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Abstract

We consider the application of the conjugate gradient method to the solution of

large equality constrained quadratic programs arising in nonlinear optimization� Our

approach is based implicitly on a reduced linear system and generates iterates in the

null space of the constraints� Instead of computing a basis for this null space� we

choose to work directly with the matrix of constraint gradients� computing projections

into the null space by either a normal equations or an augmented system approach�

Unfortunately� in practice such projections can result in signi�cant rounding errors�

We propose iterative re�nement techniques� as well as an adaptive reformulation of

the quadratic problem� that can greatly reduce these errors without incurring high

computational overheads� Numerical results illustrating the e�cacy of the proposed

approaches are presented�
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�� Introduction

A variety of algorithms for linearly and nonlinearly constrained optimization �e�g�� ���
�	� �
� 	�� 	�
� use the conjugate gradient �CG� method ���
 to solve subproblems of the
form

minimize
x

q�x� � �
�
xTHx� cTx �����

subject to Ax � b� �����

In nonlinear optimization� the n�vector c usually represents the gradient rf of the objective
function or the gradient of the Lagrangian� the n�n symmetric matrix H stands for either
the Hessian of the Lagrangian or an approximation to it� and the solution x represents a
search direction� The equality constraints Ax � b are obtained by linearizing the constraints
of the optimization problem at the current iterate� We will assume here that A is an m�n
matrix� with m � n� and that A has full row rank so that the constraints Ax � b constitute
m linearly independent equations� We also assume for convenience that H is positive
de�nite in the null space of the constraints� as this guarantees that ����������� has a unique
solution� This positive de�niteness assumption is not needed in trust region methods� but
our discussion will also be valid in that context because trust region methods normally
terminate the CG iteration as soon as negative curvature is encountered �see �
�� 


� and�
by contrast� ��

��

The quadratic program ����������� can be solved by computing a basis Z for the null
space of A� using this basis to eliminate the constraints� and then applying the CG method
to the reduced problem� This approach has been successfully implemented in various algo�
rithms for large scale optimization �cf� ���� 	�� 
�
��

In this paper we study how to apply the preconditioned CG method to ����������� with�
out computing a null�space basis Z� There are two reasons for this� Several optimization
algorithms require the solution of two distinct forms of linear systems of equations at every
iteration� one to compute least squares Lagrange multipliers and the normal �or feasibil�
ity� step� and one to compute a null�space basis Z� which is subsequently used to �nd the
solution of ������������ The use of Z� and the scaling this implies for the trust�region in
trust region methods� leads us to the di�cult issue of preconditioning the usually dense
reduced Hessian matrix ZTHZ �see the comments concerning Algorithm � in section ���
By bypassing the computation of Z in the way that will be described later on� it is possible
to solve only one linear system of equations and signi�cantly reduce the cost of the opti�
mization iteration� The second reason for not wanting to compute Z is that it sometimes
gives rise to unnecessary ill�conditioning ���� ��� ��� ��� 
�� 
	
� Although the carefully
constructed null�space basis provided by LUSOL ���
� is largely successful in avoiding this
potential defect ���
� it requires two LU factorizations to compute Z�

We thus contend that it can be very useful for general�purpose optimization codes to
provide the option of not computing with a null�space basis� and the development of suitable
methods is our goal in this paper� The price to pay for such an alternative is that it can give
rise to excessive roundo� errors that can cause the constraints Ax � b not to be satis�ed

�



to the desired accuracy� and� ultimately� even to failure of the CG iteration� In this paper
we describe iterative re�nement techniques that can improve the accuracy of the solution�
when needed� We also propose a mechanism for rede�ning the vector c adaptively that does
not change the solution of the quadratic problem but that has more favorable numerical
properties�

Notation� Throughout the paper k � k stands for the �� matrix or vector norm� while the
G�norm of the vector x is de�ned to be kxkG �

p
xTGx� where G is a given symmetric�

positive�de�nite matrix� We will denote the �oating�point unit roundo� �or machine pre�
cision� by �m� We let ��A� denote the condition number of A� i�e� ��A� � ����m� where
�� � � � � � �m � � are the nonzero singular values of A�

�� The CG method and linear constraints

A common approach for solving linearly constrained problems is to eliminate the con�
straints and solve a reduced problem �cf� ���� 	�
�� More speci�cally� suppose that Z is an
n��n�m� matrix spanning the null space of A� Then AZ � �� the columns of AT together
with the columns of Z span Rn� and any solution x� of the linear equations Ax � b can be
written as

x� � ATxA
� � ZxZ

�	 �����

for some vectors xA
� � Rm and xZ

� � Rn�m� The constraints Ax � b yield

AATxA
� � b	 �����

which determines the vector xA
�� Substituting ����� into ������ and omitting constant terms

�xA
� is a constant now� we see that xZ

� solves the reduced problem

minimize
xZ

�
�
xZ

THZZxZ � cZ
TxZ	 ���	�

where
HZZ � ZTHZ	 cZ � ZT �HATxA

� � c��

As we have assumed that the reduced Hessian HZZ is positive de�nite� the solution of ���	�
is equivalent to that of the linear system

HZZxZ � �cZ� ���
�

We can now apply the conjugate gradient method to compute an approximate solution of
the problem ���	�� or equivalently the system ���
�� and substitute this into ����� to obtain
an approximate solution of the quadratic program ������������

This strategy of computing the normal component ATxA exactly and the tangential
component ZxZ inexactly is followed in many nonlinear optimization algorithms which
ensure that� once linear constraints are satis�ed� they remain so throughout the remainder
of the optimization calculation �cf� ���
��
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Let us now consider the practical application of the CG method to the reduced system
���
�� It is well known that preconditioning can improve the rate of convergence of the CG
iteration �cf� ��
�� and we therefore assume that a preconditioner WZZ is given� WZZ is a
symmetric� positive de�nite matrix of dimension n�m� which might be chosen to reduce
the span of� and to cluster� the eigenvalues of W��

ZZ
HZZ� Ideally� one would like to choose

WZZ so that W��
ZZ

HZZ � I� and thus

WZZ � ZTHZ

is the perfect preconditioner� Based on this formula� we consider in this paper precondi�
tioners of the form

