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Abstract

The design and implementation of a new algorithm for solving large nonlinear pro�

gramming problems is described� It follows a barrier approach that employs sequential

quadratic programming and trust regions to solve the subproblems occurring in the

iteration� Both primal and primal�dual versions of the algorithm are developed� and

their performance is illustrated in a set of numerical tests�
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�� Introduction

In this paper we discuss the design� implementation and performance of an interior point
method for solving the nonlinearly constrained optimization problem

min f�x�

subject to h�x� � �

g�x� � �� �����

where f 	 Rn � R� h 	 Rn � Rt� and g 	 Rn � Rm are smooth functions� We are
particularly interested in the case when ����� is not a convex program and when the number
of variables n is large� We assume in this paper that 
rst and second derivatives of the
objective function and constraints are available� but our strategy can be extended so as to
make use of quasi�Newton approximations�

Interior point methods provide an alternative to active set methods for the treatment
of inequality constraints� Our algorithm� which is based on the framework proposed by
Byrd� Gilbert and Nocedal ��
� incorporates within the interior point method two powerful
tools for solving nonlinear problems	 sequential quadratic programming and trust region
techniques� Sequential quadratic programming �SQP� ideas are used to e�ciently handle
nonlinearities in the constraints� Trust region strategies allow the algorithm to treat convex
and non�convex problems uniformly� permit the direct use of second derivative information
and provide a safeguard in the presence of nearly dependent constraint gradients�

Of crucial importance in the new algorithm is the formulation and solution of the equal�
ity constrained quadratic subproblems that determine the steps of the algorithm� The
formulation of the subproblems gives the iteration primal or primal�dual characteristics�
and ensures that the slack variables remain safely positive� The technique used to solve the
subproblems has a great impact on the e�ciency and robustness of the algorithm� we use
an adaptation of the trust region method of Byrd and Omojokun ��� ��
 which has proved
to be e�ective for solving large equality constrained problems ���
�

Our numerical results suggest that the new algorithm holds much promise	 it appears
to be robust and e�cient �in terms of function evaluations�� and can make e�ective use of
second derivative information� The test results also indicate that the primal�dual version
of the algorithm is superior to the primal version� The new algorithm has a solid theo�
retical foundation� since it follows the principles of the globally convergent primal method
developed in ��
�

There has been much research in using interior point methods for nonlinear program�
ming� most of it concerns line search methods� The special case when the problem is a
convex program can be handled by line search methods that are� in a sense� direct exten�
sions of interior point methods for linear programming �see e�g� ��
�� In the convex case� the
step generated by the solution of the primal�dual equations can be shown to be a descent
direction for several merit functions� and this allows one to establish fairly satisfactory con�
vergence results� Other research ���� ��
 has focused on the local behavior of interior point
line search methods for nonlinear programming� Conditions have been given that guarantee
superlinear and quadratic rates of convergence� These algorithms can also be viewed as a
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direct extension of linear programming methods� in that they do not make provisions for
the case when the problems is non�convex�

Several line search algorithms designed for non�convex problems have recently been
proposed ���� ��� ��� ��� �� ��
� An important feature of many of these methods is a
strategy for modifying the KKT system used in the computation of the search direction�
This modi
cation� which is usually based on a matrix factorization algorithm� ensures that
the search direction is a descent direction for the merit function� Since these algorithms are
quite recent� it is di�cult to assess at this point whether they will lead to robust general�
purpose codes�

The use of trust region strategies in interior point methods for linear and nonlinear
problems is not new ��� ��
� Coleman and Li ���� ��
 proposed a primal method for bound
constrained nonlinear optimization� see also ���
� Plantenga ���
 developed an algorithm for
general nonlinear programming that has some features in common with our algorithm� the
main di�erences lie in his treatment of the trust region� in the purely primal nature of this
step� and in the fact that his algorithm reverts to an active set method near the solution�

The algorithm proposed in this paper makes use of successive quadratic programming
techniques� and in this sense is related to the line search algorithm of Yamashita ���
� But
the way in which our algorithm combines trust region strategies� interior point approaches
and successive quadratic programming techniques leads to an iteration that is di�erent from
those proposed in the literature�

�� The New Algorithm

The algorithm is essentially a barrier method in which the subproblems are solved
approximately by an SQP iteration with trust regions� Each barrier subproblem is of the
form

min
x�s

f�x�� �
mX
i��

ln si

subject to h�x� � � �����

g�x� � s � ��

where � � � is the barrier parameter and where the slack variable s is assumed to be
positive� By letting � converge to zero� the sequence of approximate solutions to �����
will normally converge to a minimizer of the original nonlinear program ������ As in some
interior point methods for linear programming� and in contrast with the barrier methods of
Fiacco and McCormick ���
� our algorithm does not require feasibility of the iterates with
respect to the inequality constraints� but only forces the slack variables to remain positive�

To characterize the solution of the barrier problem ����� we introduce its Lagrangian�

L�x� s� �h� �g� � f�x�� �
mX
i��

ln si � �Thh�x� � �Tg �g�x� � s�� �����

where �h and �g are the multipliers associated with the equality and inequality constraints�
respectively� Rather than solving each barrier subproblem ����� accurately� we will be
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content with an approximate solution ��x� �s� satisfying E��x� �s��� � ��� where E measures
the optimality conditions of the barrier problem and is de
ned by

E�x� s��� � max �krf�x� � Ah�x��h � Ag�x��gk�� kS�g � �ek�� kh�x�k��

kg�x� � sk�� � �����

Here e � ��� ���� �
T � S � diag�s�� ���� sm�� with superscripts indicating components of a
vector� and

Ah�x� � �rh��x�� � � � �rht�x�
� Ag�x� � �rg��x�� � � � �rgm�x�


are the matrices of constraint gradients� In the de
nition of the optimality measure E�
the vectors �h� �g are least squares multiplier estimates� and thus are functions of x� s and
�� We will show later �see ������������� that the terms in ����� correspond to each of the
equations of the so�called perturbed KKT system upon which our primal�dual algorithm
is based� The tolerance ��� which determines the accuracy in the solution of the barrier
problems� is decreased from one barrier problem to the next� and must converge to zero� In
this paper we will use the simple strategy of reducing both �� and � by a constant factor
� � ��� ��� We test for optimality for the nonlinear program ����� by means of E�x� s� ���

Algorithm I	 Barrier Algorithm for Solving the Nonlinear Problem �����

Choose an initial value for the barrier parameter � � �� and select the parame�
ters �� � �� � � ��� ��� and the 
nal stop tolerance �TOL � Choose the starting
point x and s � �� and evaluate the objective function� constraints� and their
derivatives at x�

Repeat until E�x� s� �� � �TOL 	
�� Apply an SQP method with trust regions� starting from �x� s��

to 
nd an approximate solution �x�� s�� of the barrier
problem ����� satisfying E�x�� s���� � ���

�� Set �� ��� �� � ���� x� x�� s� s��
end

To obtain a rapidly convergent algorithm� it is necessary to carefully control the rate
at which the barrier parameter � and the convergence tolerance �� are decreased ���� ��
�
We will� however� not consider this question here and defer its study� in the context of our
algorithm� to a future article ��
�

Most of the work of Algorithm I lies clearly in step �� in the approximate solution of
an equality constrained problem with an implicit lower bound on the slack variables� The
challenge is to perform this step e�ciently� even when � is small� while forcing the slack
variables to remain positive� To do this we apply an adaptation of the equality constrained
SQP iteration with trust regions proposed by Byrd ��
 and Omojokun ���
 and developed
by Lalee� Nocedal and Plantenga ���
 for large�scale equality constrained optimization� We
follow an SQP approach because it is known to be e�ective for solving equality constrained
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problems� even when the problem is ill�conditioned and the constraints are highly nonlinear
��� ��� ��� ��
� and choose to use trust region strategies to globalize the SQP iteration because
they facilitate the use of second derivative information when the problem is non�convex�

However� a straightforward application of this SQP method to the barrier problem leads
to ine�cient primal steps that tend to violate the positivity of the slack variables� and that
are thus frequently cut short by the trust region constraint� The novelty of our approach
lies in the formulation of the quadratic model in the SQP iteration and in the de
nition
of the �scaled� trust region� These are designed so as to produce steps that have some of
the properties of primal�dual iterations and that avoid approaching the boundary of the
feasible region too soon� In order to describe our approach more precisely� it is instructive
to brie�y review the basic principles of Sequential Quadratic Programming�

Every iteration of an SQP method with trust regions begins by constructing a quadratic
model of the Lagrangian function� A step d of the algorithm is computed by minimizing
the quadratic model� subject to satisfying a linear approximation to the constraints� and
subject to a trust region bound on this step� ��� ��
� If the step d gives a su�cient reduction
in the merit function �� then it is accepted� otherwise the step is rejected� the trust region
is reduced and a new step is computed�

Let us apply these ideas to the barrier problem ������ in order to compute a step d �
�dx� ds� from the current iterate �xk� sk�� To economize space we will often write vectors
with x and s�components as �

dx
ds

�
� �dx� ds��

After computing Lagrange multiplier estimates ��h� �g�� we formulate the quadratic sub�
problem

min
dx�ds

rf�xk�Tdx �
�

�
dTxr�

xxL�xk� sk� �h� �g�dx � �eTS��k ds �
�

�
dTs �kds �����

subject to Ah�xk�Tdx � h�xk� � rh �����

Ag�xk�Tdx � ds � g�xk� � sk � rg �����

�dx� ds� � Tk� �����

Here �k is an m �m positive de
nite diagonal matrix that represents either the Hessian
of the Lagrangian ����� with respect to s or an approximation to it� As we will see in the
next section� the choice of �k is of crucial importance because it determines whether the
iteration has primal or primal�dual characteristics� The residual vector r � �rh� rg� in ������
������ which is in essence chosen to be the vector of minimum Euclidean norm such that
����������� are consistent� will be de
ned in the next section� The closed and bounded set Tk
de
nes the region around xk where the quadratic model ����� and the linearized constraints
����������� can be trusted to be good approximations to the problem� and also ensures the
feasibility of the slack variables� This trust region also guarantees that ����������� has a

nite solution even when r�

xxL�xk� sk� �h� �g� is not positive de
nite� The precise form of
the trust region Tk requires careful consideration and will be described in the next section�
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We compute a step d � �dx� ds� by approximately minimizing the quadratic model �����
subject to the constraints ������������ as will be described in x���� We then determine if the
step is acceptable according to the reduction obtained in the following merit function

��x� s� 	� � f�x�� �
mX
i��

ln si � 	

�����
�

h�x�
g�x� � s

������
�

� �����

where 	 � � is a penalty parameter� This non�di�erentiable merit function has been success�
fully used in the SQP algorithm of Byrd and Omojokun ��� ��� ��
� and has been analyzed in
the context of interior point methods in ��
� We summarize this SQP trust region approach
as follows�

Algorithm II	 SQP Trust Region Algorithm for the Barrier Problem �����
Input parameters � � � and �� � � and values k� xk and sk � ��
set trust region Tk� compute Lagrange multipliers �h and �g�
Repeat until E�xk� sk��� � ��

Compute d � �dx� ds� by approximately solving ������������
If the step d provides su�cient decrease in �

then set xk�� � xk � dx� sk�� � sk � ds�
compute new Lagrange multiplier estimates �h and �g�
and possibly enlarge the trust region�

else set xk�� � xk� sk�� � sk� and shrink the trust region�
Set k 	� k � ��

end

Algorithm II is called at each execution of step � of Algorithm I� The iterates of Algo�
rithm II are indexed by �xk� sk�� where the index k runs continuously during Algorithm I�
In the next section we present a full description of Algorithm II� which forms the core of
the new interior point algorithm� Numerical results are then reported in x��

�� Algorithm for Solving the Barrier Problem

Many details of the SQP trust region method outlined in Algorithm II need to be
developed� We 
rst give a precise description of the quadratic subproblem ������������
including the choice of the diagonal matrix �k which gives rise to primal or primal�dual
iterations� Further� we de
ne the right hand side vectors �rh� rg�� the form of the trust
region constraint Tk� and the choice of Lagrange multiplier estimates� Once a complete
description of the subproblem ����������� has been given� we will present our procedure for

nding an approximate solution of it� We will conclude this section with a discussion of
various other details of implementation of the new algorithm�

���� Formulation of the Subproblem

Let us begin by considering the quadratic model ������ We have mentioned that SQP
methods choose the Hessian of this model to be the Hessian of the Lagrangian of the
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problem under consideration� or an approximation to it� Since the problem being solved
by Algorithm II is the barrier problem ������ which has a separable objective function in
the variables x and s� its Hessian consists of two blocks� As indicated in ������ we choose
the Hessian of the quadratic model with respect to dx to be r�

xxL�xk� sk� �h� �g� �which we
abbreviate as r�

xxLk� but consider several choices for the Hessian �k of the model with
respect to ds� The 
rst choice is to de
ne �k � r�

ssLk� which gives

�k � �S��k � �����

The general algorithm studied in Byrd� Gilbert and Nocedal ��
 de
nes �k in this manner�
To study the e�ect of �k in the step computation� let us analyze the simple case when

the matrix r�
xxLk is positive de
nite on the null space of the constraints� when the residual

