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Abstract. We present an algorithm for large-scale equality constrained optimization. The
method is based on a characterization of inexact sequential quadratic programming (SQP) steps
that can ensure global convergence. Inexact SQP methods are needed for large-scale applications
for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems
must be solved using iterative linear algebra techniques. We address how to determine when a given
inexact step makes sufficient progress toward a solution of the nonlinear program, as measured by
an exact penalty function. The method is globalized by a line search. An analysis of the global
convergence properties of the algorithm and numerical results are presented.
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1. Introduction. In this paper we discuss an algorithm for equality constrained
optimization problems of the form

min
x∈Rn

f(x)

s.t. c(x) = 0,
(1.1)

where f : Rn → R and c : Rn → Rt are smooth nonlinear functions. Our interest is
in methods for very large problems with t ≤ n for which the exact computation of
steps in contemporary methods can be prohibitively expensive. One class of problems
of this type that demands algorithmic improvements are those where the constraint
functions are defined by systems of partial differential equations (PDEs).

One of the leading methods for solving constrained optimization problems is se-
quential quadratic programming (SQP). (In fact, modern interior point methods re-
duce to SQP when inequality constraints are not present in the problem formulation
[18].) Algorithms in this class enjoy global convergence guarantees and typically re-
quire few iterations and function evaluations to locate a solution point. A drawback
of many contemporary SQP algorithms, however, is that they require explicit rep-
resentations of exact derivative information and the solution of one or more linear
systems during every iteration. The acquisition of these quantities is particularly
cumbersome in large-scale settings and the factorization of large iteration matrices is
often impractical.

One way to overcome these difficulties is to solve the SQP subproblems approxi-
mately using iterative linear algebra techniques. The main purpose of this paper is to
determine the accuracy with which the SQP subproblems must be solved in order to
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ensure global convergence in the context of a practical algorithm for problem (1.1).
We both propose such a method and analyze its global behavior.

Our method resembles those in the class of inexact Newton methods for solving
nonlinear systems of equations. There are, however, important differences between
the two approaches. Inexact Newton methods for systems of equations are controlled
by forcing parameters that ensure that the norm of the entire residual of the Newton
equations decreases at every iteration [8]. Our approach, on the other hand, is based
on a requirement that the step decreases a local approximation of a merit function,
while also satisfying bounds on the primal and dual components of the residual. We
present sets of easily calculable conditions that handle these two components of the
residual as separate quantities when determining if a given inexact solution is appro-
priate for the algorithm to follow. Such a solution may, for example, allow for an
increase in the residual corresponding to primal feasibility provided it yields a sub-
stantial decrease in dual feasibility, or vice versa. The behavior of these components
also helps determine when it is appropriate to increase the penalty parameter in the
merit function.

A variety of methods for constrained optimization with inexactness in step com-
putations have been proposed recently. Jäger and Sachs [14] describe an inexact
reduced SQP method in Hilbert space. Lalee, Nocedal, and Plantenga [16], Byrd,
Hribar, and Nocedal [5], and Heinkenschloss and Vicente [13] propose composite step
trust region approaches where the step is computed as an approximate solution to
an SQP subproblem. Similarly, Walther [22] provides a composite step method that
allows incomplete constraint Jacobian information. Leibfritz and Sachs [17] analyze
an interior point method that benefits from a reformulation of the quadratic program-
ming subproblems as mixed linear complementarity problems. Our approach has some
features in common with the algorithms of Biros and Ghattas [1, 2], Haber and As-
cher [11], and Prudencio, Byrd and Cai [20] as we follow a full space SQP method
and perform a line search to promote convergence. Unlike these papers, however, we
present conditions that guarantee the global convergence of inexact SQP steps.

This paper is organized as follows. In §2 we provide an overview of our approach
and globalization strategy. Section 3 contains details about the most crucial aspect
of our algorithm, namely, the sets of conditions used to determine if a given inexact
SQP solution is considered an acceptable step. The well-posedness of our approach
is also discussed, the accountability of which allows us to present global convergence
guarantees under common conditions in §4. Section 5 provides numerical results to
illustrate the robustness of our method. We focus on problems for which overall algo-
rithm performance has been seen to be sensitive to the quality of inexact subproblem
solutions. Closing remarks and issues related to extensions of this work are presented
in §6.

2. Outline of the Algorithm. Let us formalize a basic SQP approach before
clarifying the novelties of our algorithm. The Lagrangian function corresponding to
problem (1.1) is

L(x, λ) , f(x) + λT c(x), (2.1)

where λ ∈ Rt are Lagrange multipliers. If f and c are continuously differentiable, then
the first-order optimality conditions for x∗ to be an optimal solution to problem (1.1)
state that there exist multipliers λ∗ such that (x∗, λ∗) is a solution to the nonlinear
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system of equations

∇L(x, λ) =
[
g(x) + A(x)T λ

c(x)

]
= 0, (2.2)

where g(x) is the gradient of the objective function and A(x) is the Jacobian of c(x).
The components in (x, λ) are referred to as the primal and dual variables, respectively.

An SQP algorithm defines an appropriate displacement dk in the primal space
from the kth iterate xk as the minimizer of a quadratic model of the objective subject
to a linearization of the constraints. The quadratic program can be defined as

min
d∈Rn

f(xk) + g(xk)T d + 1
2dT W (xk, λk)d

s.t. c(xk) + A(xk)d = 0,
(2.3)

where

W (x, λ) ≈ ∇2
xxL(x, λ) = ∇2

xxf(x) +
t∑

i=1

λi∇2
xxci(x)

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian. Here,
ci(x) and λi denote the ith constraint function and its corresponding dual variable,
respectively. If the constraint Jacobian A(xk) has full row rank and W (xk, λk) is
positive definite on the null space of A(xk), then a solution to (2.3) is well defined in
this context. An alternative characterization of the SQP step dk is given by the fact
that it can equivalently be obtained under similar assumptions as part of the solution
to the primal-dual system (see [18])[

W (xk, λk) A(xk)T

A(xk) 0

] [
dk

δk

]
= −

[
g(xk) + A(xk)T λk

c(xk)

]
(2.4)

constructed by applying Newton’s method to (2.2).
An explicit representation of the primal-dual matrix[

