖= 0 (3.22)

follow from the fact that Assumption 3.1(a) implies φπ∗ is bounded below. Finally, the first block
equation of (3.4), Assumption 3.1(c), and Lemma 3.1 imply

‖gk+1 +AT
k+1λk+1‖= ‖gk +AT

k λk+1 +(gk+1−gk)+(Ak+1−Ak)T λk+1‖
= ‖(1−αk)(gk +AT

k λk)−αkWkdk +(gk+1−gk)+(Ak+1−Ak)T λk+1‖
6 (1−αk)‖gk +AT

k λk‖+O(‖dk‖)

and so
lim
k→∞

‖gk +AT
k λk‖= 0

follows from (3.22), the fact that αk 6 1, and Lemma 3.7. ¤
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4. Numerical Results

In this section we present numerical results for a particular implementation of Algorithm 3.1 incor-
porated into the KNITRO-Direct algorithm in the KNITRO 5.0 software package; see Waltz &
Plantenga (2006) for details. We tested the code using a set of 85 equality constrained problems from
the CUTEr (see Bongartz et al. (1995) and Gould et al. (2003)) and COPS (see Dolan et al. (2004))
collections. From these sets, we chose problems for which AMPL models were readily available. The
default KNITRO-Direct algorithm may revert to a trust region iteration to handle negative curva-
ture and to ensure global convergence. In our tests, we enabled internal options to prevent this from
occurring. Instead, the algorithm modifies Wk if necessary to ensure that the resulting matrix is posi-
tive definite on the null space of Ak – to ensure that our implementation performs as a pure line search
algorithm.
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FIG. 8. Performance profile for iterations

As the globalization strategy described in this paper incurs little computational cost and is designed
to promote long steps for fast convergence, we propose that the numbers of iterations and function eval-
uations required to find a solution are appropriate measures for comparison with other methods. We
compare the results of an algorithm using the default penalty function approach in KNITRO-Direct,
call it pi default, with the results using a flexible penalty function. The penalty parameter up-
date strategy in KNITRO-Direct corresponds to the case when (3.10) is replaced by π l

k+1 ← πu
k .

For pi default and the algorithm with a flexible penalty function, we initialize π and π l to 10−8,
respectively. We consider the four initial values 1, 10, 100, and 1000 for πu, which correspond to the al-
gorithms we refer to as pi flex 1, pi flex 10, pi flex 100, and pi flex 1000, respectively.
Table 1 contains a complete listing of the input parameters for our implementation of Algorithm 3.1.

The results for the five algorithms are summarized in Figures 8 and 9 in terms of logarithmic perfor-
mance profiles, as described in Dolan & Moré (2002). Here, the leftmost values indicate the proportion
of times each algorithm solves a given problem using the least value of the given measure; i.e., number
of iterations or of function evaluations. The values fail to add to one as ties are present. The right-
most function values illustrate the robustness of each approach; i.e., the percentage of times that a given
problem is solved.
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Parameter Value
π l

0 10−8

πu
−1 {1,10,100,1000}

ε 10−4

ε l 10−4

η 10−8

σ 10−1

Table 1. Input values for Algorithm 3.1
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FIG. 9. Performance profile for function evaluations

The results are encouraging. Not only does an algorithm with a flexible penalty function approach
often require slightly fewer iterations to find a solution, but a considerable amount of savings is often
experienced in terms of function evaluations. This can be understood as the line search procedure gener-
ally has to perform fewer backtracks for a given step, leading to longer steps and a higher percentage of
unit steplengths (i.e., full Newton steps). We also observe that the plots for pi flex 1, pi flex 10,
pi flex 100, and pi flex 1000 are nearly indistinguishable throughout much of Figures 8 and 9.
This suggests that the initial value for πu is inconsequential compared to the effect that separate updating
strategies for π l and πu has on the practical performance of the approach.

5. Final Remarks

In this paper we have proposed and analyzed a new globalization strategy for equality constrained op-
timization problems. Our flexible penalty function allows for relatively unrestricted movement during
early iterations, but also automatically tightens itself to forcefully guide convergence when necessary,
thus manipulating the search appropriately throughout a run of the algorithm. An example of a partic-
ular implementation of the mechanism was presented in the context of a line search SQP method, after
which the global behavior was analyzed and successful numerical results were outlined.

We close by describing how the ideas of this paper might be extended to generally constrained
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problems of the form
min
x∈Rn

f (x)

s.t. cE(x) = 0,

cI(x) 6 0,

(5.1)

where f : Rn → R, cE : Rn → RtE
, and cI : Rn → RtI

are smooth functions. One of the leading classes
of methods for solving problem (5.1) are interior-point approaches. Some algorithms of this type begin
by introducing a log-barrier term with parameter µ > 0 for the inequalities into the objective to form the
perturbed problem

min
x∈Rn

f (x)−µ ∑
i∈I

lnsi

s.t. cE(x) = 0,

cI(x)+ s = 0.

(5.2)

A solution for problem (5.1) is then found via the (approximate) solution of a sequence of problems of
the form (5.2) for µ → 0, where throughout the process the vector of slack variables s = (s1, . . . ,stI

)∈RtI

is forced to be positive. Thus, for each given µ > 0 we can define the flexible penalty function associated
with the barrier subproblem (5.2) as

ϕπ(x) , f (x)−µ ∑
i∈I

lnsi +π
∥∥∥∥
[

cE(x)
cI(x)+ s

]∥∥∥∥ ,

π ∈ [π l ,πu],

where 0 6 π l 6 πu, and a line search algorithm similar to Algorithm 3.1 can be applied. (The discussion
here refers to a generic algorithm; to obtain practical methods with global convergence guarantees,
various safeguards or modifications must be added. One such modification is the penalty function
regularization described in Chen & Goldfarb (2006).)

A similar approach can be used in a trust region algorithm. Here, a step dk from xk is typically
accepted if and only if the actual reduction in a penalty function φπ , defined by

φredπ(dk) , φπ(xk)−φπ(xk +dk),

is large with respect to the reduction obtained in a model such as mπ (see Section 3). This condition can
be written as

φredπ(dk)
mredπ(dk)

> η

for some 0 < η < 1, where it should be observed that we may now have ‖ck + Akdk‖ > 0. Rather than
restrict the step acceptance criteria to this inequality with a fixed π > 0 during each iteration k, we
claim that an effect similar to that expressed in this paper can be achieved if instead a step is considered
acceptable if

φredπ l
k
(dk)

mredπm
k
(dk)

> η or
φredπu

k
(dk)

mredπm
k
(dk)

> η ,

where [π l
k,π

u
k ] is a prescribed interval and πm

k ∈ [π l
k,π

u
k ] is chosen carefully so that mredπm

k
(dk) is suffi-

ciently positive. All of the quantities π l
k, πu

k , and πm
k can be defined and updated in a manner similar to

that described in this paper.
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The previous discussion outlines ways in which our flexible penalty function can be employed in
the context of constrained optimization. We note, however, that in order to obtain practical algorithms
with global convergence guarantees, various algorithmic components must be added to the methods
described above.
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