�rh� rg� is zero� and when the step generated by ����������� lies strictly inside the trust
region� In this case the quadratic subproblem ����������� has a unique solution d � �dx� ds�
which satis
es the linear system�

����
r�

xxLk � Ah�xk� Ag�xk�
� �k � I

AT
h �xk� � � �

AT
g �xk� I � �

	



�
�
����

dx
ds
��h
��g

	



� �

�
����

�rf�xk�

�S��k e
�h�xk�

�g�xk�� sk

	



� � �����

It is well known �see e�g� ���� ��� �
� and easy to verify that� if �k is de
ned by ������
the system ����� is equivalent to a Newton iteration on the KKT conditions of the barrier
problem ������ which are given by

rf�x� � Ah�x��h � Ag�x��g � � �����

��S��e � �g � � �����

h�x� � � �����

g�x� � s � �� �����

This approach is usually referred to as a primal method� Several authors� including Jarre
and S� Wright ���
� M� Wright ���
 and Conn� Gould and Toint ���
 have given arguments
suggesting that the primal search direction will often cause the slack variables to become
negative� and can be ine�cient�

Research in linear programming has shown that a more e�ective interior point method
is obtained by considering the perturbed KKT system

rf�x� � Ah�x��h � Ag�x��g � � �����

S�g � �e � � �����

h�x� � � �����

g�x� � s � �� ������

which is obtained by multiplying ����� by S� It is well�known� and also easy to verify� that
a Newton step on this system is given by the solution to ������ with

�k � S��k �g� ������
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Here �g �diag���g� � � � � �
m
g � contains the Lagrange multiplier estimates corresponding to the

inequality constraints� The system ����� with �k de
ned by ������ is called the primal�dual

system� This choice of �k may be viewed as an approximation to r�
ssLk since� by ������ at

the solution of the barrier problem the equation �S�� � �g is satis
ed� Substituting this
equation in ����� gives �������

The system ������������ has the advantage that the second derivatives of ����� are
bounded as any slack variables approach zero� which is not the case with ������ In fact�
analysis of the primal�dual step� as well as computational experience with linear programs�
has shown that it overcomes the drawbacks of the primal step	 it does not tend to violate
the constraints on the slacks� and usually makes excellent progress towards the solution �see
e�g� ���� ��� ��� ��
�� These observations suggest that the primal�dual model in which �k is
given by ������ is likely to perform better than the primal choice ������ Of course� these ar�
guments do not apply directly to our algorithm which solves the SQP subproblem inexactly�
and whose trust region constraint may be active� Nevertheless� as the iterates approach a
solution point� the algorithm will resemble more and more an interior point method in which
a Newton step on some form of the KKT conditions of the barrier problem is taken at each
step�

Lagrange multiplier estimates are needed both in the primal�dual choice ������ of �k and
in the Hessian r�Lxx�xk� sk� �h� �g�� To complete our description of the quadratic model
����� we must discuss how these multipliers are computed�

Lagrange Multipliers

Since the method we will use for 
nding an approximate solution to the quadratic model
����������� does not always provide Lagrange multiplier estimates as a side computation� we
will obtain them using a least squares approach� As is common in SQP methods� which often
compute least squares estimates based on the stationarity conditions at the current iterate�
we will choose the vector � � ��h� �g� that minimizes the Euclidean norm of ������������
This gives the formula

�k �

�
�h
�g

�
� �LS�xk� sk� �� �

�
�AT
k

�Ak


��
�AT
k

�
�rf�xk�

�e

�
� ������

where

�Ak �

�
Ah�xk� Ag�xk�

� Sk

�
� ������

The computation of ������ will be performed by solving an augmented system� instead of
factoring �AT

k
�Ak� as will be discussed in x����

We should note that the multiplier estimates �g obtained in this manner may not always
be positive� and it would be questionable to use them in this case in the primal�dual choice
of �k given by ������� In particular� since the Hessian of the barrier term ��P ln si is
known to be positive de
nite� it seems undesirable to create an inde
nite approximation �k

to it� In primal�dual interior point methods for linear programming� the initial Lagrange
multiplier estimate is chosen to be positive� and in subsequent iterations a backtracking
line search ensures that all new multiplier estimates remain safely positive �see e�g� ���
��
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Here we follow a di�erent approach� not enforcing the positivity of the multipliers �g� but
ensuring that the quadratic model remains convex in the slack variables� To do so� in the
primal�dual version of the algorithm we de
ne the i�th diagonal element of �k as


ik �

�
�ig�s

i if �ig � �

���si�� otherwise�
������

This means� in particular� that when a multiplier �ig given by ������ is negative� the corre�
sponding entry in the primal�dual matrix �k coincides with the corresponding entry in the
primal Hessian�

To avoid an abrupt change in �k when � is decreased� we modify the de
nition of �k
slightly in the primal�dual version of the algorithm� If �xk� sk� is the starting point for a
new barrier sub�problem �i�e� the input in Algorithm II� then the value for � used in ������
will not be the current barrier parameter� but the previous one� In other words� the value
of � used in ������ is the value that the barrier parameter had when �xk� sk� was computed�
Thus the de
nition of the multipliers is

�k �

�
�LS�xk� sk� �� in primal version
�LS�xk� sk� ��� in primal�dual version�

������

where �� is the value of the barrier parameter used in the computation of �xk� sk��
This approach could just barely be considered a primal�dual method� as other primal�

dual methods treat the multipliers �h� �g as independent variables� In our approach� which
is much closer to the standard SQP method� the multipliers have a subordinate role� always
being estimated as a function of the primal variables� and not appearing explicitly in the
merit function�

The Trust Region

Algorithm II stipulates that the step �dx� ds� must be restricted to a set Tk� called
the trust region� We will de
ne Tk so as to accomplish two goals� First of all it should
restrict the step to a region where the quadratic model ����� is a good approximation of
the Lagrangian ������ and where the linear equations ����������� are good approximations
to the constraints� This is the basic philosophy of trust regions and is normally achieved by
imposing a bound of the form k�dx� ds�k � �k� where the trust region radius �k is updated
at every iteration according to how successful the step has been�

We will impose such a bound on the step� but the shape of the trust region must also
take into account other requirements of Algorithm II� Since the slack variables should not
approach zero prematurely� we introduce the scaling S��k that penalizes steps ds near the
boundary of the feasible region� This scaled trust region will be de
ned as

k�dx� S��k ds�k� � �k� ������

The second objective of our trust region is to ensure that the slack variables remain positive�
For this purpose we impose the well�known ���� ��
 fraction to the boundary rule

sk � ds � ��� ��sk� ������
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where � � ��� ��� in our tests we use � � ������ Combining this inequality� which can be
rephrased as ds � ��sk� with ������ we obtain the 
nal form of the trust region�

k�dx� S��k ds�k� � �k� and ds � ��sk� ������

The trust region ������ does not precisely match with the model algorithm analyzed by
Byrd� Gilbert and Nocedal ��
� but it is not di�cult to extend that analysis to our case�
We have experimented with other forms of the trust region� in particular with box�shaped
trust regions de
ned by an 
� norm� but so far ������ appears to be the most appropriate
for our algorithm�

Now that the quadratic model ����� and the trust region ����� have been de
ned� it only
remains to specify the choice of the residual vector r � �rh� rg� in ������������ This vector
will be determined during the course of solving the quadratic subproblem� as discussed next�

���� Solution of the Quadratic Subproblem

We will use the decomposition proposed by Byrd and Omojokun ��� ��
 to 
nd an
approximate solution of the subproblem ������������ In this approach the step d is a com�
bination of a vertical step that attempts to satisfy the linear constraints ����������� as well
as possible� and a horizontal step that lies on the tangent space of the constraints and that
tries to achieve optimality� The e�ciency of the new algorithm depends� to a great extent�
on how these two components of the step are computed�

Throughout this section we omit the iteration subscript� and write sk as s� Ah�xk� as
Ah� etc�

Vertical Step

It is clear ���
 that restricting the size of the step d by means of the trust region bounds
������ may preclude d from satisfying the linearized constraints ����������� with r � �� To

nd a value of r that makes the quadratic subproblem feasible� we 
rst compute the so�
called vertical step v� that lies well within the trust region and that approximately minimizes
������������ in the least squares sense� To do this� we choose a parameter � � ��� �� �in our
code we use the value � � ���� and formulate the following subproblem in the variable
v � �vx� vs�

min
v
kAT

h vx � hk�� � kAT
g vx � vs � g � sk��

subject to k�vx� S��vs�k� � �� ������

vs � ��s�

To simplify the constraints we de
ne

�v � �vx� �vs� � �vx� S
��vs��

Performing this transformation� recalling the de
nition ������ of �A� expanding the quadratic
objective and ignoring constant terms� we obtain

�



min
�v

m��v� � �
h
hT �g � s�T

i
�AT

�
vx
�vs

�
�
h
vTx �vTs

i
�A �AT

�
vx
�vs

�
������

subject to k�vk� � �� ������

�vs � ��� ������

We compute an approximate solution of this problem by means of an adaptation of Powell s
dogleg method ���
� which provides a relatively inexpensive solution that is good enough to
allow our algorithm to be robust and rapidly convergent�

We 
rst calculate the Cauchy point �vCP for problem �������������� which is obtained by
minimizing the quadratic ������ along the steepest descent direction� starting from v � ��
A simple computation shows that

�vCP �

�
vCPx
�vCPs

�
� �� �A

�
h

g � s

�
� ������

where

� �

����� �A

�
h

g � s

������
�

�h
hT gT � sT

i
� �AT �A��

�
h

g � s

� �

Note that this computation is inexpensive� requiring only matrix�vector multiplications and
no matrix factorizations�

The dogleg method then computes the Newton step �vN� which in our case is de
ned as
the minimum norm minimizer of ������� It is given by

�vN �

�
vNx
�vNs

�
� � �A� �AT �A���

�
h

g � s

�
� ������

The computation of �vN will be done by solving an augmented system� instead of factoring
�AT �A� as will be discussed in x����

The Cauchy and Newton steps de
ne the dogleg path� which consists of the two line
segments from �v � � to �v � �vCP� and from �v � �vCP to �v � �vN� We de
ne the dogleg step as
the point �vDL on this path with lowest value of m��v�� and which satis
es ������ and �������
Since m��v� decreases along the dogleg path� �vDL will be the farthest feasible point from
�v � �� Clearly the dogleg step will be the Newton step �vN if it is feasible� Otherwise� we
note that the dogleg path intersects ������ at most once and ������ at most three times�
The dogleg step �vDL is given by the intersection point that is farthest along the path and
feasible�

Because the bounds on the slack variables ������ may cause �vDL to be a short step� we
also compute the truncated Newton step ��vN� where � � ��� �
 is the largest value such
that ��vN is feasible� We then de
ne �v to be either the dogleg step �vDL or the truncated
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Newton step ��vN� whichever results in the lowest value of the quadratic model m� Finally�
we transform �v into the original space of variables to obtain the vertical step v � �vx� S�vs��

For future reference we note that the step �v lies in the range space of �A� see ������ and
�������

An alternative to the dogleg method is to compute the vertical step by means of Stei�
haug s implementation of the conjugate gradient method ���
� This is described in detail
in ���
 �see also ���
�� and is certainly a viable option� We prefer the dogleg method in
this study because it allows us to compute the vertical step using a direct linear algebra
solver� thereby avoiding the di�culties that can arise when applying the conjugate gradient
method to ill�conditioned systems� In addition� the matrix factorization performed during
the computation of the Lagrange multipliers can be saved and used to compute the vertical
step� giving signi
cant savings in computation� We will return to this in x����

Horizontal Problem

Once the vertical step v is computed� we de
ne the vectors rh and rg in ����������� as
the residuals in the vertical step computation� i�e�

rh � AT
h vx � h� rg � AT

g vx � vs � g � s�

The quadratic subproblem ����������� is now completely speci
ed as

minrfTdx � �eTS��ds �
�

�
�dTxr�

xxLdx � dTs �ds� ������

subject to AT
hdx � AT

h vx ������

AT
g dx � ds � AT

g vx � vs ������

k�dx� S��ds�k� � � ������

ds � ��s� ������

We will devote much attention to this subproblem� whose solution represents the most
complex and time consuming part of the new algorithm�

Let us motivate our choice of the residual vectors rh and rg� First� the constraints
������������� are now feasible since d � v clearly satis
es them �recall that � � � in ��������
Second� we are demanding that the total step d makes as much progress towards satisfying
the constraints ������������� as the vertical step v�

To 
nd an approximate solution of this subproblem� we write d � v � w� where v is
the vertical step and w� which is to be determined� is tangent to the �scaled� constraints�
Introducing the same change of variables as in the vertical step computation� we de
ne

�d �

�
�dx
�ds

�
�

�
dx

S��ds

�
�

�
vx
�vs

�
�

�
wx

�ws

�
� �v � �w� ������

Using this and de
ning

G �

�
r�

xxL �
� S�S

�
� ������

��



the objective of ������ can be expressed as

q��v � �w� � �rfT � ��eT ���v � �w� �
�

�
��v � �w�TG��v � �w�� ������

The constraint ������ can be rewritten as

k �dk�� � k�v � �wk�� � ��� ������

We have noted in x��� that the �scaled� vertical step �v lies in the range space of �A� and we
will require that w satis
es �AT �w � �� Thus �wT �v � �� and ������ can be expressed as

k �wk�� � �� � k�vk���
Using this� ������ and the de
nitions ������� we can rewrite ������������� as

min
�w

q��v � �w� � q��v� �rfTwx � �eT �ws � �G�v�T �w �
�

�
� �wTG �w� ������

subject to AT
hwx � � ������

AT
g wx � S �ws � � ������

k �wk�� � �� � k�vk��� ������

�ws � ��e� �vs� ������

We call this the horizontal subproblem� We will 
nd an approximate solution to this problem
by applying the conjugate gradient �CG� method to the quadratic objective ������� while
forcing the CG iterates to satisfy the constraints �������������� To take into account the trust
region and the possibility of inde
niteness in the model� we will terminate the CG iteration
using the stopping tests of Steihaug ���
� We will also precondition the CG iteration�

Rather than simply presenting this CG iteration� we will now describe in detail the steps
that lead to it� and will motivate our preconditioning strategy

Since �w is assumed to lie in the null space of �AT � it can be expressed as

�w � �Zu �
�

Zx

�Zs

�
u� ������

for some vector u � Rn�t� and where �Z is a basis for the null space of �AT � The constraints
������������� can be written as �AT �w � �� and are therefore satis
ed by any �w of the form
������� Therefore the horizontal problem ������������� can be stated as

min
u

q��v � �Zu� ������

subject to k �Zuk�� � �� � k�vk���
�Zsu � ��e� �vs� ������

We will precondition the CG iteration so as to eliminate the ine�ciencies that can arise
from an ill�conditioned null space basis Z� Note that since the Hessian of ������ is

�Z
T
G �Z�
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a poor choice of Z could make this matrix unnecessarily ill�conditioned� causing an excessive
number of CG iterations� Such a poor choice of null space basis could occur when using the
easily computable basis

�Z �

�
�A���

�A�

�I

�

based on the basic�nonbasic partition �AT � � �AT
�

�AT
� 
� Now� if we precondition the CG

iteration for minimizing ������ by the matrix

�ZT �Z� ������

the rate of convergence is governed by the spectrum of

� �ZT �Z��
�
� �Z

T
G �Z� �ZT �Z��

�
� � ������

Since the matrix �Z� �ZT �Z��
�
� has orthonormal columns� the behavior of the CG iteration will

now be identical to that obtained when �Z is a basis with orthonormal columns� Note also
from ����� that �S�� 	 �g near the solution of the barrier problem� and thus by ������ S�S
is close to �I� From ������ we see that ������ does become increasingly ill�conditioned as
�� �� but this ill�conditioning does not greatly degrade the performance of the CG method
since it results in one tight cluster of small eigenvalues� The numerical tests described in x�
con
rm that the solution by the CG method does not become signi
cantly more di�cult
as � tends to zero�

The conjugate gradient iteration computes estimates to the solution of ������ by the
recursion �see e�g� ���
�

u� � u � ��p� ������

where the parameter � is chosen to minimize the quadratic objective q along the direction
�p� Since the gradient of q with respect to u is �ZTrq��v � �Zu�� and since our preconditioner
is given by ������� the conjugate directions �p are recurred by

�p� � �� �ZT �Z��� �ZTrq��v � �Zu� � ��p� ������

where the parameter � is initially zero and is chosen at subsequent steps to maintain con�
jugacy�

However� because of the computational cost of manipulations with the preconditioner
������� it is preferable to perform the CG iteration in the full space rather than the reduced
space� More speci
cally� by applying the transformation ������ to �������������� we obtain
the following iteration in the variable �w of problem �������

�w� � �w � �p �p � �Z �p� ������

p� � � �Z� �ZT �Z��� �ZTrq��v � �w� � �p� ������

We have therefore obtained a CG iteration for the objective ������ of the horizontal sub�
problem that� by construction� satis
es the constraints �������������� Note that the matrix
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�Z� �ZT �Z��� �ZT is actually the orthogonal projection onto the null space of �AT and thus can
be expressed as

P � �Z� �ZT �Z��� �ZT � I � �A� �AT �A��� �AT � ������

We compute projections of the form Pr by solving an augmented system whose coe�cient
matrix coincides with that used in the vertical step and Lagrange multiplier computations�
as will be discussed in x���� This allows us to totally bypass the computation of the null
space matrix Z�

Because of the trust region constraint ������� and due to the possibility of inde
niteness
in the quadratic model� we use Steihaug s stopping tests in the iteration �������������	 we
terminate if the gradient of q is smaller than a prescribed tolerance� if the direction p� is
one of negative curvature� or if the iterates violate the trust region norm constraint �������
We include an additional step truncation to satisfy the bound constraint �������

Algorithm III	 Projected CG Method for the Horizontal Subproblem ��������������

Set �w � �� r � �rx� rs� � �rf���e� � G�v� g � Pr� p � �g� tol � ����kgk��

Repeat at most ��n� t� times� or until a stopping test is satis
ed�
If pTGp � �

then �w� � �w � �p� where � � � is such that k �w�k� � �� STOP
� � rT g�pTGp
�w� � �w � �p
If k �w�k� � �

then �w� � �w � �p� where � � � is such that k �w�k� � �� STOP
r� � r � �Gp
g� � Pr�

If �g��T r� � tol� STOP
� � �r��T g��rT g
p� � �g � �p
�w � �w�� r � r�� p� p�

End repeat

If �w� does not satisfy the slack variable bound ������� restore the last feasible
iterate �w and set �w� � �w � �p� where � � � is is the largest value such that
�w � �p is feasible� Set w � �wx� ws� � � �w�

x � S �w�
s ��

Note that during the Repeat loop we only test whether the trust region norm constraint
������ is satis
ed� and ignore the slack variable bound ������� The reason for this is that it
can be shown ���
 that the norm of the iterates k �wk� increases during the conjugate gradient
iteration� so that once an iterate violates ������� all subsequent iterates will also violate this
constraint� It is therefore sensible to stop iterating when ������ is violated� However� a slack
bound ������ could be crossed several times� so we do not check feasibility with respect to
the bound until we have gone as far as possible subject to the norm constraint� Thus� at the
end of the Repeat loop the point �w� may not satisfy the slack variable bounds ������� In
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this case we select the last intersection point of the path generated by the iterates �w with the
bounds ������� This strategy has the potential of being wasteful� because we could generate
a series of iterates that violate the slack variable bounds and never return to the feasible
region� To control this cost we include a limit of ��n � t� CG iterations in the horizontal
step computation� In the tests described in x�� the infeasible CG steps accounted for about
�! of the total� and our strategy appears to pay o� because when the iterates do return to
the feasible region they may generate a much better step than the one obtained when the
bounds were 
rst encountered�

In x��� we will show how the projection Pr� can be computed by solving an augmented
system whose coe�cient matrix is the same as that needed in the vertical step and Lagrange
multiplier computations�

���� Merit Function� Trust Region� and Second�Order Correction

The merit function ��x� s� 	�� de
ned by ������ is used to determine whether the total
step d � v � w is acceptable� and also provides information on how to update the trust
region radius �k� The penalty parameter 	 �not to be confused with the barrier parameter
�� balances the relative contribution of the objective function and constraints� and needs
to be selected at every iteration so that the step d and the merit function � are compatible�
By this we mean that if the trust region is su�ciently small� then the step d must give a
reduction in ��

We approximate the change in the merit function due to the step d by the predicted

reduction de
ned as
predk�d� � �q��v � �w� � 	k

q
�m��v�� ������

where q and m are the objectives ������� ������ in the horizontal and vertical subproblems�
respectively� The de
nition ������ is motivated and analyzed in ��
� and is similar to that
used in other trust region algorithms for constrained optimization� �Since m measures the
sums of squares of the changes in the constraints� by taking its square root� the predicted
reduction is compatible with the merit function which includes the norm of the constraints��
We demand that 	k be large enough that predk�d� be positive and proportional to the
reduction

p�m��v� provided by the vertical step� i�e�

predk�d� � �	k

q
�m��v�� ������

where � � � � � �in our code we use the value � � �����
We see from ������ that we can enforce inequality ������ by choosing the penalty pa�

rameter 	k so that

	k � q��v � �w�

��� ��
p�m��v�

� ������

As has been argued in ��
� if m��v� � �� then �v � �� which implies q��v� �w� � �� and so ������
is satis
ed for any value of 	k� In this case 	k can be de
ned as its value in the previous
iteration of Algorithm II� Thus we update 	 as follows�
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Procedure I� Penalty Parameter Update�

If m��v� � � then
	k � 	k��

Else

	k � max

�
	k���

q��v� �w�

�����
p
�m��v�

�
�

End

This procedure is applied while the barrier parameter � is 
xed� Thus� for a 
xed
barrier problem the penalty parameter 	k is monotonically increasing� which is an important
property in establishing global convergence for the algorithm�

Now that the merit function has been completely speci
ed� let us consider how to use
it to determine if a step d is to be accepted by Algorithm II� As is common in trust region
methods� we compute the actual reduction in the merit function�

aredk�d� � ��xk� sk� 	k�� ��xk � dx� sk � ds� 	k�� ������

and accept d only if it gives a su�cient reduction in �� in the sense that

aredk�d� � �predk�d�� ������

where � � � � � �in our code we use � � ������ Using essentially the same argument as
in ��
 it can be shown that ������ will be satis
ed if the trust region radius � is su�ciently
small�

If a step is accepted then the trust region is increased as follows	

�k�� �

���
��

maxf�kdkk��kg if r � ���
maxf�kdkk��kg if ��� � r � ���
�k if � � r � ���

r �
aredk�d�

predk�d�
� ������

When a step is rejected� the new trust region radius is at most one half� but not less than
one tenth� of the length of the step� To determine the exact fraction of contraction in � we
use linear or quadratic interpolation� the details are given in ���
� We also adjust � when
the barrier parameter 	 is reduced�

In order to achieve fast convergence� it is important that near the solution the trust
region be inactive so that the algorithm can take full Newton steps� However� because of
the non�di�erentiability of the merit function� it can occur that a step that approaches the
solution point does not satisfy ������ and is rejected� �This is sometimes referred to as the
Maratos e�ect� see e�g� ���� ��
�� Since this problem is caused by an increase in the norm of
the constraints due to their nonlinearity� one way to rectify the situation is to add a second

order correction step y when ������ fails ���
� This is essentially a Newton�like step on the
constraints� and amounts to computing ������ at the point x � d� In our implementation
the second order correction is applied only when the vertical component is small relative to
the horizontal component of the step�
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Procedure SOC� Second Order Correction�

If kvkk � ���kwkk then
yk � �A

�
�AT �A


�� � h�xk � dx�
g�xk � dx� � s � ds

�

Else

yk � �
End

The total step of Algorithm II� when a second order correction is needed� is given by d� y�

���� Solution of Linear Systems

The algorithm requires the solution of three linear systems� They occur in the com�
putation of the Lagrange multiplier estimates ������� in the Newton component ������ of
the vertical step� and in the projection Pr� required by Algorithm III� where P is de
ned
by ������� We now show that these three systems can be solved using only one matrix
factorization�

Note that ������ requires the solution of a system of the form

�AT �Ax � b�

where �A is de
ned by ������� We compute the solution by solving the augmented system

�
I �A
�AT �

� �
z
x

�
�

�
�
�b

�
� ������

Similarly� since P can be expressed in terms of �A� as shown in ������� the computation
g � Pr can be performed by solving

�
I �A
�AT �

� �
g
l

�
�

�
r
�

�
� ������

Moreover� if we solve the system ������ with r replaced by ��rf� �e�T then� by ������� the
vector l contains the least�squares multiplier estimates�

We use MA�� ���
 to factor the coe�cient matrix in ������ and ������� We prefer work�
ing with this augmented system� rather than factoring the normal equations matrix �AT �A�
because our numerical experience and the analysis given by Gould� Hribar and Nocedal
���
 shows that it is more accurate and robust in the context of our algorithm� Our code
includes an option for detecting errors in the solution of the linear systems� and applying
iterative re
nement� when necessary� A detailed description of this procedure is given in
���
�
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���� Full Description of the New Interior Point Method

Having gone over all the details of our approach we can now present a complete de�
scription of the new algorithm for solving the nonlinear programming problem ������ We
will refer to this algorithm as NITRO� for Nonlinear Interior point Trust Region Optimizer�
There are primal and primal�dual versions of the algorithm� depending on how � and the
Lagrange multipliers �k are de
ned�

The stopping conditions for each barrier subproblem� and for the entire algorithm� are
based on the function E�x� s���� which is de
ned by ����� where ��h� �g� � �LS�x� s� ��� is
de
ned by �������

Complete Algorithm� NITRO
Choose a value for the parameters � � �� � � ��� ��� � � ��� ��� and � � ��� ���
and select the stopping tolerances �� and �TOL � Choose an initial value for ��
x	� s	 � � and �	� Set k � ��

Repeat until E�xk� sk� �� � �TOL 	
Repeat until E�xk� sk��� � ��	

Compute the vertical step vk � �vx� vs� by approximately
solving ������ using the dogleg method� as described in x����

Compute Lagrange multipliers from �������
Compute r�

xxL�xk� sk� �h� �g� and �k� using ����� or �������
Compute the horizontal step wk by means of Algorithm III�
Compute the total step dk � vk � wk�
Update the penalty parameter 	k by Procedure I in x����
compute predk�dk� by ������� and aredk�dk� by �������

IF aredk�dk� � �predk�dk�
Then set xk�� � xk � dx� sk�� � sk � ds� and update �k��

by �������
ELSE perform Procedure SOC to obtain yk � �yx� ys��

If yk 
� �� if aredk�dk � yk� � �predk�dk��
and if sk � dx � ys � �sk

then set xk�� � xk � dx � yx� sk�� � sk � ds � ys�
and �k�� � �k�

else set xk�� � xk� sk�� � sk� �k�� � �����k� ����k
�
ENDIF
Set k � k � ��

END

�� �� � �� � ����
Adjust 	k�� and �k�

END

In our code we assign the following values to the parameters in the algorithm	 � � �����
� � ������ � � ���� � � ���� and �TOL � ���
� We use the following initial values	 �� � ����
� � ��� and �	 � ��
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�� Numerical Tests

We have tested our algorithm on a set of problems from the CUTE collection ��
 whose
characteristics are described in Table �� There n denotes the number of variables and
m the total number of constraints� including equalities� bounds and general inequalities�
We also state what kinds of conditions are imposed on the variables �
xed� free� bounds��
For example in problem CORKSCRW some variables are 
xed� some are free and some
contain bounds� We also specify what kind of general constraints occur in the problem
�equalities� inequalities� linear� nonlinear�� and the characteristics of the objective function�
The problem set has been chosen for its variety	 it contains problems with negative curva�
ture �e�g� OPTMASS�� problems with ill�conditioned matrices of constraint gradients �e�g�
HAGER��� problems containing only simple bounds �OBSTCLAE� TORSION��� problems
with highly nonlinear equality constraints� and problems with a large number of variables
and constraints� On the other hand our test set is small enough to allow us to know each
problem well and analyze each run in detail�

Problem n m variable types gen� constraint types objective

CORKSCRW ��� ��� free� bounded� 
xed linear eq� nonlinear ineq nonlinear
COSHFUN �� �� free nonlinear ineq linear
DIXCHLNV ��� �� bounded nonlinear eq nonlinear
GAUSSELM �� �� free� bounded� 
xed linear ineq� nonlinear eq linear
HAGER� ���� ���� free� bounded� 
xed linear eq nonlinear
HIMMELBK �� �� bounded linear eq� nonlinear eq linear
NGONE ��� ���� bounded� 
xed linear ineq� nonlinear ineq nonlinear
OBSTCLAE ���� � bounded� 
xed nonlinear
OPTCNTRL �� �� free� bounded� 
xed linear eq� nonlinear eq nonlinear
OPTMASS ���� ���� free� 
xed linear eq� nonlinear ineq nonlinear
ORTHREGF ���� ��� free� bounded nonlinear eq nonlinear
READING� ��� ��� bounded� 
xed nonlinear eq nonlinear
SVANBERG ��� ��� bounded nonlinear ineq nonlinear
TORSION� ��� � bounded� 
xed nonlinear

Table �	 The main test problem set�

In Table � we present the results for the primal�dual version of our new algorithm�
NITRO� For comparison we also solved the problems with LANCELOT ���
 using sec�
ond derivatives and all its default settings� The runs of NITRO were terminated when
E�xk� sk� �� � ���
� and LANCELOT was stopped when the projected gradient and con�
straint violations were less than ���
� the termination criteria for these two methods are
therefore very similar� Since both algorithms use the conjugate gradient method to compute
the step� we also report in Table � the total number of CG iterations needed for conver�
gence� All runs were performed on a Sparcstation �� with �� MG of main memory� using
a FORTRAN �� compiler and double precision� the CPU time reported is in seconds� An
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asterisk indicates that the stopping test was not satis
ed after ������ iterations� The results
of NITRO reported in Table � are highly encouraging� particularly the number of function
evaluations�

f evals CG iters Time
Problem n m NITRO LAN NITRO LAN NITRO LAN

CORKSCRW ��� ��� �� ��� ��� ������ ����� ������
COSHFUN �� �� �� ��� ���� ���� ���� ����
DIXCHLNV ��� �� �� ���� �� ���� ����� ������
GAUSSELM �� �� �� �� ��� ��� ���� ����
HAGER� ���� ���� �� �� ��� ���� ����� �����
HIMMELBK �� �� �� ��� �� ���� ���� ����
NGONE ��� ���� ��� ���� ���� ������ ������ �������
OBSTCLAE ���� � �� � ���� ��� ������ �����
OPTCNTRL �� �� �� �� ��� �� ���� ���
OPTMASS ���� ���� �� " ��� " ����� "
ORTHREGF ���� ��� �� ��� �� ��� ����� �����
READING� ��� ��� �� ��� ��� ����� ������ �����
SVANBERG ��� ��� �� �� ���� ���� ������� ������
TORSION� ��� � �� � ���� �� ����� ����

Table �	 Number of function evaluations� number of CG iterations and CPU time for the
new primal�dual interior point method �NITRO� and LANCELOT �LAN�� A " indicates
that the method did not meet the stopping test in ������ iterations�

In Table � we compare the primal version of NITRO using ����� and the primal�dual
version using ������� The column under the header #!full steps$ denotes the percentage of
steps that did not encounter the trust region ������� We see that the primal�dual version
�pd� outperforms the primal version �p�� and its step tends to be constrained by the trust
region less often�

To observe whether the horizontal subproblem becomes very di�cult to solve as the
barrier parameter approaches zero� we report in Table � the number of CG iterations re�
quired in the step computation during the last iteration of the interior point algorithm�
At this stage the barrier parameter � is of order ���
� Table � gives the number of CG
iterations relative to the dimension n� t of the linear system to be solved �recall that the
code imposes a limit of � on this ratio�� We also report if the step was inside the trust
region �full�� if it encountered the trust region �hit tr� or if the number of CG iterations
reached the permissible limit of ��n � t�� These results� as well as an examination of the
complete runs� indicate that the subproblems do not become particularly hard to solve as
the problem approaches the solution� This is due to the preconditioning described before
the statement of Algorithm III�

To test the robustness of the new interior point method� we solved a large number of
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NITRO �pd� NITRO �p�
Problem n m f evals !full steps f evals !full steps

CORKSCRW ��� ��� �� �� �� ��
COSHFUN �� �� �� �� ��� ��
DIXCHLNV ��� �� �� �� �� ��
GAUSSELM �� �� �� �� " "
HAGER� ���� ���� �� �� �� ��
HIMMELBK �� �� �� �� �� ��
NGONE ��� ���� ��� � ��� ��
OBSTCLAE ���� � �� �� �� ��
OPTCNTRL �� �� �� �� �� ��
OPTMASS ���� ���� �� �� �� ��
ORTHREGF ���� ��� �� �� �� ��
READING� ��� ��� �� �� �� ��
SVANBERG ��� ��� �� �� �� ��
TORSION� ��� � �� �� �� ��

Table �	 Primal dual vs primal options of the new interior point method� The table gives
the number of function evaluations and percentage of full steps� A " indicates that the
stopping test was not satis
ed in ������ iterations�

NITRO �pd�
Problem n m CG iter step type

CORKSCRW ��� ��� ���� full
COSHFUN �� �� ��� full
DIXCHLNV ��� �� ��� full
GAUSSELM �� �� ��� full
HAGER� ���� ���� ��� full
HIMMELBK �� �� ��� full
NGONE ��� ���� ���� hit tr
OBSTCLAE ���� � ��� CG limit
OPTCNTRL �� �� ��� full
OPTMASS ���� ���� ��� full
ORTHREGF ���� ��� ����� full
READING� ��� ��� ���� full
SVANBERG ��� ��� ��� full
TORSION� ��� � ��� full

Table �	 Analysis of the last step computed by NITRO� Total number of CG iterations
divided by the dimension of the linear system� n� t� and the type of step taken�
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problems from the Hock and Schittkowski collection ���
� as programmed in CUTE� The
results are given in Table �� and include all the problems that we tested� Since these
problems contain a very small number of variables� we do not report CPU time�

It is reassuring to observe that NITRO failed on very few of these problems� Nevertheless
its performance is not as good as that of LANCELOT� and it appears that our strategy
for decreasing the barrier parameter is overly conservative� We do not yet have a complete
understanding of the behavior of NITRO on some of these small problems� but suspect that
by accelerating the decrease in the barrier parameter� in a carefully controlled manner� the
number of function evaluations will decrease signi
cantly�

�� Final Remarks�

We have presented an interior point method for solving large nonlinear programming
problems� Rather than trying to mimic primal�dual interior point methods for linear pro�
gramming� we have taken the approach of developing a fairly standard SQP trust region
method� and introduced in it some of the key features of primal�dual iterations� No attempt
was made to obtain a rapidly convergent method	 the barrier parameter was decreased at
a linear rate� forcing the iterates of the algorithm to converge linearly� We have� however�
given careful attention to the treatment of non�convexity� to the exploitation of sparsity in
the problem� and have designed many features to make the algorithm robust on general
problems� This approach appears to have paid o� in that the algorithm has proved to be
capable of solving a wide range of problems� even when ill�conditioning and non�convexity
is present� Our tests seem to indicate that our code is competitive on large problems with
a production code such as LANCELOT� We have also shown that the preconditioning of
the horizontal subproblem has� to a large extent� removed the e�ects of the ill�conditioning
inherent in interior point methods� and that the CG iteration does not have particular dif�

culties in computing the horizontal component of the step as the iterates approach the
solution�

The algorithm presented here is not as rapidly convergent as it can be� We are currently
developing ��
 various mechanisms to accelerate the iteration� these include the use of higher�
order corrections and rules for decreasing the barrier parameter at a superlinear rate� We
should also note that the technique for re
ning the solution of linear systems described at
the end of x��� is very conservative �in that it demands very tight accuracy� and leads to
high execution times on some problems� More e�cient techniques for detecting errors and
re
ning the solution of linear systems are the subject of current investigation ���
�
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Problem n m NITRO LAN

HS� � � �� �
HS� � � �� �
HS� � � �� �
HS� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � ��� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� �
HS�� � � �� ��
HS�� � � � �
HS�� � � �� ��
HS�� � � �� �
HS�� � � �� ��
HS�� � � ��� ��
HS�� � � �� ��
HS�� � � � �
HS�� � � � �
HS�� � � � �
HS�� � � " ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��

Problem n m NITRO LAN

HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � � ��� ���""
HS�� � � �� ��
HS�� � � �� ��
HS�� � � � ��
HS�� � � �� ��
HS�� � � �� ��
HS�� � �� �� ��
HS�� � � �� �
HS�� � � ��� �
HS�� � � ��� �
HS�� � � �� ��
HS�� � � �� ��
HS��� � � �� ��
HS��� � � �� ��
HS��� � � ��� "
HS��� � � �� ��
HS��� � �� �� ��
HS��� � �� " "
HS��� �� � " ��
HS��� �� � �� ��
HS��� �� � �� ��
HS��� �� �� �� ���
HS��� �� � �� ��
HS��� �� � �� ��

Table �	 The number of function evaluations for the primal�dual version of NITRO versus
LANCELOT� on problems from the Hock and Schittkowski collection� An asterisk indi�
cates that the convergence test was not satis
ed after ������ iterations� In problem HS���
LANCELOT stopped but was not able to satisfy the termination test on the projected
gradient�
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