W (xk, λk) A(xk)T

A(xk) 0

]
(2.5)

and an exact solution of (2.4) can be expensive to obtain, particularly when the
factors of (2.5) are not very sparse. We are interested, therefore, in identifying inexact
solutions of (2.4) that can also be considered appropriate steps for the algorithm to
accept during a given iteration. Such inexact solutions can be obtained in a variety of
ways, such as by applying an iterative linear system solver to the primal-dual system.
Regardless of the method chosen, for an inexact solution (dk, δk) we define the residual
vectors (ρk, rk) by the equation[

W (xk, λk) A(xk)T

A(xk) 0

] [
dk

δk

]
= −

[
g(xk) + A(xk)T λk

c(xk)

]
+

[
ρk

rk

]
. (2.6)

The step can then be appraised based on properties of the residual vector and other
quantities related to the SQP subproblem formulation (2.3). For convex problems,
an inexact Newton method intended for nonlinear equations will suffice, provided
that W (xk, λk) is the exact Hessian of the Lagrangian [8]. That is, the norm of
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the right-hand-side vector in (2.4) can serve as a merit function, and convergence
can be guaranteed by systematically decreasing this value. For nonconvex problems,
however, a step that decreases the first order optimality error may move away from a
minimizer, or may be trapped near a stationary point of the Lagrangian. Thus, merit
functions more appropriate to constrained optimization should be considered.

We now outline the algorithm and globalization strategy that will be developed
in detail in the following sections. An integral part of the approach is the mechanism
used to determine if a trial primal-dual solution (d, δ) to (2.4) is acceptable during a
given iteration. For this purpose, we make use of the merit function

φ(x;π) , f(x) + π‖c(x)‖, (2.7)

where π > 0 is known as the penalty parameter and ‖ · ‖ denotes a norm on Rt.
We observe that φ(x;π) is not continuously differentiable, but it is exact in the sense
that if π is greater than a certain threshold, then a first order optimal point of (1.1)
is a stationary point of φ(x;π). That is, the directional derivative of φ(x;π) in a
direction d, denoted by Dφ(d;π), is nonnegative at x∗ for all d ∈ Rn. The challenge
is to compute inexact SQP steps and a value for π that ensure progress in the merit
function φ(x;π) during every iteration.

Upon the calculation and acceptance of the search direction dk for a particular
value πk of the penalty parameter, we perform a backtracking line search to compute
a steplength coefficient αk satisfying the Armijo condition

φ(xk + αkdk;πk) ≤ φ(xk;πk) + ηαkDφ(dk;πk) (2.8)

for some 0 < η < 1. Accordingly, a primal-dual step will only be accepted if its primal
component is a descent direction for the merit function.

In summary, our approach follows a standard line search SQP framework. During
each iteration, a step is computed as an inexact solution to the primal-dual system
(2.6) satisfying appropriate conditions that deem the step acceptable. The penalty
parameter is then set based on properties of the computed step, after which a back-
tracking line search is performed to compute a steplength coefficient αk satisfying
the Armijo condition (2.8). Finally, the iterate is updated along with function and
derivative information at the new point. The novelty of our approach, i.e., the precise
definition of what constitutes an acceptable step, and the convergence properties of
this algorithm are considered in the remainder of this paper.

Notation. We drop functional notation throughout the rest of the paper when
values are clear from the context and delimit iteration number information for func-
tions as with variables; i.e., we denote gk , g(xk) and similarly for other quantities.
All norms are considered Euclidean (or l2) norms unless otherwise indicated, though
much of our analysis will apply for any norm.

3. Step Computation and Selection. An intuitive condition that one may
impose on an inexact SQP step is that the directional derivative of the merit function
along the primal component dk must be sufficiently negative. Such a condition could
be used in the development of a globally convergent SQP approach, but quantifying
an appropriate steepness of the directional derivative is a difficult task in practice.

As an alternative, let us borrow from an approach commonly employed in trust
region methods that begins by considering a local model of the merit function φ(x;π)
around the current iterate xk and the changes in the merit function it predicts for
steps in the primal space. The model has the form

mk(d;π) , fk + gT
k d + max{ 1

2dT Wkd, 0}+ π‖ck + Akd‖,
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where the max term yields a quadratic model of the objective or a linear one depending
on the curvature of Wk along d. With this approximation, we can estimate the
reduction in the merit function given by a step dk by evaluating

∆mk(dk;πk) , mk(0;πk)−mk(dk;πk)

= −gT
k dk −max{ 1

2dT
k Wkdk, 0}+ πk(‖ck‖ − ‖ck + Akdk‖)

= −gT
k dk −max{ 1

2dT
k Wkdk, 0}+ πk(‖ck‖ − ‖rk‖), (3.1)

where the residual rk = ck + Akdk as in (2.6).
At the heart of our approach is the claim that a given primal-dual step is often

beneficial for the algorithm to follow provided the following condition is satisfied.

Model Reduction Condition. A step (dk, δk) computed in an inexact SQP
algorithm must satisfy

∆mk(dk;πk) ≥ σπk max{‖ck‖, ‖rk‖ − ‖ck‖} (3.2)

for some 0 < σ < 1 and appropriate πk > 0.

We will see the effects of this condition below and in §4. In particular, (3.2)
will indeed ensure that the directional derivative of the merit function is sufficiently
negative along the primal step component dk while also providing a mechanism for
determining appropriate values of the penalty parameter. We note that conditions
similar to the Model Reduction Condition (3.2) are presented in the context of the
inexact composite-step SQP algorithm proposed by Heinkenschloss and Vicente [13].
However, their conditions are only applicable to a step that has been decomposed into
basic and nonbasic components, as accuracy is imposed on the components separately.
Their approach also differs from the one treated here in that they use a trust region
and assume that an approximate reduced Hessian is available.

3.1. Step Acceptance Conditions. An acceptable step will be required to
satisfy one of two sets of conditions. We refer to the conditions as termination tests
in reference to algorithms that apply an iterative solver to the primal-dual system
(2.4), as in this framework the conditions are used to determine when to terminate
the iteration. Each termination test will allow us to ensure that the step satisfies
(3.2) for an appropriate value of the penalty parameter and enforces requirements on
the residuals (ρk, rk) to ensure convergence to a local solution of (1.1). In addition,
the tests impose restrictions on when the algorithm is allowed to increase the penalty
parameter in order to satisfy the Model Reduction Condition (3.2).