WZZ � ZTGZ	 �����

where G is a symmetric matrix such that ZTGZ is positive de�nite� Some choices of G will
be discussed in the next section�

Regardless of howWZZ is de�ned� the preconditioned conjugate gradient method applied
to ���
� is as follows �see� e�g� ���� p� �	�
��

Algorithm I� Preconditioned CG for Reduced Systems�

Choose an initial point xZ� compute rZ � HZZxZ � cZ� gZ � �ZTGZ���rZ and
pZ � �gZ� Repeat the following steps� until a termination test is satis�ed�


 � rZ
T gZ�pZ

THZZpZ �����

xZ � xZ � 
pZ �����

rZ
� � rZ � 
HZZpZ �����

gZ
� � �ZTGZ���rZ

� �����

� � �rZ
��T gZ

��rZ
T gZ ������

pZ � �gZ� � �pZ ������

gZ � gZ
� and rZ � rZ

� ������

This iteration may be terminated� for example� when rZ
T �ZTGZ���rZ is su�ciently

small� Coleman and Verma ���
 and Nash and Sofer �	�
 have proposed strategies for
de�ning the preconditioner ZTGZ which make use of products involving the null�space
basis Z and its transpose�

Once an approximate solution is obtained using Algorithm I� it must be multiplied
by Z and substituted in ����� to give the approximate solution of the quadratic program
������������ Alternatively� we may rewrite Algorithm I so that the multiplication by Z and
the addition of the term ATxA

� is performed explicitly in the CG iteration� To do so� we
introduce� in the following algorithm� the n�vectors x	 r	 g	 p which satisfy x � ZxZ�ATxA

��
ZT r � rZ� g � ZgZ and p � ZpZ� We also de�ne the scaled projection matrix

P � Z�ZTGZ���ZT � ����	�

	



We note� for future reference� that P is independent of the choice of null space basis Z�

Algorithm II Preconditioned CG in Expanded Form�

Choose an initial point x satisfying Ax � b� compute r � Hx� c� g � Pr and
p � �g� Repeat the following steps� until a convergence test is satis�ed�


 � rT g�pTHp ����
�

x � x� 
p ������

r� � r � 
Hp ������

g� � Pr� ������

� � �r��T g��rT g ������

p � �g� � �p� ������

g � g� and r � r� ������

This will be the main algorithm studied in this paper� It is important to notice that
this algorithm� unlike its predecessor� is independent of the choice of Z� Several types
of stopping tests can be used� but since their choice depends on the requirements of the
optimization method� we shall not discuss them here� In the numerical tests reported in
this paper we will use the quantity rT g � rTPr � gTGg to terminate the CG iteration�
An initial point satisfying Ax � b can be computed� for example� by solving the normal
equations ������

Two simple choices of G are

G � diag�H�	 and G � I�

The �rst choice is appropriate when H contains some large elements on the diagonal� This
is the case� for example� in barrier methods for constrained optimization that handle bound
constraints l � x � u by adding terms of the form ��Pn

i���log�xi � li� � log�ui � xi�� to
the objective function� for some positive barrier parameter ��

The choice G � I arises in several trust region methods for constrained optimization
��� �
� ��� ��� 	�� 	�� 
�
� These methods include a trust region constraint of the form
kZxZk � � in the subproblem ���	�� In order to transform it into a spherical constraint�
we introduce the change of variables xZ � �ZTZ�����xZ whose e�ect in the CG iteration
is identical to that of de�ning ZTGZ � �ZTZ���� Since the role of this matrix is not to
produce a clustering of the eigenvalues� we will regard Algorithm II with the choice G � I
as an unpreconditioned CG iteration�

Note that the vector g�� which we call the preconditioned residual� has been de�ned
to be in the null space of A� As a result� in exact arithmetic� all the search directions p
generated by Algorithm II will also lie in null space of A� and thus the iterates x will all
satisfy Ax � b� However� computed representations of the scaled projection P can produce






rounding errors that may cause p to have a signi�cant component outside the null space of
A� leading to convergence di�culties� This will be the subject of the next sections�

�� CG Algorithm Without a Null�Space Basis

We are interested here in using Algorithm II in such a way that a representation of Z
is not necessary� This will be possible because� as is well known� there are alternative ways
of expressing the scaled projection operator ����	��

���� Computing Projections

We now discuss how to apply the projection operator Z�ZTGZ���ZT to a vector without
a representation of the null space basis Z�

Let us begin by considering the simple case when G � I� so that P is the orthogonal
projection operator onto the null space of A� We denote it by PZ� i�e��

PZ � Z�ZTZ���ZT 	 �	���

that is� g� is the result of projecting r� into the null space of A� Thus the preconditioned
residual ������ can be written as

g� � PZr
�� �	���

This projection can be performed in two alternative ways�
The �rst is to replace PZ by the equivalent formula

PA � I �AT �AAT ���A �	�	�

and thus to replace �	��� with
g� � PAr

�� �	�
�

We can express this as
g� � r� �AT v�	 �	���

where v� is the solution of
AAT v� � Ar�� �	���

Noting that �	��� are the normal equations� it follows that v� is the solution of the least
squares problem

minimize
v

kr� �AT v�k	 �	���

and that the desired projection g� is the corresponding residual� The approach �	�����	���
for computing the projection g� � PZr

� will be called the normal equations approach� and
will be implemented in this paper using a Cholesky factorization of AAT to solve �	����
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The second possibility is to express the projection �	��� as the solution of the augmented
system �

I AT

A �

��
g�

v�

�
�

�
r�

�

�
� �	���

This system will be solved by means of a symmetric inde�nite factorization that uses �� �
and �� � pivots ���
� We refer to this as the augmented system approach�

Let us suppose now that preconditioning has the more general form

g� � PZ�Gr
�	 where PZ�G � Z�ZTGZ���ZT � �	���

This may be expressed as

g� � PA�Gr
�	 where PA�G � G��

�
I �AT �AG��AT ���AG��

�
�	����

if G is non�singular� and can be found as the solution of�
G AT

A �

��
g�

v�

�
�

�
r�

�

�
�	����

whenever zTGz 	� � for all nonzero z for which Az � � �see� e�g�� ���� Section ��
��
��
While �	���� is far from appealing when G�� does not have a simple form� �	���� is a useful
generalization of �	���� Clearly the system �	��� may be obtained from �	���� by setting
G � I� and the perfect preconditioner results if G � H� but other choices for G are also
possible� all that is required is that zTGz � � for all nonzero z for which Az � �� The idea
of using the projection �	�	� in the CG method dates back to at least �
�
� the alternative
�	����� and its special case �	���� are proposed in ��
� although ��
 unnecessarily requires that
G be positive de�nite� A more recent study on preconditioning the projected CG method
is ���
� while the eigenstructure of the preconditioned system is examined by �	
� 	�
�

Interestingly� preconditioning in Coleman and Verma�s null�space approach ���
 requires
the solution of systems like �	����� but allowing A to be replaced by a sparser matrix�the
price to pay for this relaxation is that products involving a suitable null space matrix are
required� Such an approach has considerable merit� especially in the case where using the
exact A leads to signi�cant �ll in during the factorization of the coe�cient matrix of �	�����
It remains to be seen how such an approach compares with those we propose here when
used in algorithms for large�scale constrained optimization�

Note that �	�
�� �	��� and �	���� do not make use of a null�space matrix Z and only
require factorization of matrices involving A� Signi�cantly� all three forms allow us to
compute an initial point satisfying Ax � b� the �rst because it relies on a factorization of
AAT � from which we can compute x � AT �AAT ���b� while factorizations of the system
matrices in �	��� and �	���� allow us to �nd a suitable x by solving

�
I AT

A �

��
x
y

�
�

�
�
b

�
or

�
G AT

A �

��
x
y

�
�

�
�
b

�
�

�



Unfortunately all three of our proposed alternatives� �	�
�� �	��� and �	����� for comput�
ing g� can give rise to signi�cant round�o� errors that prevent the iterates from remaining
in the null�space of A� particularly as the CG iterates approach the solution� The di�cul�
ties are caused by the fact that� as the iterations proceed� the projected vector g� � Pr�

becomes increasingly small while r� does not� Indeed� the optimality conditions of the
quadratic program ����������� state that the solution x� satis�es

Hx� � c � AT
	 �	����

for some Lagrange multiplier vector 
� The vector Hx � c� which is denoted by r in
Algorithm II� will generally stay bounded away from zero� but as indicated by �	����� it
will become increasingly closer to the range of AT � In other words r will tend to become
orthogonal to Z� and hence� from �	���� the preconditioned residual g will converge to zero
so long as the smallest eigenvalue of ZTGZ is bounded away from zero�

That this discrepancy in the magnitudes of g� � Pr� and r� will cause numerical di��
culties is apparent from �	���� which shows that signi�cant cancellation of digits will usually
take place� The generation of harmful roundo� errors is also apparent from �	�����	����
because g� will be small while the remaining components v� remain large� Since the mag�
nitude of the errors generated in the solution of �	�����	���� is governed by the size of the
large component v�� the vector g� is likely to contain large relative errors� These arguments
will be made more precise in the next section�

Example �� Consider the case

A �

�
���� � � �
� ������ ��� ���

�
	 r �

�
BBB�

�������������
������
������
������

�
CCCA �

The condition number of A is ��A� ����
�E��	� and r has been chosen to lie almost in
the range of AT � The required projection� to �� signi�cant �gures� is

g �

�
BBB�

����������	
�����E���
����������	�
����E���

������
�
���	�����E���
������
�
���	�����E���

�
CCCA � �	��	�

Using the normal equations approach we obtain

g � PAr �

�
BBB�
�	�����E���
����
�E���
�����
E���
�����
E���

�
CCCA 	 �	��
�

�



which contains signi�cant errors� To measure the angle between g and the rows of A� we
de�ne

cos � � max
i

�
AT
i g

jjAijj jjgjj

	
�	����

where Ai is the i�th row of A� For the value of g given by �	��
�� we have cos � � ������
which is unacceptably large�we note that cos � for �	��	� is ���E����

Using the augmented system we obtain

g � PA�Ir �

�
BBB�
������E���
�����E���

������E��	
������E��	

�
CCCA 	

which is clearly more accurate than �	��
�� Nevertheless� cos � � ����	�� indicating that
the projection is not acceptable either�

Now consider a more realistic problem� Since the goal of this paper is not to evaluate the
e�ciency of particular choices of preconditioners� in all the examples given in this paper we
will choose G � I� which as we have mentioned� arises in trust region optimization methods
without preconditioning�

Example �� We applied Algorithm II to solve problem CVXEQP	 from the CUTE col�
lection ��
� with n � ���� and m � ���� We used both the normal equations �	�����	���
and augmented system �	��� approaches to compute the projection� and de�ne G � I� The
results are given in Figure �� which plots the residual

p
rT g as a function of the itera�

tion number� In both cases the CG iteration was terminated when rT g became negative�
which indicates that severe errors have occurred since rT g � rZ

TZTZrZ must be positive�
continuing the iteration past this point resulted in oscillations in the norm of the gradient
without any signi�cant improvement� At iteration �� of both runs� r is of order ��� whereas
its projection g is of order �����

Figure � also plots �	����� the cosine of the angle between the preconditioned residual g
and the rows of A� Note that this cosine� which should be zero in exact arithmetic� increases
indicating that the CG iterates leave the constraint manifold Ax � b�

We believe it is reasonable to attribute the failure of the CG algorithm to the deviation
of the iterates from the constraint manifold Ax � b� since the derivation of Algorithm II
from its predecessor is predicated on the assumption that the search is restricted to this
manifold� As we have mentioned� the search direction will lie on the constraint manifold if
and only if the cosine �	���� is zero� and thus it is reasonable to ask that the cosine for a
computed approximation to g should be small� The general analysis of Arioli� Demmel and
Du� ��
� indicates that� with care� it is possible to ensure that the backward error�

AT
i g

���jAjjg�j�i
�This de�nition needs to be modi�ed if jAjjg�j is �close to� zero� See ��� for details�
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Figure �� Conjugate gradient method with two options for the projection

of the computed g� is of the order of the machine precision� �m �here j � j denotes the
componentwise absolute value�� Since the absolute values of the backward error and the
cosine �	���� are quantitatively the same �the former provides an upper bound on the
latter�� and as we �nd it easier to interpret �	����� we shall henceforth aim for approximate
solutions for which the cosine is a reasonable multiple of �m� We have found that asking
that �	���� be smaller than ����m 
 ����� is su�cient�

Severe errors such as those illustrated in Example � are not uncommon in optimization
calculations based on Algorithm II� This is of grave concern as it may cause the outer
optimization algorithms to fail to achieve feasibility� or to require many iterations to do so�
A particular example is given by problem ORTHREGA from the CUTE collection� which
as explained in �	�� p�		�	

� cannot be solved to a prescribed accuracy� see also section ��

In x� and � we propose several remedies� One of them is based on an adaptive rede�ni�
tion of r that attempts to minimize the di�erences in magnitudes between g� � Pr� and
r�� We also describe several forms of iterative re�nement for the projection operation� All
these techniques are motivated by the roundo� error analysis given next�

�� Analysis of the Errors

We now present error bounds that support the arguments made in the previous section�
particularly the claim that the most problematic situation occurs in the latter stages of
the CG iteration when g� is converging to zero� but r� is not� For simplicity� we shall
assume henceforth that A has been scaled so that kAk � kAT k � �� and shall only consider
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the simplest possible choice� G � I� Any computed� as opposed to exact� quantity will be
denoted by a subscript c�

Let us �rst consider the normal equations approach� Here g� � PAr
� is given by �	���

where �	��� is solved by means of the Cholesky factorization of AAT � In �nite precision�
instead of the exact solution v� of the normal equations we obtain v�c � v� ��v�� where
the error �v� satis�es �
� p�
�
�

k�v�k � ��m�
��A�kv�k	 �
���

with � � ���n���� Recall that �m denotes unit roundo� and ��A� the condition number of
A� The presence of the square of the condition number of A on the right hand side is a
consequence of the fact that the normal equations were solved�

We can now study the total error in the projection vector g�� To simplify the analysis�
we will ignore the errors that arise in the computation of the matrix�vector product AT v�

and in the subtraction r��AT v� given in �	���� because these errors will be dominated by
the error in v� whose magnitude is estimated by �
���� Under these assumptions� we have
from �	��� that the computed projection g�c � �PAr

��c and the exact projection g� � PAr
�

satisfy
g� � g�c � AT�v�	 �
���

and thus the error in the projection lies entirely in the range of AT � We then have from
�
��� that the relative error in the projection satis�es�

kg� � g�c k
kg�k � ��m�

��A�
kv�k
kg�k � �
�	�

This error can be signi�cant when ��A� is large or when

kv�k
kg�k �

kv�k
kPAr�k �
�
�

is large�
Let us consider the ratio �
�
� in the case when kr�k is much larger than its projection

kg�k� We have from �	��� that kr�k 
 kAT v�k� and by the assumption that kAk � ��

kr�k 
 kAT v�k � kv�k�
Suppose that the inequality above is achieved� Then �
�
� gives

kv�k
kg�k 


kr�k
kPAr�k 	

�The bound ����� assumes that there are no errors in the formation of AAT and Ar�� or in the backsolves
using the Cholesky factors� this is a reasonable assumption in our context �
�� Section ����� provided that
�m�

��A� is somewhat smaller than �� We should also note that ����� can be sharpened by replacing the
term ���A� with ���A���A�� where ���A� � min��AD� over all possible diagonal scalings D�

�If kg�k is small� it is preferable to replace the denominators in ����� by max�kg�k� �� where � is a suitable
multiple �e�g� ��� of �m�

��



which is simpler to interpret than �
�
�� We can thus conclude that the error in the projec�
tion �
�	� will be large when either ��A� or the ratio kr�k�kPAr

�k is large�
When the condition number ��A� is moderate� the contribution of the ratio �
�
� to the

relative error �
�	� is normally not large enough to cause failure of the outer optimization
calculation� This is because a typical stopping test in nonlinear optimization algorithms
would cause termination when projected residual g� is �say� ���� times smaller in norm
than the initial residual� In this case the ratio �
�
� would be roughly ���� and using
double precision arithmetic one would have su�cient accuracy to make progress toward the
solution� But as the condition number ��A� grows� the loss of signi�cant digits becomes
severe� especially since ��A� appears squared in �
�	�� In Example ��

� � O���	� �m � ����� ��A� � O����� kAk � O����

and we have mentioned that the ratio �
�
� is of order O����� at iteration ��� The bound
�
�	� indicates that there could be no correct digits in g�� at this stage of the CG iteration�
Even though this bound can often be overly pessimistic� it appears to be reasonably tight
in this example� for at this point the CG iteration could make no further progress�

Let us now consider the augmented system approach �	����� Again we will focus on the
choice G � I� for which the preconditioned residual g� � Pr� is computed by solving�

I AT

A �

��
g�

v�

�
�

�
r�

�

�
�
���

using a direct method� There are a number of such methods� the strategies of Bunch and
Kaufman ��
 and Du� and Reid ���
 being the best known examples for dense and sparse
matrices� respectively� Both form the LDLT factorization of the augmented matrix �i�e�
the matrix appearing on the left hand side of �
����� where L is unit lower triangular and
D is block diagonal with �� � or �� � blocks�

This approach is usually �but not always� more stable than the normal equations ap�
proach� To improve the stability of the method� Bj�orck �	
 suggests replacing the upper�left
block of �
��� by a multiple of the identity I� but since choosing a good value of this
parameter can be di�cult� we consider here only �
����

In the case which concerns us most� when kg�k converges to zero while kv�k is bounded�
an error analysis �

 shows that

kg� � g�c k
kg�k � ��m��� � ��A��

kv�k
kg�k �

It is interesting to compare this bound with �
�	�� We see that the ratio �
�
� again plays
a crucial role in the analysis� and that the augmented system approach is likely to give a
more accurate solution g� than the method of normal equations in this case� This cannot
be stated categorically� however� since the size of the factor � is di�cult to predict�

The residual update strategy described in x� aims at minimizing the contribution of
the ratio �
�
�� and as we will see� has a highly bene�cial e�ect in Algorithm II� Before

