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Abstract

This paper describes an active�set algorithm for large�scale nonlinear programming

based on the successive linear programming method proposed by Fletcher and Sainz

de la Maza ���� The step computation is performed in two stages� In the �rst stage a

linear program is solved to estimate the active set at the solution� The linear program

is obtained by making a linear approximation to the �� penalty function inside a trust

region� In the second stage� an equality constrained quadratic program �EQP	 is solved

involving only those constraints that are active at the solution of the linear program�

The EQP incorporates a trust�region constraint and is solved �inexactly	 by means of a

projected conjugate gradient method� Numerical experiments are presented illustrating

the performance of the algorithm on the CUTEr �
� test set�
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� Introduction

Some of the most successful algorithms for large�scale� generally constrained� nonlinear

optimization fall into one of two categories� active�set sequential quadratic programming

	SQP
 methods and interior�point 	or barrier
 methods� Both of these methods have proven

to be quite e�ective in recent years at solving problems with thousands of variables and

constraints� but are likely to become very expensive as the problems they are asked to

solve become larger and larger� These concerns have motivated us to look for a di�erent

approach�

In this paper we describe an active�set� trust�region algorithm for nonlinear programming

that does not require the solution of a general quadratic program at each iteration� It can

be viewed as a so�called 
EQP form� ���� of sequential quadratic programming� in which a

guess of the active set is made 	using linear programming techniques
 and then an equality

constrained quadratic program is solved to attempt to achieve optimality�

The idea of solving a linear program to identify an active set� followed by the solution

of an equality constrained quadratic problem 	EQP
 was �rst proposed and analyzed by

Fletcher and Sainz de la Maza ���� and more recently by Chin and Fletcher ���� but has

received little attention beyond this� This 
sequential linear programming�EQP method��

or SLP�EQP in short� is motivated by the fact that solving quadratic subproblems with

inequality constraints� as in the SQP method� can be prohibitively expensive for many

large problems� The cost of solving one linear program followed by an equality constrained

quadratic problem� could be much lower�

In this paper we go beyond the ideas proposed by Fletcher and Sainz de la Maza in that

we investigate new techniques for generating the step� managing the penalty parameter and

updating the LP trust region� Our algorithm also di�ers from the approach of Chin and

Fletcher� who use a �lter to determine the acceptability of the step� whereas we employ an

�� merit function� All of this results in major algorithmic di�erences between our approach

and those proposed in the literature�

� Overview of the Algorithm

The nonlinear programming problem will be written as
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minimize
x

f	x
 	���a


such that hi	x
 � �� i � E 	���b


gi	x
 � �� i � I� 	���c


where the objective function f � IRn � IR� and the constraint functions hi � IR
n � IR� i � E

gi � IR
n � IR� i � I� are assumed to be twice continuously di�erentiable�

The SLP�EQP algorithm studied in this paper is a trust�region method which uses a

merit function to determine the acceptability of a step� It separates the active�set identi�

�cation phase from the step computation phase � unlike SQP methods where both tasks

are accomplished by solving a quadratic program � and employs di�erent trust regions for

each phase� First� a linear programming problem 	LP
 based on a linear model of the merit

function is solved� The solution of this LP de�nes a step� d�LP� and a working set W which

is a subset of the constraints active at the solution of this LP� Next a Cauchy step� dC� is

computed by minimizing a quadratic model of the merit function along the direction d�LP�

The Cauchy step plays a crucial role in the global convergence properties of the algorithm�

Once the LP and Cauchy steps have been computed� an equality constrained quadratic pro�

gram 	EQP
 is solved� treating the constraints in W as equality constraints and ignoring

all other constraints� to obtain the EQP point xEQP�

The trial point xT of the algorithm is chosen to lie on the line segment starting at the

Cauchy point xC � xk � dC and terminating at the EQP point xEQP� where xk denotes the

current iterate� The trial point xT is accepted if it provides su�cient decrease of the merit

function� otherwise the step is rejected� the trust region is reduced and a new trial point is

computed�

The algorithm is summarized below� Here �	x� �
 denotes the �� merit function

�	x� �
 � f	x
 � �
X
i�E

jhi	x
j� �
X
i�I

	max	���gi	x

� 	���


with penalty parameter �� A quadratic model of � will be denoted by m� The trust�

region radius for the LP subproblem is denoted by �LP� whereas � is the primary 	master


trust�region radius that controls both the size of the EQP step and the total step�
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Algorithm SLP�EQP � General Outline

Given� an initial iterate x�

while a stopping test is not satis�ed

Solve an LP to obtain step d�
LP
� the working set W and penalty parameter ��

Find �� � ��� �� that 	approximately
 minimizes m	�d�
LP

�

De�ne the Cauchy step dC � ��d
�
LP

and the Cauchy point� xC � x� dC�

Compute xEQP by solving an EQP with constraints de�ned by W�

De�ne a line segment from Cauchy point to EQP point� dCE � xEQP � dC�

Find �� � ��� �� which 	approximately
 minimizes m	�dCE
�

De�ne the trial step� d � dC � ��dCE�

Compute pred � m	�
�m	d
�

De�ne the trial point xT � x� d�

Compute ared � �	x� �
� �	xT� �
�

if � � ared
pred

�tolerance

Set x� � xT�

Possibly increase ��

else

Set x� � x�

Decrease ��

end �if�

Update �LP�

end �while�

An appealing feature of the SLP�EQP algorithm is that established techniques for solving

large�scale versions of the LP and EQP subproblems are readily available� Current high

quality LP software is capable of solving problems with more than a million variables and

constraints� and the solution of an EQP can be performed e�ciently using an iterative

approach such as the conjugate gradient method� Two of the key questions regarding the