The first termination test addresses those steps providing a sufficiently large re-
duction in the model of the merit function for the most recent value of the penalty
parameter. We assume that an initial value π−1 > 0 is given.

Termination Test I. Let 0 < σ, κ < 1 be given constants. A step (dk, δk)
computed in an inexact SQP algorithm is acceptable if the Model Reduction Condition
(3.2) holds for πk = πk−1 and∥∥∥∥[

ρk

rk

]∥∥∥∥ ≤ κ

∥∥∥∥[
gk + AT

k λk

ck

]∥∥∥∥ (3.3)

for the residuals (ρk, rk) defined by (2.6).

We claim that Termination Test I allows for productive steps to be taken that
may have been computed in a relatively cheap manner, say after only a few iterations
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of an iterative solver applied to the primal-dual system (2.4). For steps satisfying
this test, given that a sufficient reduction in the model of the merit function has been
obtained we need only enforce a generally loose bound on the residual vector. For even
greater flexibility one can in fact choose κ ≥ 1 in Termination Test I if the additional
condition

‖ρk‖ ≤ max{κ1‖gk + AT
k λk‖, κ2‖ck‖}, 0 < κ1 < 1, 0 < κ2, (3.4)

is enforced. This may be useful, say, when applying our step acceptance criteria when
steps are not computed directly via (2.4) or when the use of a left preconditioner
for (2.4) produces steps corresponding to residuals larger in norm than the right-
hand-side vector (gk + AT

k λk, ck). All of the results in the following sections hold if
Termination Test I has κ < 1 or if (3.4) is included when κ ≥ 1.

The second termination test addresses those steps providing a sufficiently large
reduction in the linear model of the constraints.

Termination Test II. Let 0 < ε < 1 and 0 < β be given constants. A step
(dk, δk) computed in an inexact SQP algorithm is acceptable if

‖rk‖ ≤ ε‖ck‖ (3.5a)
and ‖ρk‖ ≤ β‖ck‖, (3.5b)

where the residuals (ρk, rk) are defined by (2.6).

A step satisfying Termination Test II may not satisfy the Model Reduction Con-
dition (3.2) for πk = πk−1. Thus, for such steps we require that the penalty parameter
be increased to satisfy

πk ≥
gT

k dk + max{ 1
2dT

k Wkdk, 0}
(1− τ)(‖ck‖ − ‖rk‖)

, πtrial
k (3.6)

for a given 0 < τ < 1. Notice from (3.5a) and 0 < ε < 1 that the denominator in the
above expression is positive and along with (3.1) the rule (3.6) implies

∆mk(dk;πk) ≥ τπk(‖ck‖ − ‖rk‖) ≥ τ(1− ε)πk‖ck‖. (3.7)

Therefore, when (3.5a) is satisfied, the Model Reduction Condition (3.2) holds with
σ = τ(1− ε).

In summary, a step (dk, δk) will be required to satisfy Termination Test I or II.
In each case, the Model Reduction Condition (3.2) will hold; Termination Test I
demands it explicitly and the rule (3.6) is used to enforce it when Termination Test II
is satisfied. For consistency between Termination Test I and II and (3.6), one should
set σ = τ(1− ε) for Termination Test I.

The complete algorithm is the following. We refer to our step acceptance crite-
ria as SMART Tests because they can be characterized as Sufficient Merit function
Approximation Reduction Termination Tests.

Algorithm A: Inexact SQP with SMART Tests
Given parameters 0 < κ, ε, τ, σ, η < 1 and β > 0
Initialize x0, λ0, and π−1 > 0
for k = 0, 1, 2, . . . , until a convergence test for (1.1) is satisfied

Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1
Compute a step (dk, δk) satisfying Termination Test I or II
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if Termination Test II is satisfied and (3.6) does not hold, set πk ← πtrial
k + 10−4

Perform a backtracking line search to obtain αk satisfying (2.8)
Set (xk+1, λk+1)← (xk, λk) + αk(dk, δk)

endfor

In practice, the step can be computed by producing a sequence of candidate steps
{(d, δ)} via the application of an iterative solver to (2.4). The corresponding residuals
{(ρ, r)} can then be computed and Termination Tests I and II can be evaluated during
each iteration or after a few steps of the iterative solver. The constants (κ, ε, β)
should be tuned for a specific application and can significantly influence the practical
performance of the algorithm. In particular, the value for β should be chosen to reflect
the relationship between the scales of the primal and dual feasibility measures. The
scale dependence of such a parameter is not ideal, but a bound similar to (3.5b) is used
to ensure the boundedness of the penalty parameter πk (as we show in Lemma 4.7) if
the rule (3.6) is enforced. Since such a method for setting the penalty parameter has
proved to work well in practice [23], we employ this update rule in the algorithms in
this paper and define β and (3.5b) as given. The constants (τ, σ, η) can generally be set
to default values, or, in the case of σ, to promote consistency between Termination
Tests I and II. Further discussion of appropriate values for the constants and an
example implementation of Algorithm A are given in §5.

3.2. Well-posedness of the Algorithm. It is important to verify that the
iterates specified by Algorithm A can be always be computed in practice.

Suppose that (xk, λk) is an iterate that does not satisfy the optimality conditions
(2.2). We argue here that whenever Ak has full row rank and Wk is positive definite
on the null space of Ak, a sufficiently accurate solution to (2.4) will satisfy either
Termination Test I or II. If c(xk) 6= 0, then for (ρk, rk) sufficiently small we have that
(3.5), and so Termination Test II, will be satisfied. Otherwise, if c(xk) = 0, then
(3.3) will be satsfied for (ρk, rk) sufficiently small. Then, since Wk is positive definite
on the null space of Ak, the solution of (2.4) is the solution to problem (2.3), which
means that the solution lies in the null space of Ak and corresponds to a nonpositive
objective value of (2.3) (since d = 0 is feasible). Therefore, by computing a step with
(ρk, rk) sufficiently small, it can easily be seen that (3.2), and thus Termination Test I,
will be satisfied.

Once an acceptable step is obtained, we must ensure that a positive steplength
parameter αk can be calculated to satisfy the Armijo condition (2.8). We consider
this issue by first presenting the following result.

Lemma 3.1. The directional derivative of the merit function φ(x;π) along a step
d satisfies

Dφ(d;π) ≤ gT d− π(‖c‖ − ‖r‖).