��



presenting it� we discuss various iterative re�nement techniques designed to improve the
accuracy of the projection operation�

�� Iterative Re�nement

Iterative re�nement is known as an e�ective procedure for improving the accuracy of a
solution obtained by a method that is not backwards stable� We will now consider how to
use it in the context of our normal equations and augmented system approaches�

���� Normal Equations Approach

Let us suppose that we choose G � I and that we compute the projection PAr
� via

the normal equations approach �	�����	���� An appealing idea for trying to improve the
accuracy of this computation is to apply the projection repeatedly� Therefore rather than
computing g� � PAr

� in ������� we let g� � PA � � �PAr
� where the projection is applied

as many times as necessary to keep the errors small� The motivation for this multiple

projections technique stems from the fact that the computed projection g�c � �PAr
��c will

have only a small component� consisting entirely of rounding errors� outside of the null space
of A� as described by �
���� Therefore applying the projection PA to the �rst projection
g�c will give an improved estimate because the ratio �
�
� will now be much smaller� By
repeating this process we may hope to obtain further improvement of accuracy�

The multiple projection technique may simply be described as setting g�
 � r� and
applying the following algorithm�

Multiple Projections�Iterative Re�nement �Normal Equations��

Set i � � and repeat the following steps� until a convergence
test is satis�ed�

solve L�LT v�i � � Ag�i �����

set g�i�� � g�i �AT v�i 	 �����

i� i� �	 ���	�

where L is the Cholesky factor of AAT � We note that this method is only appropriate when
G � I� although a simple variant is possible when G is diagonal� If we apply the method
to the problem given in Example �� we �nd that cos � � ���E��
 after a single re�nement�
and ���E��� after a second�

Example ��
We solved the problem given in Example � using multiple projections� and setting G � I�

At every CG iteration we measure the cosine �	���� of the angle between g and the columns
of A� If this cosine is greater than ������ then multiple projections are applied until the

��



cosine is less than this value� The results are given in Figure �� and show that the residualp
rT g was reduced much more than in the plain CG iteration �Figure ��� Indeed the ratio

between the �nal and initial values of
p
rT g is ������ which is very satisfactory�
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Figure �� CG method using multiple projections in the normal equations approach�

In the optimization setting we would apply multiple corrections only when needed� e�g�
when the angle between the projected residual and the columns of A is not very small� see
Algorithm IV in Section ����

It is straightforward to analyze the multiple projections strategy ����������� provided
that� as before� we make the simplifying assumption that the only rounding errors we make
are in forming L and solving ������ We obtain the following result which can be proved by
induction� For i � �	 �	 � � ��

�g�i���c � g� �AT�v�i 	 ���
�

where as in �
���

k�v�i k � ��m�
��A�kv�i k	 and v�i � ��v�i��� �����

A simple consequence of ���
������� and the assumption that A has norm one is that

k�g�i���c � g�k � k�v�i k �
�
��m�

��A�
�i kv�k	 �����

and thus that the error converges R�linearly to zero with rate

��m�
��A�	 �����

�	



as long as ����� is less than �� Of course� this rate can not be sustained inde�nitely as
the other errors we have ignored in ����������� become important� Nonetheless� one would
expect ����� to re�ect the true behaviour until k�g�i���c � g�k approaches a small multiple
of the unit roundo� �m� It should be stressed� however� that this approach is still limited
by the fact that the condition number of A appears squared in ������ improvement can be
guaranteed only if ��m�

��A� � ��
We should also note that multiple projections are almost identical in their form and

numerical properties to �xed precision iterative re�nement to the least squares problem �
�
p����
� Since a perturbation analysis of the least squares problem �
� Theorem ��
��
� gives

kg� � g�c k � O


�m�kvk� ��A�kg�k�� 	 �����

and as the dependence here on the condition number is linear�not quadratic as we have
seen for �
�	��we may deduce that the normal equations approach is not backward stable
�
� Section ���
�� Indeed� since ��A� is multiplied by kg�k� when g� is small the e�ect
of the condition number of A is much smaller in ����� than in �
�	�� It is precisely under
such circumstances that �xed precision iterative re�nement is most appropriate �
� Section
����	
��

We should mention two other iterative re�nement techniques that one might consider�
but that are either not e�ective or not practical in our context�

The �rst is to use �xed�precision iterative re�nement �
� Section ���
 to attempt to
improve the solution v� of the normal equations �	���� This� however� will generally be un�
successful because �xed�precision iterative re�nement only improves a measure of backward
stability ���� p����
� and the Cholesky factorization is already a backward stable method�
We have performed numerical tests and found no improvement from this strategy�

However� as is well known� iterative re�nement will often succeed if extended�precision
is used to evaluate the residuals� We could therefore consider using extended precision
iterative re�nement to improve the solution v� of the normal equations �	���� So long as
�m��A�

� � �� and the residuals of �	��� are smaller than one in norm� we can expect that
the error in the solution of �	��� will decrease by a factor �m��A�

� until it reaches O��m��
But since optimization algorithms normally use double precision arithmetic for all their
computations� extending the precision may not be simple or e�cient� and this strategy is
not suitable for general purpose software�

For the same reason we will not consider the use of extended precision in ����������� or
in the iterative re�nement of the least squares problem�

���� Augmented System Approach

We can apply �xed precision iterative re�nement to the solution obtained from the
augmented system �	����� This gives the following iteration�

Iterative Re�nement �Augmented system�

�




Repeat the following steps until a convergence
test is satis�ed�

Compute �g � r� �Gg� �AT v� and �v � �Ag�	

solve

�
G AT

A �

��
�g�

�v�

�
�

�
�g
�v

�
	

and update g� � g� ��g� and v� � v� ��v��

Note that this method is applicable for general preconditioners G� The general analysis
of Higham �	�� Theorem 	��
 indicates that� if the condition number of A is not too large�
we can expect high relative accuracy in v� and good absolute accuracy in g� in most cases�
A single re�nement applied to the problem given in Example � yields cos � � ���E����
Example ��

We solved the problem given in Example � using this iterative re�nement technique� As
in the case of multiple projections discussed in Example 	� we measure the angle between g
and the columns of A at every CG iteration� Iterative re�nement is applied as long as the
cosine of this angle is greater than ������ We demand� once more� that the cosine �	���� be
very small to avoid even small violations of infeasibility which can be harmful to an outer
optimization algorithm� The results are given in Figure 	�
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Figure 	� CG method using iterative re�nement in the augmented system approach�

We observe that the residual
p
rT g is decreased almost as much as with the multiple

projections approach� and attains an acceptably small value� We should point out� however�

��



that the residual increases after it reaches the value ����
� and if the CG iteration is
continued for a few hundred more iterations� the residual exhibits large oscillations� We
will return to this in x����

In our experience� � iterative re�nement step is normally enough to provide good ac�
curacy� but we have encountered cases in which � or 	 steps are bene�cial� As in the case
of the multiple projections using the normal equations� we would apply this re�nement
technique selectively in optimization algorithms�

	� Residual Update Strategy

We have seen that signi�cant roundo� errors occur in the computation of the projected
residual g� if this vector is much smaller than the residual r�� As discussed in the paragraph
preceding Example �� the reason for this error is cancellation� We now describe a procedure
for rede�ning r� so that its norm is closer to that of g�� This will dramatically reduce the
roundo� errors in the projection operation�

We begin by noting that Algorithm II is theoretically una�ected if� immediately after
computing r� in ������� we rede�ne it as

r� � r� �AT y	 �����

for some y � Rm� This equivalence is due to the fact r� appears only in ������ and �������
and that we have both PAT y � �� and �g��TAT y � �� It follows that we can rede�ne r�

by means of ����� in either the normal equations approach �	�
���	��� or in the augmented
system approach �	�����	���� and the results would� in theory� be una�ected�

Having this freedom to rede�ne r�� we seek the value of y that minimizes

kr� �AT yk	 �����

where k � k is the dual �semi��norm to the norm sTGs de�ned on the manifold As � �� and
where we require that G is positive de�nite over this manifold �see ��	
�� This dual norm is
convenient� since the vector y that solves ����� is precisely y � v� from �	����� This gives
rise to the following modi�cation of the CG iteration�

Algorithm III Preconditioned CG with Residual Update�

Choose an initial point x satisfying Ax � b� compute r � Hx� c� and �nd the
vector y that minimizes kr �AT ykG�� � Set r � r�AT y� compute g � Pr and
set p � �g� Repeat the following steps� until a convergence test is satis�ed�


 � rT g�pTHp ���	�

x � x� 
p ���
�

r� � r � 
Hp �����

��



r� � r� �AT y	 where y solves ����� �����

g� � Pr� �����

� � �r��T g��rT g �����

p � �g� � �p �����

g � g� and r � r�� ������

This procedure can be improved by adding iterative re�nement of the projection oper�
ation in ������ In this case� at most � or � iterative re�nement steps should be used�

Notice that there is a simple interpretation of Steps ����� and ������ We �rst obtain y
by solving ������ and as we have indicated the required value is y � v� from �	����� But
�	���� may be rewritten as

�
G AT

A �

��
g�

�

�
�

�
r� �AT v�

�

�
	 ������

and thus when we obtain g� in Step ������ it is as if we had instead found it by solving

�
G AT

A �

��
g�

u�

�
�

�
r� �AT v�

�

�
� ������

Comparing ������ and ������� it follows that u� � � in exact arithmetic� although all
we can expect in �oating point arithmetic is that the computed u� will be tiny rounded
values� provided of course that ������ is solved in a stable fashion� The advantage of using
������ compared to �	���� is that the solution in the latter may be dominated by the large
components v�� while in the former g� are the �relatively� large components� and thus we
can expect to �nd them with high relative accuracy if ������ is solved in a stable fashion�
Viewed in this way� we see that Steps ����� and ����� are actually a limited form of iterative
re�nement in which the computed v�� but not the computed g� which is discarded� is used
to re�ne the solution� This  iterative semi�re�nement! has been used in other contexts
��� �	
� For the problem given in Example �� the resulting g� gives cos � � ���E����

There is another interesting interpretation of the reset r � r � AT y performed at the
start of Algorithm III� In the parlance of optimization� r � Hx � c is the gradient of
the objective function ����� and r�AT y is the gradient of the Lagrangian for the problem
������������ The vector y computed from ����� is called the least squares Lagrange multiplier
estimate� �It is common� but not always the case� for optimization algorithms to set G � I
in ����� to compute these multipliers�� Thus in Algorithm III we propose that the initial
residual be set to the current value of the gradient of the Lagrangian� as opposed to the
gradient of the objective function�

One could ask whether it is su�cient to do this resetting of r at the beginning of
Algorithm III� and omit step ����� in subsequent iterations� Our computational experience
shows that� even though this initial resetting of r causes the �rst few CG iterations to take

��



place without signi�cant errors� rounding errors arise in subsequent iterations� The strategy
proposed in Algorithm III is safe in that it ensures that r is small at every iteration�

As it stands� Algorithm III would appear to require two products with P � or� at the
very least� one with P to perform ����� and some other means� such as �	���� to determine
v�� As we shall now see� this need not be the case�

	��� The Case G � I

There is a particularly e�cient implementation of the residual update strategy when
G � I� Note that ����� is precisely the objective of the least squares problem �	��� that
occurs when computing Pr� via the normal equations approach� and therefore the desired
value of y is nothing other than the vector v� in �	��� or �	���� Furthermore� the �rst block
of equations in �	��� shows that r��AT v� � g�� Therefore� when G � I the computation
����� can be replaced by r� � Pr� and ����� is g� � Pr�� In other words we have
applied the projection operation twice� and this is a special case of the multiple projections
approach described in the previous section�

Based on these observations we propose the following variation of Algorithm III that
requires only one projection per iteration� We have noted that ����� can be written as
r� � Pr�� or r� � Pr � PH
p� and therefore ����� is

g� � P �Pr � PH
p�� ����	�

As the CG iteration progresses we can expect 
p to become small� but as noted earlier� r
will not� Therefore we will apply the projection twice to r but only once to H
p� Thus
����	� is replaced by

g� � P �Pr �H
p�� ����
�

which is mathematically equivalent to ����	� since PP � P � This expression is convenient
because the term Pr was computed at the previous CG iteration� and therefore we can
obtain ����
� by simply setting r � g� in ������ instead of r � r�� The resulting iteration
is as follows