SLP�EQP approach which will play a large role in determining its e�ciency are� 	i
 how

well does the linear program predict the optimal active set� and 	ii
 what is the cost of the

iteration compared to its main competitors� the interior point and active�set approaches�

Many details of the algorithm are yet to be speci�ed� This will be the subject of the

following sections�



�

� The Linear Programming �LP� Phase

The goal of the LP phase is to make an estimate of the optimal active set W�� at moderate

cost� In general terms we want to solve the problem

minimize
dLP

rf	x
TdLP 	���a


such that hi	x
 �rhi	x

T dLP � �� i � E 	���b


gi	x
 �rgi	x

T dLP � �� i � I 	���c


kdLPk� � �LP� 	���d


where �LP is a trust�region radius whose choice will be discussed in Section ���� The working

set W will be de�ned to be some subset of the constraints that are active at the solution of

this LP�

Working with this LP is attractive since it requires no choice of parameters� but it has the

drawback that its constraints may be infeasible� This possible inconsistency of constraint

linearizations and the trust region has received considerable attention in the context of SQP

methods� see� e�g� ��� and the references therein�

To deal with the possible inconsistency of the constraints we follow an ���penalty ap�

proach in which the constraints 	���b
�	���c
 are incorporated in the form of a penalty term

in the model objective� Speci�cally� we reformulate the LP phase as the minimization of a

linear approximation of the �� merit function 	���
 subject to the trust�region constraint�

The linear approximation of the merit function � at the current estimate x is given by

l	d
 � rf	x
Td� �
X
i�E

jhi	x
 �rhi	x

T dj

��
X
i�I

max	���gi	x
�rgi	x

Td
�

The working�set determination problem is then given by

minimize
dLP

l	dLP


such that kdLPk� � �LP�

The function l is non�di�erentiable but it is well�known that this problem can be written
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as the following equivalent� smooth linear program

minimize
dLP�q�r�t

rf	x
TdLP � �
X
i�E

	qi � ri
 � �
X
i�I

ti 	���a


such that hi	x
 �rhi	x

T dLP � qi � ri� i � E 	���b


gi	x
 �rgi	x

T dLP � �ti� i � I 	���c


kdLPk� � �LP 	���d


q� r� t � �� 	���e


Here q� r and t are vectors of slack variables which allow for the relaxation of the equality

and inequality constraints� We denote a solution of this problem by d�
LP
	�
�

The working set W will be de�ned as some linearly independent subset of the active set

A at the LP solution point which is de�ned as

A	d�
LP

 � fi � E j hi	x
 �rhi	x


T d�
LP

� �g �

fi � I j gi	x
 �rgi	x

T d�LP � �g�

Software for linear programming typically provides this linearly independent set� If the LP

subproblem is non�degenerate the working set is synonymous with the active set de�ned

above� Note that we do not include all of the equality constraints in the active set but only

those whose right hand side is zero in 	���b
� for otherwise the EQP system could be overly

constrained�

We have chosen the �� norm over the �� norm for our merit function because it is less

sensitive to outliers� The �� norm necessitates the introduction of more arti�cial variables

in the reformulated LP� but the cost of doing so may be negligible� Likewise we have

chosen an �� trust region rather than another polyhedral norm simply because it is easy

to reformulate such a constraint as a set of simple bounds� The decision to use a penalty

approach has far reaching consequences in our algorithm� it will in�uence the way we de�ne

the EQP model and Cauchy point� as well as the step acceptance mechanism�

In our software implementation� simple bound constraints on the variables are omitted

from the merit function and handled as explicit constraints� We will ensure that the starting

point and all subsequent iterates satisfy the bounds� In particular we add lower and upper

bounds to 	���
 to ensure that the LP step satis�es the bounds� For the sake of simplicity�

however� we will omit all details concerning the handling of bounds constraints� and will
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only make remarks about them when pertinent�

��� Trust Region for the LP Step

Since the model objective 	���a
 is linear� the choice of the trust�region radius �LP is much

more delicate than in trust�region methods that employ quadratic models� The trust region

must be large enough to allow signi�cant progress toward the solution� but must be small

enough so that the LP subproblem identi�es only locally active constraints� We have found

that it is di�cult to balance these two goals� and will present here a strategy that appears to

work well in practice and is supported by a global convergence theory� There may� however�

be more e�ective strategies and the choice of �LP remains an open subject of investigation�

We update the LP trust region as follows� If the trial step d taken by the algorithm on

the most current iteration was accepted 	i�e�� if � � tolerance
� we de�ne

��
LP

� min	maxf���kdk�� ���kdCk�� ����LPg� ��LP
� 	���


whereas if the step d was rejected we set

��
LP � min	maxf���kdk�� ����LPg��LP
� 	�� 


The motivation for 	���
 stems from the desire that �LP be no larger than a multiple of

the norm of the trial step d and the Cauchy step dC� so that the LP trust region be small

enough to exclude extraneous� inactive constraints as the iterate converges to a solution�

Note that the LP trust region can decrease after an accepted step� and we include the term

����LP to limit the rate of this decrease� Finally� the term ��LP prevents the LP trust

region from growing too rapidly�

When the trial step d is rejected� 	�� 
 ensures that �LP does not grow� We would again

want to make �LP a fraction of kdk�� and the term ����LP limits the rate of decrease�

This LP trust�region update is supported by the global convergence theory presented

in Byrd et al ���� which also provides a range of admissible values for the constants in

	���
�	�� 
�
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� The Cauchy Point

The reduction in the objective and constraints provided by the LP step can be very small�

To ensure that the algorithm has favorable global convergence properties� we will require

that the total step makes at least as much progress as a Cauchy point xC� This is a point

which provides su�cient decrease of a quadratic model of the merit function along the LP

direction d�LP and subject to the restriction kxC � xk� � �� The quadratic model� m	d
� is

de�ned as

m	d
 � l	d
 � �
�d

TH	x� �
d� 	���


where H	x� �
 denotes the Hessian of the Lagrangian of the NLP problem 	���
 and � is a

vector of Lagrange multiplier estimates� To de�ne the Cauchy point� we select � 	 
 	 ��

let � � min	����jjd�LPk�
 and compute a steplength � 	 �� � � as the �rst member of the

sequence f�
 igi�������� for which

�	x� �
�m	��d
�
LP
 � 
��	x� �
 � l	��d

�
LP
�� 	����


where 
 � � is a given constant� We then de�ne

xC � x� ��d
�
LP
� x� dC� 	����


The backtracking line search used to compute �� does not involve evaluations of the problem

functions� but rather� only evaluations of their inexpensive model approximations�

� The EQP Step

Having computed the LP step d�LP which determines the working set W� we now wish to

compute a step d that attempts to achieve optimality for this working set by solving an

equality constrained quadratic program 	EQP
 of the form

minimize
d

�
�d

TH	x� �
d �rf	x
Td 	����a


such that hi	x
 �rhi	x

T d � �� i � E 	W 	����b


gi	x
 �rgi	x

T d � �� i � I 	W 	����c


kdk� � �� 	����d




 

The trust�region radius � places some restriction on the step size and prevents the step

from being unbounded in the case of negative curvature� Note that the constraints 	����b
�

	����c
 are consistent by de�nition of the working set W� but to make them compatible

with the trust region we may relax them� as will be explained below�

Let AW � IRp�n represent the Jacobian matrix of the constraints in the working set

where p is the number of constraints in the working set� and de�ne a matrix ZW � IRn��n�p�

which is a null�space basis for AW 	i�e�� AWZW � �
� One can express the solution of 	����


as

d � d� � ZWdZ� 	����


for some vector d� which satis�es the constraints 	����b
�	����c
 and some reduced space

vector dZ � IRn�p� The vector d� will be computed here as the orthogonal projection of

the current iterate x onto the plane de�ned by 	����b
�	����c
� If necessary we cut back d�

so as to satisfy kd�k� � �� �� and replace the zeros in the right hand sides of 	����b
 and

	����c
 by

rE � hi	x
 �rhi	x

T d�� i � E 	W� rI � gi	x
 �rgi	x


T d�� i � I 	W�

If we de�ne dEQP � ZWdZ as a step in the null�space of the working set constraint

gradients� then we can compute the EQP step d�
EQP

as an approximate solution of the

problem

minimize
dEQP

�
�d

T
EQPHEQP	x� �
dEQP � gTEQPdEQP 	����a


such that rhi	x

TdEQP � �� i � E 	W 	����b


rgi	x

TdEQP � �� i � I 	W 	����c


kdEQPk� � �EQP� 	����d


where the de�nitions of the matrix HEQP	x� �
 and the vector gEQP are discussed below� and

�EQP �
q
�� � kd�k

�
��

The EQP point is computed as

xEQP � x� d� � dEQP� 	����
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The Hessian HEQP could� in principle� be de�ned as the Hessian of the Lagrangian of

the NLP problem 	���
� but since the multipliers corresponding to the inactive constraints

will be set to zero� it would ignore curvature information concerning violated constraints

� and this can lead to ine�ciencies� as we have observed in practice� It is therefore more

appropriate to de�ne HEQP as an approximation of the Hessian of the �� merit function

�� so as to in�uence the step to be in a direction which moves towards feasibility of these

constraints�

Let us de�ne the set of violated general constraints for the projection step d� as

V � fi �� W j hi	x
 �rhi	x

T d� 
� �g � fi �� W j gi	x
 �rgi	x


T d� 	 �g� 	����


and denote its complement by Vc� The Hessian of the quadratic model 	����a
 will be

de�ned as

HEQP	x� �
 � r�f	x
 � �
X

i�V�E

sign	hi	x
 �rhi	x

T d�
r

�hi	x
 	����


��
X

i�V�I

r�gi	x
�
X

i�Vc�E

�ir
�hi	x
�

X
i�Vc�I

�ir
�gi	x
�

The terms involving � in 	����
 are the Hessians of the penalty terms in the �� function �

for the violated constraint indices� Since these penalty terms are inactive for the projection

step d�� they are smooth functions within some neighborhood of this point� The signs for

these terms are based on the values of the linearization of these constraints at the projection

point� We view 	����
 as the Hessian of the penalty function �� where inactive� violated

constraints have been assigned non�zero multipliers�

We can also incorporate linear information on the violated constraints into the EQP

step by de�ning

gEQP � HEQP	x� �
d� �rf	x
 	��� 


��
X

i�V�E

sign	hi	x
 �rhi	x

T d�
rhi	x
� �

X
i�V�I

rgi	x
�

The last three terms in 	��� 
 represent the gradient of the terms in the penalty function

whose linearization is nonconstant on the working set subspace�

To summarize� these de�nitions are necessitated by the active�set approach followed in

this paper� In a classical SQP methods� the QP solver typically enforces that the linearized
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constraints are satis�ed throughout the step computation process� In this case� it is not

necessary to include curvature information on violated constraints since the violated set V

would be empty� By contrast our algorithm may completely ignore some of the constraints

in the EQP phase and we need to account for this�

��� Solution of the EQP

The equality constrained quadratic problem 	����
� with its additional ellipsoidal trust�

region constraint� will be solved using a projected Conjugate�Gradient�Lanczos iteration�

as implemented in the GALAHAD code GLTR of Gould et al ���� 	HSL routine VF�� ����
�

This algorithm has the feature of continuing for a few more iterations after the �rst negative

curvature direction is encountered�

The projected CG�Lanczos approach applies orthogonal projections at each iteration to

keep dEQP in the null�space of AW � The projection of a vector v� say w � Pv� is computed

by solving the system �
I AT

W	x


AW	x
 �

� �
w

u

�
�

�
v

�

�
	����


where u is an auxiliary vector� see also ����� We use the routine MA�� from the HSL library

���� to factor this system�

The CG iteration can be preconditioned to speed up convergence by replacing the iden�

tity matrix in the 	���
 block of the coe�cient matrix in 	����
 with a preconditioner G

which in some sense approximates HEQP� However� we will not consider preconditioners

here since they require signi�cant changes to various aspects of our algorithm�

� The Trial Step

Having computed the LP� Cauchy and EQP steps� we now combine them to de�ne the trial

step of the iteration� d� in such a way as to obtain su�cient decrease in the quadratic model

of the penalty function�

We consider the vector leading from the Cauchy point to the EQP point�

dCE � xEQP � xC�

where xC and xEQP are de�ned in 	����
 and 	����
� respectively� We then compute the

steplength �� � ��� �� which approximately minimizes m	�dCE
� where m is given by 	���
�



��

	If some bounds of the NLP are violated� we decrease � further so that they are satis�ed�


The trial step of the iteration will be de�ned as

d � dC � ��dCE�

where dC is the step to the Cauchy point� In practice we do not implement an exact line

search to compute ��� but rather use a backtracking line search�

The computation of the trial step d is similar to the dogleg method of Powell ���� ���

for approximately minimizing a quadratic objective subject to a trust�region constraint� As

in the dogleg approach� the step is computed via a one dimensional line search along a

piecewise path from the origin to the Cauchy point xC to a Newton�like point 	the EQP

point xEQP
� However� in contrast to the standard dogleg method� the model m is not

necessarily a decreasing function along the segment from the Cauchy point to the EQP

point when the Hessian is positive�de�nite 	which is why a line search is used to compute

��
� Since the minimizer can occur at xC we set �� � � if it becomes very small 	in our

tests� less than �����
�

	 Step Acceptance
 Trust Region Update and SOC

Given a current point x and penalty parameter �� a trial point� xT given by a step d is

accepted if

� �
ared

pred
�

�	x� �
� �	xT� �


m	�� �
�m	d� �

� 
� 
 � ��� �
� 	����


In our implementation we set 
 � ���	� Since we always ensure that the predicted reduction

is positive 	by the choices of �� and �� used to compute the trial step d
� the acceptance rule

	����
 guarantees that we only accept steps which give a reduction in the merit function�

As is well known 	Maratos ����
 steps that make good progress toward the solution may

be rejected by the penalty function �� which may lead to slow convergence� We address

this di�culty by computing a second order correction 	SOC
 step � �� which incorporates

second order curvature information on the constraints�

If the trial point xT does not provide su�cient decrease of the merit function� we compute

dSOC as the minimum norm solution of

AW	x
d� cW	xT
 � ��



��

where cW	xT
 is the value of the constraints in the working set at the original trial point�

In this case the trial step is computed as the sum of the original trial step and some fraction

of the second order correction step� dSOC

d� d� 
SOCdSOC�

where� the scalar 
SOC � ��� �� enforces satisfaction of all of the bounds on the variables�

In our algorithm we compute dSOC by solving the linear system

�
I AT

W	x


AW	x
 �

� �
dSOC

t

�
�

�
�

�cW	xT


�
� 	����


Note that the computation of the second order correction step takes into account only

the constraints in the current working set 	ignoring other constraints
� The motivation for

this is twofold� First� it allows us to use the same coe�cient matrix in 	����
 as is used to

compute projections in the CG�Lanczos routine of the EQP step 	����
 and therefore no

matrix factorizations are needed� Second� in the case when our working set is accurate� we

are justi�ed in ignoring the constraints not in the working set in the SOC step computation�

Conversely� if our working set is very inaccurate it is unlikely that a SOC step that would

include all the constraints would be of much value anyway�

The SOC step could be computed selectively but for simplicity we take the conservative

approach of attempting a SOC step after every rejected trial step� Another issue to consider

is from where to attempt the SOC step� There appear to be two viable options� the trial

point� xT � x�d� and the EQP point xEQP� If we attempt the SOC step from the full EQP

point� this requires an extra evaluation of the objective and constraint functions 	assuming

xT 
� xEQP
� For this reason we attempt the SOC step from the original trial point�

We update the 	master
 trust�region radius by the following rule

�� �

�������
������

max	�� �kdk�
� if ��� � �

max	�� �kdk�
� if ��� � � 	 ���

�� if ���	 � � 	 ���

min	����� ���kdk�
� if � 	 ���	

� 	����


where � is de�ned in 	����
 and represents the agreement between the reduction in the merit

function and the reduction predicted by the quadratic model m�



��

� The Lagrange Multiplier Estimates

Both the LP and the EQP phases of the algorithm provide possible choices for Lagrange

multiplier estimates� However� we choose to compute least�squares Lagrange multipliers

since they satisfy the optimality conditions as well as possible for the given iterate x� and

can be computed very cheaply as we now discuss�

The multipliers corresponding to the constraints in the current working set �W are

computed by solving the system

�
I AT

W	x


AW	x
 �

� �
t

�W

�
�

�
�rf	x


�

�
� 	 ���


Since the coe�cient matrix in the system above needs to be factored to compute projec�

tions 	����
 in the CG�Lanczos method� the cost of computing these least�squares multi�

pliers is one extra backsolve which is a negligible cost in the overall iteration 	considering

the CG�Lanczos method involves nCG backsolves where nCG is the number of CG�Lanczos

iterations performed during the EQP phase
� If any of the computed least�squares mul�

tipliers corresponding to inequality constraints are negative beyond some tolerance� these

multipliers are reset to zero� The Lagrange multipliers � corresponding to constraints not

in the current working set are set to zero 	except in the computation of the Hessian of the