Proof. Applying Taylor’s theorem, we find for some constant γ1 > 0

φ(x + αd;π)− φ(x;π) = f(x + αd)− f(x) + π(‖c(x + αd)‖ − ‖c(x)‖)
≤ αgT d + γ1πα2‖d‖2 + π(‖c(x) + αAd‖ − ‖c(x)‖)
= αgT d + γ1πα2‖d‖2 + π(‖(1− α)c(x) + αr‖ − ‖c(x)‖)
≤ α(gT d− π(‖c(x)‖ − ‖r‖)) + γ1πα2‖d‖2,

where r = c(x) + Ad as in (2.6). Dividing both sides by α and taking the limit as
α→ 0 yields the result.
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Given this result, we present the following consequence of our Model Reduction
Condition. (A stronger result will be given as Lemma 4.6.)

Lemma 3.2. If the Model Reduction Condition (3.2) holds for a step (dk, δk) and
penalty parameter πk, then the directional derivative of the merit function satisfies
Dφ(dk;πk) ≤ 0.

Proof. Observe from (3.1) that the inequality (3.2) can be rewritten as

gT
k dk − πk(‖ck‖ − ‖rk‖) ≤ −max{ 1

2dT
k Wkdk, 0} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖},

so, by Lemma 3.1, a step (dk, δk) satisfying (3.2) yields

Dφ(dk;πk) ≤ gT
k dk − πk(‖ck‖ − ‖rk‖)

≤ −max{ 1
2dT

k Wkdk, 0} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖}, (3.8)

which yields the result.

We have shown under common conditions that an acceptable inexact SQP step
(dk, δk) can always be computed by Algorithm A and that steps satisfying the Model
Reduction Condition (3.2) correspond to directions of nonincrease for the merit func-
tion φ(x;πk). These results allow us to show that the Armijo condition (2.8) is satisfied
by some positive αk (see Lemma 4.8), and so Algorithm A is well-posed.

We mention in passing that, as a corollary to Lemma 3.1, we may avoid the
exact computation of the directional derivative of the merit function along a step d
by defining the estimate

D̃φ(d;π) , gT d− π(‖c‖ − ‖r‖). (3.9)

As such, the Armijo condition (2.8) can be substituted by

φ(xk + αkdk;πk) ≤ φ(xk;πk) + ηαkD̃φ(dk;πk). (3.10)

All of the analysis in this paper holds when either (2.8) or (3.10) is observed in the
line search procedure of Algorithm A. For convenience, we choose to use (3.10).

4. Global Analysis. Let us begin our investigation of the global behavior of
Algorithm A by making the following assumptions about the problem and the set of
computed iterates.

Assumptions 4.1. The sequence {xk, λk} generated by Algorithm A is contained
in a convex set Ω and the following properties hold:

(a) The functions f and c and their first and second derivatives are bounded on
Ω.

(b) The sequence {λk} is bounded.
(c) The constraint Jacobians Ak have full row rank and their smallest singular

values are bounded below by a positive constant.
(d) The sequence {Wk} is bounded.
(e) There exists a positive constant µ > 0 such that for any u ∈ Rn with u 6= 0

and Aku = 0 we have uT Wku ≥ µ‖u‖2.

These assumptions are fairly standard for a line search method [12, 19]. As-
sumption 4.1(a) is a little weaker than the common assumption that the iterates are
contained in a compact set. Assumptions 4.1(b) and (c) are strong; we use them to
simplify the analysis in order to focus on the issues related to inexactness. It would
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be of interest in future studies of inexact SQP methods to relax these assumptions.
Assuming that Wk is positive definite on the null space of the constraints is natural
for line search algorithms, for otherwise there would be no guarantee of descent. We
comment further on the validity of Assumption 4.1(b) in §6.

We now assume that during iteration k we have obtained an acceptable step
(dk, δk) with residuals (ρk, rk) defined by (2.6). We consider the decomposition

dk = uk + vk, (4.1)

where uk lies in the null space of the constraint Jacobian Ak and vk lies in the
range space of AT

k . We do not intend to compute the components explicitly; the
decomposition is only for analytical purposes [4, 6]. We refer to uk, which by definition
satisfies Akuk = 0, as the tangential component and vk as the normal component of
the step.

Our analysis hinges on our ability to classify the effects of two types of steps: those
lying sufficiently in the null space of the constraints and those sufficiently orthogonal
to the linearized feasible region. We show that such a distinction can be made by
observing the relative magnitudes of the normal and tangential components of the
primal component dk.

We first present a result related to the magnitude of the normal step.

Lemma 4.2. For all k, the normal component vk is bounded in norm and for
some γ2 > 0 satisfies

‖vk‖2 ≤ γ2 max{‖ck‖, ‖rk‖}. (4.2)

Furthermore, for all k such that Termination Test II is satisfied, there exists γ3 > 0
such that

‖vk‖ ≤ γ3(‖ck‖ − ‖rk‖). (4.3)

Proof. From Akvk = −ck + rk and the fact that vk lies in the range space of AT
k ,

it follows that

vk = AT
k (AkAT

k )−1(−ck + rk),

and so

‖vk‖ ≤ ‖AT
k (AkAT

k )−1‖(‖ck‖+ ‖rk‖). (4.4)

This, along with (3.3), the fact that Assumptions 4.1(a) and (b) imply that ‖ck‖ and
‖gk + AT

k λk‖ are bounded, and the fact that Assumptions 4.1(a) and (c) imply that
‖AT

k (AkAT
k )−1‖ is bounded, implies vk is bounded in norm for all k. The inequality

(4.4) also yields

‖vk‖2 ≤
(
‖AT

k (AkAT
k )−1‖(‖ck‖+ ‖rk‖)

)2

≤
(
2‖AT

k (AkAT
k )−1‖max{‖ck‖, ‖rk‖}

)2

=
[
4‖AT

k (AkAT
k )−1‖2 max{‖ck‖, ‖rk‖}

]
max{‖ck‖, ‖rk‖}, (4.5)

where (3.3) and Assumptions 4.1(a), (b), and (c) also imply that the bracketed ex-
pression in (4.5) is bounded. Thus, (4.2) holds. Finally, if Termination Test II is
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satisfied, then from (3.5a) and (4.4) we have

‖vk‖ ≤ ‖AT
k (AkAT

k )−1‖(1 + ε)‖ck‖

≤ ‖AT
k (AkAT

k )−1‖
(

1+ε
1−ε

)
(‖ck‖ − ‖rk‖),

and so (4.3) holds.