Residual Update Strategy for G � I

Apply Algorithm III with the following two changes�

Omit �����

Replace ������ by g � g� and r � g��

This strategy avoids the extra storage and computation required by Algorithm III� In
practice� it can also achieve more accuracy than iterative re�nement as shown by Example
� and the numerical results in section ��

We note that the numerator in the de�nition ���	� of 
 now becomes gT g which equals
rTPg � rT g� Thus the formula of 
 is theoretically the same as in Algorithm� III� but

��



the symmetric form 
 � gT g�pTHp has the advantage that its numerator can never be
negative� as is the case with ���	� when rounding errors dominate the projection operation�

Example ��
We solved the problem given in Example � using this residual update strategy with

G � I� The results are given in Figure 
 and show that the normal equations and augmented
system approaches are equally e�ective in this case� We do not plot the cosine �	���� of
the angle between the preconditioned residual and the columns of A because it was very
small in both approaches� and did not tend to grow as the iteration progressed� For the
normal equations approach this cosine was of order ����	 throughout the CG iteration� for
the augmented system approach it was of order ������ Note that we have obtained higher
accuracy than with the iterative re�nement strategies described in the previous section�
compare with Figures � and 	�
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Figure 
� Conjugate gradient method with the residual update strategy�

To obtain a highly reliable algorithm for the case when G � I we can combine the
residual update strategy just described with iterative re�nement of the projection operation�
This gives rise to the following iteration which will be used in the numerical tests reported
in x��

Algorithm IV Residual Update and Iterative Re�nement for G � I�

Choose an initial point x satisfying Ax � b� compute r � Hx � c� r � Pr�
g � Pr� where the projection is computed by the normal equations �	�
� or

��



augmented system �	��� approaches� and set p � �g� Choose a tolerance �max�
Repeat the following steps� until a convergence test is satis�ed�


 � rT g�pTHp ������

x � x� 
p ������

r� � r � 
Hp ������

g� � Pr� ������

Apply iterative re�nement to Pr�� if necessary� ������

until �	���� is less than �max ������

� � �r��T g��rT g ������

p � �g� � �p ������

g � g� and r � g�� ����	�

We conclude this discussion by elaborating on the point made before Example � con�
cerning the computation of the steplength parameter 
� We have noted that the formula

 � gT g�pTHp is preferable to ������ since the numerator cannot give rise to cancellation�
Similarly the stopping test should be based on gT g rather than on gT r� The residual update
implemented in Algorithm IV does this change automatically� but we believe that these ex�
pressions are to be recommended in other implementations of the CG iteration� provided
the preconditioner is based on G � I�

To test this� we repeated the computation reported in Example � using the augmented
system approach� see Figure �� The only change is that Algorithm II now used the new
formulae for 
 and for the stopping test� The CG iteration was now able to continue
past iteration �� and was able to reach the value

p
gT g � ����� We also repeated the

calculation made in Example 
� Now the residual reached the level
p
gT g � ����� and the

large oscillations in the residual mentioned in Example 	 no longer took place� Thus in
both cases these alternative expressions for 
 and for the stopping test were bene�cial�

	��� General G

We can also improve upon the e�ciency of Algorithm III for general G� using slightly
outdated information� The idea is simply to use the v� obtained when computing g� in
����� as a suitable y rather than waiting until after the following step ����� to obtain a
slightly more up�to�date version� The resulting iteration is as follows�

Residual Update Strategy for general G

Apply Algorithm III with the following two changes�

Omit �����

Replace ������ by g � g� and r � r� � AT v�� where v� is
obtained as a bi�product when using �	���� to compute ������

��



Thus a single projection� in step ������ is needed for each iteration� Notice� however� that
for general G� the extra matrix�vector product AT v� will be required� since we no longer
have the relationship g� � r� � AT v� that we exploited when G � I� Although we have
not experimented on this idea for this paper� it has proved to be bene�cial in other� similar
circumstances ��	
� and provides the backbone for the developing HSL Subroutine Library
non�convex quadratic programming packages VE�� ��	
 �interior�point� and VE�� ���
 �active
set�� See also �		
 for a thorough discussion of existing and new preconditioners along these
lines� and the results of some comparative testing�


� Numerical Results

We now test the e�cacy of the techniques proposed in this paper on a collection of
quadratic programs of the form ������������ The problems were generated during the last
iteration of the interior point method for nonlinear programming described in ��
� when this
method was applied to a set of test problems from the CUTE ��
 collection� We apply the
CG method without preconditioning� i�e�� with G � I� to solve these quadratic programs�

We use the augmented system and normal equations approaches to compute projections�
and for each we compare the standard CG iteration �stand�� given by Algorithm II� with
the iterative re�nement �ir� techniques described in x� and the residual update strategy
combined with iterative re�nement �update� as given in Algorithm IV� The results are
given in Table �� The �rst column gives the problem name� and the second� the dimension
of the quadratic program� To test the reliability of the techniques proposed in this paper we
used a very demanding stopping test� the CG iteration was terminated when

p
rT g � ������

In these experiments we included several other stopping tests in the CG iteration� that
are typically used by trust region methods for optimization� We terminate if the number
of iterations exceeds ��n �m� where n�m denotes the dimension of the reduced system
���
�� a superscript � in Table � indicates that this limit was reached� The CG iteration was
also stopped if the length of the solution vector is greater than a  trust region radius! that
is set by the optimization method �see ��
�� We use a superscript � to indicate that this
safeguard was activated� and note that in these problems only excessive rounding errors
can trigger it� Finally we terminate if pTHp � �� indicated by � or if signi�cant rounding
error resulted in rT g � �� indicated by 	� The presence of any superscript indicates that
the residual test

p
rT g � ����� was not met� Note that the standard CG iteration was not

able to meet the residual stopping test for any of the problems in Table �� but that iterative
re�nement and update residual were successful in most cases�

Table � reports the CPU time for the problems in Table �� Note that the times for the
standard CG approach �stand� should be interpreted with caution� since in some of these
problems it terminated prematurely� We include the times for this standard CG iteration
only to show that the iterative re�nement and residual update strategies do not greatly
increase the cost of the CG iteration�

Next we report on 	 problems for which the stopping test
p
rT g � ����� could not be

met by any of the variants� For these three problems� Table 	 provides the least residual
norm attained for each strategy�
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Augmented System Normal Equations
Problem dim stand ir update stand ir update

CORKSCRW �
� ��� � �� 
	 � ��
COSHFUN �� ��
� ��
� �� ��
� ��
� ��
DIXCHLNV �� �� �� �� �	 �� ��
DTOC	 ��� ��	 � � ����� � �
DTOC� ���� �	 �� �� �	 �� ��
HAGER
 ���� ��		 	�� 	
� ����	 	�� 	
�
HIMMELBK �� ��� 	 	 �	 	 	
NGONE �� �	 �� �� �	 �� ��
OPTCNTRL � ��	 �� 
 ��� � �
OPTCTRL� 	� ��� ��� �� ��� ��� ��
OPTMASS 
�� �	 � � �� � �
ORTHREGA ��� �		 ��� ��� �
� ��� ���

ORTHREGF ��� �	 �� �� �	 �� ��
READING� ��� 		 � � 		 � �

Table �� Number of CG iterations for the di�erent approaches� A � indicates that the
iteration limit was reached� � indicates termination from trust region bound� � indicates
negative curvature was detected and 	 indicates that rT g � ��
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Augmented System Normal Equations
Problem dim stand ir update stand ir update

CORKSCRW �
� ����� ���� ���� ����	 ���
 ����
COSHFUN �� ��	�� ����� ���� ����� ���
� ���	
DIXCHLNV �� ���� ��
� ��	� ���	 ���� ��	�
DTOC	 ��� ��
�	 ��� ���� �
��
�� ���� ��
�
DTOC� ���� ��	�	 ���� ��� ����	 ���� ����
HAGER
 ���� �
��		 �
�
	 	
�	� �����	 
��
� �
���
HIMMELBK �� ���	� ���� ���
 ���		 ���� ���

NGONE �� ����	 ����� ����� ����	 �����
 ���	�
OPTCNTRL � ����	 ���� ���� ����� ���� ����
OPTCTRL� 	� ��	�� ����� ���� ����� ��
�� ����
OPTMASS 
�� ����	 ���� ��
	 ��	
� ��	� ����
ORTHREGA ��� ����	 ����� ���
� ����� ����� �����

ORTHREGF ��� ��
�	 ���
 ���� ���
	 ���� ����
READING� ��� ���
	 ���� ��
� ����	 ��	� ����

Table �� CPU time in seconds� � indicates that the iteration limit was reached� � indicates
termination from trust region bound� � indicates negative curvature was detected and 	

indicated that rT g � ��

Augmented System Normal Equations
Problem dim stand ir update stand ir update

OBSTCLAE ��� ��	D��� ���D��� ���D��� ��	D��� ���D��� 
��D���
SVANBERG ��� ���D��� ���D��� ���D��� ���D��� ���D��� ���D���
TORSION� 
�� 	��D��� 	��D��� ���D��� ���D��� 
��D��� 	��D���

Table 	� The least residual norm�
p
rT g attained by each option�

�	



As a �nal� but indirect test of the techniques proposed in this paper� we report the
results obtained with the interior point nonlinear optimization code described in ��
 on ��
nonlinear programming problems from the CUTE collection� This code applies the CG
method to solve a quadratic program at each iteration� We used the augmented system
and normal equations approaches to compute projections� and for each of these strategies
we tried the standard CG iteration �stand� and the residual update strategy �update� with
iterative re�nement described in Algorithm IV� The results are given in Table 
� where
 fevals! denotes the total number of evaluations of the objective function of the nonlinear
problem� and  projections! represents the total number of times that a projection operation
was performed during the optimization� A """ indicates that the optimization algorithm
was unable to locate the solution�

Note that the total number of function evaluations is roughly the same for all strategies�
but there are a few cases where the di�erences in the CG iteration cause the algorithm to
follow a di�erent path to the solution� This is to be expected when solving nonlinear
problems� Note that for the augmented system approach� the residual update strategy
changes the number of projections signi�cantly only in a few problems� but when it does
the improvements are very substantial� On the other hand� we observe that for the normal
equations approach �which is more sensitive to the condition number ��A�� the residual
update strategy gives a substantial reduction in the number of projections in about half
of the problems� It is interesting that with the residual update� the performance of the
augmented system and normal equations approaches is very similar�

�� Conclusions

We have studied the properties of the projected CG method for solving quadratic pro�
gramming problems of the form ������������ Due to the form of the preconditioners used
by some nonlinear programming algorithms we opted for not computing a basis Z for the
null space of the constraints� but instead projecting the CG iterates using a normal equa�
tions or augmented system approach� We have given examples showing that in either case
signi�cant roundo� errors can occur� and have presented an explanation for this�

We proposed several remedies� One is to use iterative re�nement of the augmented
system or normal equations approaches� An alternative is to update the residual at every
iteration of the CG iteration� as described in x�� The latter can be implemented particularly
e�ciently when the preconditioner is given by G � I in ������

Our numerical experience indicates that updating the residual almost always su�ces
to keep the errors to a tolerable level� Iterative re�nement techniques are not as e�ective
by themselves as the update of the residual� but can be used in conjunction with it� and
the numerical results reported in this paper indicate that this combined strategy is both
economical and accurate� The techniques described here are important ingredients within
the evolving large scale nonlinear programming packages �NITRO and GALAHAD� as well as
the HSL QP modules VE�� and VE���

�




Augmented System Normal Equations
f evals projections f evals projections

Problem n m stand update stand update stand update stand update
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 � � 
 
 � �
OPTCTRL� ��� �� �
 �� �� �� �� �� ��� ��
ORTHREGA ��� ��� � � 	� 	� """ 
� """ ��
ORTHREGC ��� ��� �� �� �� �� �� �� �� ��
ORTHREGD ��	 ��� �� �� �	 �	 �� �� �	 �	

Table 
� Number of function evaluations and projections required by the optimization
method for the di�erent implementations of the CG iteration� n denotes the number of
variables and m the number of general constraints �equalities or inequalities�� excluding
simple bounds�
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