Lagrangian H	x� �
 where they are assigned a penalty�based value as indicated by 	����

�

These least squares multipliers are used in the stopping test for the nonlinear program�

� Penalty Parameter Update

The choice of the penalty parameter � in 	���
 has a signi�cant impact on the performance

of the iteration� If the algorithm is struggling to become feasible� it can be bene�cial to

increase �� However� if � becomes too large too quickly this can cause the algorithm to

converge very slowly� Existing strategies for updating the penalty parameter are based on

tracking the size of the Lagrange multipliers or checking the optimality conditions for the

non�di�erentiable merit function ��

Here we propose a new approach for updating the penalty parameter based on the LP

phase� We take the view that� if it is possible to satisfy the constraints 	���b
�	���d
� then

we would like to choose � large enough in 	���
� to do so� Otherwise� if this is not possible�

then we choose � to enforce a su�cient decrease in the violation of the linearized constraints



��

at x� which we measure through the function

�	x� �
 �
�

jEj� jIj

�X
i�E

jhi	x
 �rhi	x

T d�LP	�
j �

X
i�I

max	���gi	x
�rgi	x

T d�LP	�



�
�

The minimum possible infeasibility value for the LP subproblem will be denoted by

�	x� ��
� where �� is some very large value for the penalty parameter�

Given a particular value for � we use the following relation to de�ne the su�cient

decrease in infeasibility required by the new penalty parameter ���

�	x� �
� �	x� ��
 � �	�	x� �
� �	x� ��

� � � 	�� ��� 	����


In our implementation we use the value � � ���� We can now outline our strategy for

updating the penalty parameter on each iteration�

Algorithm ��� Penalty Parameter Update Strategy

Given� �x� �� and the parameters ��� tol�� tol� and ��

Solve LP 	���
 with �x� �� to get d�
LP
	�
�

if d�
LP
	�
 is feasible �i�e�� �	x� �
 	 tol��

�� � � �Case ���

else

Solve LP 	���
 with �x� ��� to get d�
LP
	��
�

if d�
LP
	��
 is feasible �i�e�� �	x� ��
 	 tol��

Choose some � 	 �� � �� such that �	x� ��
 	 tol� �Case ���

else if �	x� �
� �	x� ��
 	 tol� �no signi�cant progress in feasibility possible�

�� � � �Case 	��

else

Choose some � 	 �� � �� such that 	����
 is satis�ed �Case 
��

end �if�

end �if�

In our implementation we set tol� � tol� � ���	� In practice� instead of using a very large

penalty value for computing �	x� ��
� this value is computed by setting rf � � in the linear
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objective 	���a
 which has the e�ect of ignoring the NLP objective f	x
 and minimizing

the linear constraint violation as much as possible�

The implementation of Case � is achieved by increasing � by a factor of ten and re�

solving the LP until feasibility is achieved� Case � is implemented in a similar manner until

the condition 	����
 is satis�ed with � � ���� In Case � we determine that no signi�cant

improvement in feasibility is possible for the current LP 	as determined by comparing the

feasibility measure for � with the feasibility measure for ��
 and so we set �� � � rather

than increasing the penalty parameter�

One concern with our penalty parameter update strategy is that it may require the

solution of multiple LPs per iteration� However� in practice this is only the case generally in

a small fraction of the total iterations� Typically the penalty parameter only increases early

on in the optimization calculation and then settles down to an acceptable value for which the

algorithm achieves feasibility� Moreover� it is our experience that although this may result

in multiple LP solves on some iterations� it results in an overall savings in iterations 	and

total LP solves
 by achieving a better penalty parameter value more quickly� In addition�

we have observed that� when using a simplex LP solver� the extra LP solves are typically

very inexpensive requiring relatively few simplex iterations because of the e�ectiveness of

warm starts when re�solving the LP with a di�erent penalty parameter value� 	In the

results reported in Section �� the percentage of additional simplex iterations required by

Algorithm ��� averages less than �!�


Another concern is that using this scheme the penalty parameter may become too large

too quickly and we may need to add a safeguard which detects this and reduces � on

occasion� In practice we have noticed that this does seem to occur on a small minority

of the problems and we have implemented the following strategy for reducing �� If there

is a sequence of �ve consecutive successful iterations where the iterate is feasible and � �

����	k�k���
� then � is judged to be too large and is reset to � � k�k����� The penalty

parameter � is permitted to be decreased a maximum of two times� Although this approach

is somewhat conservative� it has proved to be quite successful in practice in handling the few

problems where � becomes too large without adversely a�ecting the majority of problems

where it does not�
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�
 The Complete Algorithm