A similar result can be proved for the tangential component.

Lemma 4.3. The tangential components {uk} are bounded in norm.
Proof. Assumption 4.1(e), the fact that uk lies in the null space of the constraint

Jacobian Ak, and the first block equation of (2.6) yield

µ‖uk‖2 ≤ uT
k Wkuk

= −gT
k uk + ρT

k uk − uT
k Wkvk

≤ (‖gk‖+ ‖ρk‖+ ‖Wkvk‖)‖uk‖,

and so

‖uk‖ ≤ (‖gk‖+ ‖ρk‖+ ‖Wkvk‖) /µ.

The result follows from the facts that Assumptions 4.1, Lemma 4.2, and the bounds
(3.3) and (3.5b) imply that all terms in the right-hand-side of this inequality are
bounded.

We now turn to the following result addressing the relative magnitudes of the
normal and tangential components of a given step.

Lemma 4.4. There exists a constant γ4 > 0 such that if ‖uk‖2 ≥ γ4‖vk‖2 then
1
2dT

k Wkdk ≥ µ
4 ‖uk‖2.

Proof. Assumption 4.1(e) implies that for any γ4 such that ‖uk‖2 ≥ γ4‖vk‖2 we
have

1
2dT

k Wkdk = 1
2uT

k Wkuk + uT
k Wkvk + 1

2vT
k Wkvk

≥ µ
2 ‖uk‖2 − ‖uk‖‖Wk‖‖vk‖ − 1

2‖Wk‖‖vk‖2

≥
(

µ

2
− ‖Wk‖√

γ4
− ‖Wk‖

2γ4

)
‖uk‖2.

Thus, Assumption 4.1(d) implies the result holds for a sufficiently large γ4 > 0.

With the above results, we can now formalize a distinction between two types of
steps. Let γ4 > 0 be chosen large enough as described in Lemma 4.4 and consider the
sets of indices

K1 , {k : ‖uk‖2 ≥ γ4‖vk‖2}
and K2 , {k : ‖uk‖2 < γ4‖vk‖2}.

Most of the remainder of our analysis will be dependent on these sets and the corre-
sponding quantity

Θk ,

{
‖uk‖2 + ‖ck‖, k ∈ K1,
max{‖ck‖, ‖rk‖}, k ∈ K2.
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The relevance of Θk will be seen in the following three lemmas as a quantity that can
be used for bounding the length of the primal step and the directional derivative of the
merit function, which will then provide a lower bound for the sequence of steplength
coefficients {αk}.

Lemma 4.5. There exists γ5 > 1 such that, for all k,

‖dk‖2 ≤ γ5Θk,

and hence

‖dk‖2 + ‖ck‖ ≤ 2γ5Θk. (4.6)

Proof. For k ∈ K1, we find

‖dk‖2 = ‖uk‖2 + ‖vk‖2

≤
(
1 + 1

γ4

)
‖uk‖2

≤
(
1 + 1

γ4

)
(‖uk‖2 + ‖ck‖).

Similarly, Lemma 4.2 implies that for k ∈ K2

‖dk‖2 = ‖uk‖2 + ‖vk‖2

< (γ4 + 1)‖vk‖2

≤ (γ4 + 1)γ2 max{‖ck‖, ‖rk‖}.

To establish (4.6) we note that Θk + ‖ck‖ ≤ 2Θk for all k.

The directional derivative of the merit function can be bounded in a similar
manner.

Lemma 4.6. There exists γ6 > 0 such that, for all k,

D̃φ(dk;πk) ≤ −γ6Θk.

Proof. Recalling (3.8) and (3.9) we have

D̃φ(dk;πk) ≤ −max{ 1
2dT

k Wkdk, 0} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖}. (4.7)

By Lemma 4.4, we have that 1
2dT

k Wkdk ≥ µ
4 ‖uk‖2 for k ∈ K1 and thus

D̃φ(dk;πk) ≤ −µ
4 ‖uk‖2 − σπk‖ck‖.

Similarly, for k ∈ K2 we have from (4.7) that

D̃φ(dk;πk) ≤ −σπk max{‖ck‖, ‖rk‖ − ‖ck‖}
≤ − 1

2σπk max{‖ck‖, ‖rk‖}.

The result holds for γ6 = min{µ
4 , 1

2σπk}, which is bounded away from zero as {πk} is
nondecreasing.

Another important property of Algorithm A is that under Assumptions 4.1 the
penalty parameter remains bounded. We prove this result in the following lemma,
illustrating the importance of the bound (3.5b).
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Lemma 4.7. The sequence of penalty parameters {πk} is bounded above and
πk = πk̄ for all k ≥ k̄ for some k̄ ≥ 0.

Proof. Recall that the penalty parameter is increased during iteration k of Algo-
rithm A only if Termination Test II is satisfied. Therefore, for the remainder of this
proof let us assume that Termination Test II is satisfied and so the inequalities in
(3.5) hold. By (3.6) the parameter πk is chosen to satisfy the first inequality in (3.7),
namely

∆mk(dk;πk) ≥ τπk(‖ck‖ − ‖rk‖), (4.8)

where, according to the first block equation of (2.6), we can rewrite the model reduc-
tion as

∆mk(dk;πk) = πk(‖ck‖ − ‖rk‖)− gT
k dk −max{ 1

2dT
k Wkdk, 0}

= πk(‖ck‖ − ‖rk‖)

+
{
−gT

k vk − 1
2vT

k Wkvk − ρT
k uk + 1

2uT
k Wkuk if 1

2dT
k Wkdk ≥ 0

−gT
k vk − (ρk −Wkvk)T uk + uT

k Wkuk otherwise.

The result follows from our ability to bound the terms in the second line of this
expression with respect to the constraint reduction.

If 1
2dT

k Wkdk ≥ 0, then under Assumptions 4.1 we have that Lemmas 4.2 and 4.3
and the bounds (3.5) on the residuals (ρk, rk) imply that there exists γ7, γ

′
7 > 0 such

that

−gT
k vk − 1

2vT
k Wkvk − ρT

k uk + 1
2uT

k Wkuk ≥ −‖gk‖‖vk‖ − 1
2‖Wk‖‖vk‖2 − ‖ρk‖‖uk‖

≥ −γ7(‖vk‖+ ‖ρk‖)

≥ −γ7

(
γ3 + β

1−ε

)
(‖ck‖ − ‖rk‖)

= −γ′7(‖ck‖ − ‖rk‖).

Similarly, if 1
2dT

k Wkdk < 0, then under Assumptions 4.1 we again find that Lemmas 4.2
and 4.3 and the bounds (3.5) on the residuals (ρk, rk) imply that there exists γ8, γ

′
8 > 0

such that

−gT
k vk − (ρk −Wkvk)T uk + uT

k Wkuk ≥ −‖gk‖‖vk‖ − ‖ρk‖‖uk‖ − ‖vk‖‖Wk‖‖uk‖
≥ −γ8(‖vk‖+ ‖ρk‖)

≥ −γ8

(
γ3 + β

1−ε

)
(‖ck‖ − ‖rk‖)

= −γ′8(‖ck‖ − ‖rk‖).

These results together imply

∆mk(dk;πk) ≥ (πk −max{γ′7, γ′8})(‖ck‖ − ‖rk‖),

and so (4.8) is always satisfied for

πk ≥ max{γ′7, γ′8}/(1− τ).

Therefore, if πk̄ ≥ max{γ′7, γ′8}/(1− τ) for some k̄ ≥ 0, then πk = πk̄ for k ≥ k̄. This,
along with the fact that whenever Algorithm A increases the penalty parameter it
does so by at least a positive finite amount, proves the result.
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The previous three lemmas can be used to bound the sequence of steplength
coefficients.

Lemma 4.8. The sequence {αk} is bounded below and away from zero.
Proof. Recall that the line search requires (3.10), which we rewrite for convenience

as

φ(xk + αkdk;πk)− φ(xk;πk) ≤ ηαkD̃φ(dk;πk).

Suppose that the line search fails for some ᾱ > 0, so

φ(xk + ᾱdk;πk)− φ(xk;πk) > ηᾱD̃φ(dk;πk).

From the proof of Lemma 3.1 and (3.9) we have

φ(xk + ᾱdk;πk)− φ(xk;πk) ≤ ᾱD̃φ(dk;πk) + ᾱ2γ1πk‖dk‖2,

so

(η − 1)D̃φ(dk;πk) ≤ ᾱγ1π̂‖dk‖2.

Here, π̂ is a finite upper bound for the sequence {πk} whose existence follows from
Lemma 4.7. Lemmas 4.5 and 4.6 then yield

(1− η)γ6Θk < ᾱγ1γ5π̂Θk,

so

ᾱ > (1− η)γ6/(γ1γ5π̂).

Thus, αk need never be set below (1− η)γ6/(γ1γ5π̂) for (3.10) to be satisfied.

We can now present the following result related to the lengths of the primal
components of the steps computed in Algorithm A and the convergence of the iterates
toward the feasible region of problem (1.1).

Lemma 4.9. Algorithm A yields

lim
k→∞

‖ck‖ = 0 and lim
k→∞

‖dk‖ = 0.

Proof. For all k, it can easily be seen that

φ(xk;πk)− φ(xk + αkdk;πk) ≥ γ9Θk

for some γ9 > 0 follows from (3.10) and Lemmas 4.6 and 4.8. By Lemma 4.7 the
algorithm eventually computes, during iteration k̄ ≥ 0, a finite value πk̄ beyond which
the penalty parameter will never be increased. Therefore, the penalty parameter
remains unchanged for k ≥ k̄ and for all k > k̄ (4.6) implies

φ(xk̄;πk̄)− φ(xk;πk̄) =
k−1∑
j=k̄

(φ(xj ;πk̄)− φ(xj+1;πk̄))

≥ γ9

k−1∑
j=k̄

Θj

≥ γ9

2γ5

k−1∑
j=k̄

(‖dj‖2 + ‖cj‖).
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The result follows from the above and the fact that Assumption 4.1(a) implies φ(x;πk̄)
is bounded below.

We are now ready to present the main result of this section.

Theorem 4.10. Algorithm A yields

lim
k→∞

∥∥∥∥[
gk + AT

k λk

ck

]∥∥∥∥ = 0.

Proof. Recall that αk ≤ 1 for all k and from Lemma 4.8 we have that {αk} is
bounded below and away from zero. An expansion of the first block of the optimality
conditions (2.2) yields

‖gk+1 + AT
k+1λk+1‖ ≤ ‖gk + AT

k λk + αk(∇2
xxLkdk + AT

k δk)‖+ α2
kE(dk, δk),

where

E(dk, δk) = O(‖dk‖2 + ‖dk · δk‖).

This, along with the first block equation in (2.6) and Assumptions 4.1, implies

‖gk+1 + AT
k+1λk+1‖

≤ ‖gk + AT
k λk + αk(Wkdk + AT

k δk) + αk(∇2
xxLk −Wk)dk‖+ α2

kE(dk, δk)

≤ ‖gk + AT
k λk + αk(ρk − gk −AT

k λk)‖+ αk‖(∇2
xxLk −Wk)dk‖+ α2

kE(dk, δk)

≤ (1− αk)‖gk + AT
k λk‖+ αk‖ρk‖+ αkE′(dk, δk) (4.9)

where

E′(dk, δk) = O(‖dk‖+ ‖dk‖2 + ‖dk · δk‖). (4.10)

The bounds (3.3) and (3.5b) and the triangle inequality imply

‖ρk‖ ≤ max{κ(‖gk + AT
k λk‖+ ‖ck‖), β‖ck‖}

which, along with (4.9) and the boundedness of {αk}, implies that for some 0 < γ10 <
1 and γ11 > 0 we have

‖gk+1 + AT
k+1λk+1‖ ≤ max{(1− γ10)‖gk + AT

k λk‖, γ11‖ck‖}+ αkE′(dk, δk). (4.11)

The boundedness of {αk}, Lemma 4.9, and the fact that Assumption 4.1(b) implies
δk is bounded in norm imply, along with (4.10), that

lim
k→∞

αkE′(dk, δk) = 0. (4.12)

Consider an arbitrary γ̂ > 0. Lemma 4.9 and the limit (4.12) imply that there
exists k′ ≥ 0 such that for all k ≥ k′ we have

γ11‖ck‖ < (1− γ10)γ̂ and αkE′(dk, δk) < 1
2γ10γ̂. (4.13)