We now summarize the algorithm using the pseudo�code below� We will call our particular

implementation of the SLP�EQP method the Slique Algorithm�

Slique Algorithm

Given� Problem in the form 	���
� x� �� �� �LP�

Evaluate f	x
� h	x
� g	x
� rf	x
� A	x
�

Test NLP convergence�

while not converged

Compute d�LP by solving LP 	���
�

Use Algorithm ��� to compute ��

De�ne the working set� W� and the set of violated constraints� V�

Form and factor the augmented system

�
I AT

W	x


AW	x
 �

�
�

Compute �W by solving 	 ���
�

Update �� �i � �W � i � W� �i � �� i �� W� If �i 	 � for i � I� set �i � ��

Evaluate the Hessian 	����
�

Find �� � ��� �� which 	approximately
 minimizes m	�d�
LP

�

De�ne the Cauchy point� xC � x� ��d
�
LP
�

Compute xEQP by solving EQP 	����
 with constraints de�ned by W�

Compute dCE � xEQP � dC�

Find �� � ��� �� which 	approximately
 minimizes m	�dCE
�

Reduce �� if necessary to satisfy the bounds�

De�ne the trial step� d � dC � ��dCE�

Compute pred � m	�
�m	d
�

De�ne the trial point xT � x� d�

testStep � true�

trySOC � true�

while testStep

Evaluate f	xT
� h	xT
� g	xT
�

Evaluate �	xT� �
 � f	xT
 � �
P

i�E jhi	xT
j� �
P

i�I max	���gi	xT

�

Compute ared � �	x� �
� �	xT� �
�

if � � ared
pred � ���	
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Set x� � xT�

Evaluate rf	x�
� A	x�
�

testStep � false�

else

if trySOC

Compute dSOC by solving the system 	����
�

Truncate dSOC by 
SOC � ��� �� if necessary to satisfy bounds�

De�ne xT � x� d� 
SOCdSOC�

trySOC � false�

else

Set x� � x�

testStep � false�

end �if�

end �if�

end �while�

Update � by means of 	����
�

Update �LP using 	���
�	�� 
�

Test NLP convergence�

end �while�

�� Numerical Tests

In order to assess the potential of the SLP�EQP approach taken in Slique� we test it here

on the CUTEr ��� set of problems and compare it with the state�of�the�art codes Knitro

��� ��� and Snopt �����

Slique ��� implements the algorithm outlined in the previous section� In all results

reported in this section� Slique ��� uses the simplex code Minos ���� � � ��� to solve the

LP subproblems� Knitro ��� implements a primal�dual interior�point method with trust

regions� It makes use of second derivative information� and controls the barrier parameter

using a path�following approach� Snopt �����	�
 is a line search SQP method in which

the search direction is determined by an active�set method for convex quadratic program�

ming� Snopt requires only �rst derivatives of the objective function and constraints� and

maintains a 	limited memory
 BFGS approximation to the reduced Hessian of a Lagrangian



� 

function� Even though Snopt uses only �rst derivatives 	whereas Knitro and Slique use

second derivatives
 it provides a worthy benchmark for our purposes since it is generally

regarded as one of the most e�ective active�set SQP codes available for large�scale nonlinear

optimization�

All tests described in this paper were performed on a Sun Ultra �� with �Gb of memory

running SunOS ���� All codes are written in FORTRAN� were compiled using the Sun f��

compiler with the 
�O� compilation �ag� and were run in double precision using all their

default settings� For Snopt� the superbasics limit was increased to ���� to allow for the

solution of the majority of the CUTEr problems� However� for some problems this limit was

still too small and so for these problems the superbasics limit was increased even more until

it was su�ciently large� Limits of � hour of CPU time and ���� outer or major iterations

were imposed for each problem� if one of these limits was reached the code was considered

to have failed� The stopping tolerance was set at ���� for all solvers� Although� it is nearly

impossible to enforce a uniform stopping condition� the stopping conditions for Slique and

Knitro were constructed to be very similar to that used in Snopt�

���� Robustness

In order to �rst get a picture of the robustness of the Slique algorithm we summarize

its performance on a subset of problems from the CUTEr test set 	as of May ��� ����
�

Since we are primarily interested in the performance of Slique on general nonlinear opti�

mization problems with inequality constraints and�or bounds on the variables 	such that

the active�set identi�cation mechanism is relevant
� we exclude all unconstrained prob�

lems and problems whose only constraints are equations or �xed variables� We also ex�

clude LPs and feasibility problems 	problems with zero degrees of freedom
� In addi�

tion eight problems 	ALLINQP� CHARDIS�� CHARDIS�� CONT��QQ� DEGENQP� HARKERP��

LUBRIF� ODNAMUR
 were removed because they could not be comfortably run within the

memory limits of the testing machine for any of the codes� The remaining ��� problems

form our test set� These remaining problems can be divided between three sets� quadratic

programs 	QP
� problems whose only constraints are simple bounds on the variables 	BC
�

and everything else� which we refer to as generally constrained 	GC
 problems� If a problem

is a QP just involving bound constraints� it is included only in the BC set�

Although we will not show it here� the SLP�EQP algorithm described in this paper is

quite robust and e�cient at solving simpler classes of problems 	e�g�� LPs� unconstrained
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problems� equality constrained problems and feasibility problems
 as evidenced in �����

We should note that there are a few problems in CUTEr for which a solution does not

exist 	for example the problem may be infeasible or unbounded
� Although� it is important

for a code to recognize and behave intelligently in these cases� we do not evaluate the ability

of a code to do so here� For simplicity� we treat all instances where an optimal solution is

not found as a failure regardless of whether or not it is possible to �nd such a point�

Problem Problem size " of problems
class QP BC GC Total

VS � � n�m 	 ��� �� �� ��� ���
S ��� � n�m 	 ���� �� � �� ��
M ���� � n�m 	 ����� �� �� �� �� 
L ����� � n�m �� �� �� ���

Total all ��� ��� ��� ���

Table �� CUTEr test set problem sizes and characteristics

The distribution of problem types and sizes 	Very Small� Small� Medium� and Large


for our test set is shown in Table �� We use the value n �m to characterize a problem#s

size where n is the number of variables and m is the number of general constraints 	not

including bounds on the variables
�

Problem Sample Slique Knitro Snopt

class size " Opt ! Opt " Opt ! Opt " Opt ! Opt

QP ���  � ���� ��� ���� ��  ���
BC ��� ��  ��� � ���� �� ����
GC ��� ��� ���� ���  �� � �  �� 

Total ��� �� � �� ��� ���� ���  ���

Table �� Robustness results by problem class

In Table � we summarize the number 	" Opt
 and percentage 	! Opt
 of problems for

which each solver reported �nding the optimal solution� discriminated by problem charac�

teristics� On � problems Snopt terminates with the message 
optimal� but the requested

accuracy could not be achieved� which implies that Snopt was within a factor of ���� of

satisfying the convergence conditions� It is questionable whether or not to count such prob�

lems as successes for testing purposes� In practice� such a message is very useful� however�
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both Slique andKnitro report any problem for which it cannot meet the desired accuracy

in the stopping condition as a failure� even if it comes very close and it is suspected that

the iterate has converged to a locally optimal point� Therefore� in order to be consistent�

we do not count these problems as successes for Snopt� Since the number of such problems

is small relatively speaking� their overall e�ect is negligible�

Even though Slique is signi�cantly less robust than the solver Knitro it is nearly as

robust� overall� as Snopt� We �nd this encouraging since many features of our software

implementation can be improved� as discussed in the �nal section of this paper�

Next we compare in Table � the robustness of the solvers based on problem size� Note

the sharp decrease in reliability of Slique as the problem size varies from medium 	M
 to

large 	L
� Included in the failures for Slique are ten large QPs in which Slique 	but not

the other codes
 experienced di�culties with memory and could not run properly� Out of

the remaining �� failures for Slique on the large set� �� of them result from reaching the

CPU limit� Clearly� for large�scale problems the current implementation of Slique can be

ine�cient� Some of the reasons for this will be discussed later on� Snopt also struggles on

the set of large problems since many of these problems have a large reduced space leading

to expensive computations of a dense reduced Hessian matrix�

Problem Sample Slique Knitro Snopt

class size " Opt ! Opt " Opt ! Opt " Opt ! Opt

VS ��� ��� ���� ��� ���� ��� ����
S �� � ���� ��   �� �� ����
M ��  � ���� ���  ���  � ����
L ��� �� ����  �  ��� �� ����

Total ��� �� � �� ��� ���� ���  ���

Table �� Robustness results by problem size

���� Function Evaluations and Time

We now study the performance of Slique� Knitro and Snopt based on number of func�

tion�constraint evaluations and total CPU time required to achieve convergence� Our pri�

mary interest is in gauging the e�ciency of the SLP�EQP approach on medium�scale and

large�scale problems� For this reason� in this section we will restrict ourselves to only those

problems in our test set for which n�m � �����
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For the number of function�constraint evaluations we take the maximum of these two

quantities� In order to ensure that the timing results are as accurate as possible� all tests

involving timing were carried out on a dedicated machine with no other jobs running�

All the results in this section will be presented using the performance pro�les proposed

by Dolan and Mor$e ���� In the plots �s	

 denotes the logarithmic performance pro�le

�s	

 �
no� of problems where log�	rp�s
 � 


total no� of problems
� 
 � �� 	�����


where rp�s is the ratio between the time to solve problem p by solver s over the lowest

time required by any of the solvers� The ratio rp�s is set to in�nity 	or some su�ciently

large number
 whenever solver s fails to solve problem p� See ��� for more details on the

motivation and de�nition of the performance pro�les�

First� we compare in Figures � and � the performance of the three codes on �� problems
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whose only constraints are simple bounds on the variables� Although there exist specialized

approaches for solving these types of problems ��� ��� ���� it is instructive to observe the

performance of Slique when the feasible region has the simple geometry produced by simple

bounds� Figures � and � indicate that Slique performs quite well on this class of problems�

Next� we compare the performance of Slique� Knitro and Snopt on �� quadratic

programming problems from the CUTEr collection where n�m � ����� We have excluded

QPs which only have equality constraints� There are both convex and nonconvex QPs in

this set� We compare these codes in terms of number of function�constraint evaluations

and CPU time in Figures � and ��

Note that Slique is not too far behind the other solvers in terms of function evalua�

tions on this set� but it is signi�cantly less e�cient in terms of CPU time� This is a bit

surprising� We would expect that if Slique is similar to Snopt in terms of number of
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function evaluations� that it would also be comparable or perhaps more e�cient in terms

of time� since in general we expect an SLP�EQP iteration to be cheaper than an active�set

SQP iteration 	and typically the number of function evaluations is similar to the number

of iterations
� In many of these cases� the average number of inner simplex iterations of

the LP solver per outer iteration in Slique greatly exceeds the average number of inner

QP iterations per outer iteration in Snopt� This is caused� in part� by the inability of the

current implementation of Slique to perform e�ective warm starts� as will be discussed in

Section �����

Finally we consider the performance of the three codes on ��� generally constrained

problems� In Figures � and �� we report results for the medium�scale and large�scale gen�

erally constrained 	GC
 set� As in the set of quadratic programs the interior�point code
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ticularly in terms of CPU time�

���� Slique Timing Statistics and Conclusions

We present below some more detailed statistics on the performance of Slique on the CUTEr

set of test problems� In Tables � and � we look at the average percentage of time spent

on various tasks in Slique based on problem characteristics and problem size respectively�

These average values are obtained by computing the percentages for all the individual

problems and then averaging these percentages over all the problems in the test set� where

all problems are given equal weight� In this way� problems which take the most time do not

dominate the timing statistics�

In these timing statistics we only include problems in which an optimal solution was

found and for which the total CPU time was at least one second� We look at the following

tasks� the solution of the LP subproblem 	! LP
� the solution of the EQP subproblem

	!EQP
� the time spent factoring the augmented system matrix 	i�e�� the coe�cient matrix

in 	����

 	! AugFact
� the time spent evaluating the functions� gradients and Hessian 	!