Suppose k ≥ k′ and ‖gk + AT
k λk‖ > γ̂. We find from (4.11) that

‖gk+1 + AT
k+1λk+1‖ ≤ (1− γ10)‖gk + AT

k λk‖+ 1
2γ10γ̂

≤ ‖gk + AT
k λk‖ − 1

2γ10γ̂.
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Therefore, {‖gk + AT
k λk‖} decreases monotonically by at least a constant amount for

k ≥ k′ while {‖gk + AT
k λk‖} > γ̂, so we eventually find ‖gk + AT

k λk‖ ≤ γ̂ for some
k = k′′ ≥ k′. Then, for k ≥ k′′ we find from (4.11) and (4.13) that

‖gk+1 + AT
k+1λk+1‖ ≤ (1− γ10)γ̂ + 1

2γ10γ̂

≤ (1− 1
2γ10)γ̂,

so ‖gk + AT
k λk‖ ≤ γ̂ for all k ≥ k′′. Since the above holds for any γ̂ > 0, we have

lim
k→∞

‖gk + AT
k λk‖ = 0,

and so the result follows with the above and the result of Lemma 4.9.

5. An Implementation. This section contains a description of a particular
implementation of Algorithm A and corresponding numerical results to illustrate the
robustness of our approach. Note that, for the greatest level of generality within our
framework, we implemented Termination Test I with κ ≥ 1 and (3.4) included. A
study of the efficiency of the new algorithm in realistic applications is devoted to a
separate study [7].

We developed a Matlab implementation of Algorithm A in which the generalized
minimum residual (GMRES) method [21] was used for the step computation, for
which we adapted the implementation by Kelley [15]. The GMRES method does not
exploit the symmetry of the matrix (2.5) in the primal-dual system (2.6), but the
stability of the approach is ideal for illustrating the robustness of Algorithm A.

In terms of the input parameters defined throughout the paper, we make the
following general comments on their practical effects. First, the values (κ, κ1, κ2) and
(ε, β) should receive special attention as they may greatly affect the ease with which
Termination Tests I and II, and therefore the Model Reduction Condition (3.2), are
satisfied; larger values for these constants allow for more steps to satisfy at least
one of the tests at a given point. In general, looser bounds in Termination Tests I
and II will result in cheaper step computations, but these savings must be balanced
against possible increases in the number of outer iterations required to find a solution.
These parameters and (σ, τ) may also affect the number of iterations required until
the penalty parameter stabilizes, an important phenomenon in the analysis of §4;
e.g., larger values of (ε, β) may lead to more increases and/or larger values of πk. In
general, however, we claim that the parameters (σ, τ) can be set to default values or
to promote consistency between the two termination tests, as we do in (5.3) below.

The stopping condition for the overall nonlinear program is given by

‖gk + AT
k λk‖∞ ≤ max{‖gk‖∞, 1}εopt, (5.1)
‖ck‖∞ ≤ max{‖c0‖∞, 1}εfeas, (5.2)

where 0 < εopt, εfeas < 1 and x0 is the starting point (e.g., see [23]).
The following algorithm was implemented in Matlab and will be referred to as

isqp. The termination variable is used to indicate the successful or unsuccessful
termination of the solver near a local solution of problem (1.1).

Algorithm B: Inexact SQP with GMRES and SMART Tests
Given parameters 0 < εfeas, εopt, κ1, ε, τ, σ, η, αmin < 1 and 0 < kmax, β, κ, κ2

Initialize x0, λ0, and π−1 > 0
Set termination← success
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for k = 0, 1, 2, . . . , kmax, or until (5.1) and (5.2) are satisfied
Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1
for j = 0, 1, 2, . . . , n + t, or until Termination Test I or II is satisfied

Set (dk, δk) as the jth GMRES solution
endfor
if D̃φ(dk;π) > 0 for all π ≥ πk, set termination← failure and break
if Termination Test II is satisfied and (3.6) does not hold, set πk ← πtrial

k + 10−4

while (3.10) is not satisfied and αk ≥ αmin, set αk ← αk/2
if αk < αmin, set termination← failure and break
Set (xk+1, λk+1)← (xk, λk) + αk(dk, δk)

endfor
if (5.1) or (5.2) is not satisfied, set termination← failure
return termination

We recognize three types of failures in the above approach. First, due to the
iteration limit (n + t) imposed on the inner for loop, or if the positive definiteness
of Assumption 4.1(e) is violated, GMRES may not provide a solution satisfying Ter-
mination Test I or II. In this case, we will try to use the step dk anyway, and, if
necessary, we will try increasing πk to yield a positive value for the directional deriva-
tive Dφ(dk;πk). However, if the directional derivative is nonnegative for any value
π ≥ πk−1 of the penalty parameter, then the step is an ascent direction for the merit
function and the algorithm terminates. Second, if the steplength coefficient must be
cut below a given αmin in order to obtain a step satisfying the Armijo condition,
then the search direction is deemed unsuitable and the algorithm fails. Since we have
a descent direction this failure can only occur due to finite precision arithmetic er-
rors, or if αmin is too large relative to the curvature of the functions. Finally, if the
algorithm terminates without satisfying the nonlinear program stopping conditions
(5.1) and (5.2), then the maximum number of iterations has been reached. Though
there exist techniques for continuing a stagnated run of the algorithm when an ascent
direction for the merit function or a short steplength coefficient is computed, we im-
plement näıve failure tests in Algorithm B to aggressively challenge the robustness of
our approach.

Table 5.1 contains a listing of the input parameters implemented in our code. For

Parameter Value Parameter Value
εfeas 10−6 η 10−8

εopt 10−6 αmin 10−8

κ1 0.1 kmax 1000
ε 0.1 κ 1
τ 0.1 π−1 1

Table 5.1
Input parameter values used for Algorithm B

the remaining parameters, we set, as is generally appropriate,

σ ← τ(1− ε) (5.3)

and κ2 ← β ← max
{
‖g0 + AT

0 λ0‖
‖c0‖+ 1

, 1
}

.

As previously mentioned, this value for σ promotes consistency between Termination
Tests I and II and (3.6). Such a value for κ2 and β aims to reflect the relationship in
scale between the primal and dual feasibility measures.
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We compare Algorithm B with an inexact method that only enforces a reduction
in the entire primal-dual residual. Our implementation of this approach, also done in
Matlab, is identical to Algorithm B except that the GMRES stopping test

for j = 0, 1, 2, . . . , n + t, or until Termination Test I or II is satisfied

is replaced by

for j = 0, 1, 2, . . . , n + t, or until (3.3) is satisfied

where 0 < κ < 1 for (3.3) is a given constant. We performed multiple runs of this
algorithm, which we call ires, for each problem in the test set and will refer to each
run by the particular value of κ used.

The algorithms described above were run for 44 equality constrained problems
from the CUTEr [3, 10] and COPS [9] collections. Problems from the CUTEr set
for which AMPL models were available were selected based on size – fewer than
10,000 variables – and two moderately sized COPS problems were chosen. We note
that Wk was set to the exact Hessian of the Lagrangian and that a multiple of the
identity matrix was added to Wk, when necessary, to satisfy the positive definiteness
of Assumption 4.1(e). Also, as the results provided in this section are intended only
as a simple illustration of the robustness of our approach, we did not implement a
preconditioner for the primal-dual system for our numerical experiments and, in fact,
this was not an issue as many of the problems are relatively small in size. We stress,
however, that preconditioning is an essential part of any implementation for many
large-scale problems.

Table 5.2 provides the percentage of problems successfully solved for each of the
solvers. All of the failures for the ires algorithm occurred due to the fact that

Algorithm ires isqp

κ 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 -
% Solved 45% 66% 68% 80% 80% 77% 82% 82% 86% 86% 100%

Table 5.2
Algorithm success rates; comparison between an inexact SQP method based on the entire resid-

ual of the Newton equations and isqp, the algorithm proposed in this paper

either the directional derivative Dφ(dk;π) of the merit function was nonnegative for
all allowable values of the penalty parameter π ≥ πk−1 or the backtracking line
search reduced the steplength coefficient αk below the given tolerance αmin. Thus,
we find that even for relatively small values of the tolerance parameter κ, the primal
component dk provided by GMRES can yield a value for the directional derivative
Dφ(dk;π) of the merit function that is not sufficiently negative for any π ≥ πk−1. In
other words, ires runs the risk of computing nearly-exact solutions of the primal-
dual system (2.4) that correspond to directions of insufficient decrease for the merit
function φ(x;πk).

6. Final Remarks. In this paper we have developed an inexact SQP algorithm
for equality constrained optimization that is globally convergent under common con-
ditions. The novelties of the approach are centered around a pair of Sufficient Merit
function Approximation Reduction Termination Tests (or SMART Tests for short)
for controlling the level of inexactness in the step computation procedure. We close
with some remarks about the assumptions used in the paper, the rate of convergence
of our approach, and possible extensions of this work.
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First, let us recall the boundedness of the multipliers stated in Assumption 4.1(b).
Our analysis does not guarantee that the multipliers remain bounded in general; in
fact, Algorithm A does not exert direct control over them. We can ensure that {λk}
remains bounded, however, by adding to Termination Test I a requirement of the form

‖ρk‖ ≤ κ′max{‖gk‖, ‖Ak‖}

for a constant κ′ > 0. Such a condition ensures that ρk is bounded independently
of the multipliers λk, so then (2.6) and Assumptions 4.1 will imply that {λk} is
bounded. An alternative would be to include a safeguard in the algorithm by which
the multiplier estimate λk is set to a nominal value, say λk = 0, if ‖gk + AT

k λk‖ is
larger than a given constant.

Second, the rate of convergence of Algorithm A may be slow for a given prob-
lem. One can ensure a fast convergence rate, however, by imposing at each step a
requirement of the form ∥∥∥∥[

ρk

rk

]∥∥∥∥ ≤ κk

∥∥∥∥[
gk + AT

k λk

ck

]∥∥∥∥ (6.1)

where 0 < {κk} < 1 [8]. Then, tightening the values of κk during any point of a
run of Algorithm A will influence the convergence rate if unit steplengths are taken.
For example, if κk ≤ κ̂ < 1 for all large k, then the rate of convergence is linear
with rate κ̂. If, in addition, κk → 0, then the rate of convergence is superlinear [8].
In practice, the exact penalty function (2.7) can reject unit steps even close to the
solution, but this difficulty can be overcome by the use of a second order correction
or non-monotone techniques [18]. In this manner, we can be sure that the rate of
convergence of Algorithm A will be fast once the penalty parameter is stabilized.

Incidentally, by implementing such an approach, where we require the step pro-
vided by the iterative linear system solver to satisfy both (6.1) and Termination Test I
or II, one can directly observe the extra cost associated with evolving the ires al-
gorithm described in the previous section into a robust method. In our experiments
we found this extra cost to be minimal for the problems in our test set. For exam-
ple, let us define a third algorithm, call it isqp-ires, that imposes inequality (6.1)
along with our termination tests within the step computation of Algorithm B, where
κ = κk = 2−5 for all k. Note that the key differences between isqp-ires and isqp
are that we have now implemented κ < 1 for (3.3) and that an inequality of the form
(3.3)/(6.1) is also enforced in Termination Test II. Now, if we compare isqp-ires
with ires (with κ = 2−5), we can observe the extra cost required to satisfy our termi-
nation tests beyond simply attaining an accurate solution to the primal-dual system
(2.4). It turns out that for the 35 problems solved by both of these algorithms, an
average of only 0.5 extra total GMRES iterations over the entire run of the algorithm
were required by isqp-ires. Moreover, by observing the termination tests for the
iterative solver, the 9 problems left unsolved by ires (approximately 20% of the total
number of 44 problems) were all solved successfully by isqp-ires. Indeed, the extra
cost is minimal with respect to the added robustness.

In addition it is worth noting that imposing condition (6.1) with sufficiently small
κk implies that the bound (3.4) would automatically be satisfied, and the bounds
(3.5) of Termination Test II are satisfied in the case where ‖ck‖ is greater than some
constant times ‖gk + AT

k λk‖.
Finally, it would be of interest to analyze the behavior of inexact SQP methods

in the presence of Jacobian singularities and when Wk = ∇2
xxLk for some k with Wk
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not positive definite in the null space of the constraint Jacobian Ak. However, such
an analysis can be complex and would have brought the focus away from the intended
scope of this paper. Therefore, we chose to discuss the design of inexact SQP methods
in the benign context of Assumptions 4.1.

Acknowledgments: The authors are thankful to Eldad Haber and Nick Gould for
productive discussions on this work.
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