Eval
� and all other time 	! Other
�

Prob� class ! LP ! EQP ! AugFact ! Eval ! Other

QP ����  �� ��� ��� ���
BC ���� ���� ��� � ��  ��
GC ���� ��� ��� ���� ���

Total � �� � �� ��� ���� ���

Table �� Slique timing results by problem class� Average percentage of time spent on
various tasks�

Problem size ! LP ! EQP ! AugFact ! Eval ! Other

� � n�m 	 ��� ���� ���� ��� ���� ����
��� � n�m 	 ���� ���� ���� ���� ���� ����
���� � n�m 	 ����� ���� ���� ��� ��� �� 
����� � n�m ���� ���� ��� ��� ���

Total � �� � �� ��� ���� ���

Table �� Slique timing results by problem size� Average percentage of time spent on
various tasks�
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It is apparent from these tables that� in general� the solution of the LP subproblems

dominates the overall cost of the algorithm with the solution of the EQP being the second

most costly feature� An exception is the class of bound constrained problems where the

computational work is shared roughly equally between the LP and EQP phases� For the

other problem classes� it is surprising the degree to which the LP solves dominate the overall

time as the size of the problem grows�

Upon further examination� it is clear that there are two sources for the excessive LP

times� For some problems� the �rst few iterations of Slique require a very large number of

simplex steps� On other problems� the number of LP iterations does not decrease substan�

tially as the solution of the nonlinear program is approached� i�e�� the warm start feature

is not completely successful� Designing an e�ective warm start technique for our SLP�EQP

approach is a challenging research question� since the set of constraints active at the solu�

tion of the LP subproblem often include many trust�region constraints which may change

from one iteration to the next even when the optimal active set for the NLP is identi�ed�

In contrast� warm starts are generally e�ective in Snopt for which the number of inner

iterations decreases rapidly near the solution�

We conclude this section by making the following summary observations about the

algorithm� based on the tests reported here� see also �����

� Slique is currently quite robust and e�cient for small and medium�size problems� It

is very e�ective for bound constrained problems of all sizes� where the LP and EQP

costs are well balanced�

� The strategy for updating the penalty parameter � in Slique has proved to be ef�

fective� Typically it chooses an adequate value of � quickly and keeps it constant

thereafter 	in our tests�  �! of the iterations used the �nal value of �� and � was

increased less than once per problem on the average
� Therefore� the choice of the

penalty parameter does not appear to be a problematic issue in our approach�

� The active set identi�cation properties of the LP phase are� generally� e�ective� This

is one of the most positive observations of this work� Nevertheless� in some problems

Slique has di�culties identifying the active set near the solution� which indicates

that more work is needed to improve our LP trust region update mechanism�

� The active�set codes� Slique and Snopt are both signi�cantly less robust and e�cient

for large�scale problems overall� compared to the interior�point code Knitro� It
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appears that these codes perform poorly on large problems for di�erent reasons� The

SQP approach implemented by Snopt is ine�cient on large�scale problems because

many of these have a large reduced space leading to high computing times for the QP

subproblems� However� a large reduced space is not generally a di�culty for Slique

	as evidenced by its performance on the bound constrained problems
�

By contrast� the SLP�EQP approach implemented in Slique becomes ine�cient for

large�scale problems because of the large computing times in solving the LP problem�

It is not known to us whether these ine�ciencies can be overcome simply by using a

more powerful�perhaps interior�point based�linear programming solver� or if they

require more substantial changes to the algorithm� Warm starts in Snopt� however�

appear to be very e�cient�

�� Final Remarks

We have presented a new active�set� trust�region algorithm for large�scale optimization� It

is based on the SLP�EQP approach of Fletcher and Sainz de la Maza� Among the novel

features of our algorithm we can mention� 	i
 a new procedure for computing the EQP step

using a quadratic model of the penalty function and a trust region� 	ii
 a dogleg approach for

computing the total step based on the Cauchy and EQP steps� 	iii
 an automatic procedure

for adjusting the penalty parameter using the linear programming subproblem� 	iv
 a new

procedure for updating the LP trust�region radius that allows it to decrease even on accepted

steps to promote the identi�cation of locally active constraints�

The experimental results presented in Section �� indicate� in our opinion� that the algo�

rithm holds much promise� In addition� the algorithm is supported by the global convergence

theory presented in ���� which builds upon the analysis of Yuan �����

Our approach di�ers signi�cantly from the SLP�EQP algorithm described by Fletcher

and Chin ���� These authors use a �lter for step acceptance� In the event that the con�

straints in the LP subproblem are incompatible� their algorithm solves instead a feasibility

problem that minimizes the violation of the constraints while ignoring the objective func�

tion� We prefer the ���penalty approach 	���
 because it allows us to work simultaneously

on optimality and feasibility� but testing would be needed to establish which approach is

preferable� The algorithm of Fletcher and Chin de�nes the trial step to be either the full

step to the EQP point 	plus possibly a second order correction
 or if this step is unaccept�

able the Cauchy step� In contrast� our approach explores a dogleg path to determine the
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full step� Our algorithm also di�ers in the way the LP trust region is handled and many

other algorithmic aspects�

The software used to implement the Slique algorithm is not a �nished product but rep�

resents the �rst stage in algorithmic development� In our view� it is likely that signi�cant

improvements in the algorithm can be made by developing� 	i
 faster procedures for solving

the LP subproblem� including better initial estimates of the active set� 	ii
 improved strate�

gies for updating the LP trust region� 	iii
 an improved second�order correction strategy or

a replacement by a non�monotone strategy� 	iv
 preconditioning techniques for solving the

EQP step� 	v
 mechanisms for handling degeneracy�
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