
A Sequential Quadratic Programming Algorithm with an

Additional Equality Constrained Phase

José Luis Morales∗ Jorge Nocedal † Yuchen Wu†

December 28, 2008

Abstract

A sequential quadratic programming (SQP) method is presented that aims to over-
come some of the drawbacks of contemporary SQP methods. It avoids the difficulties
associated with indefinite quadratic programming subproblems by defining this sub-
problem to be always convex. The novel feature of the approach is the addition of an
equality constrained phase that promotes fast convergence and improves performance in
the presence of ill conditioning. This equality constrained phase uses exact second order
information and can be implemented using either a direct solve or an iterative method.
The paper studies the global and local convergence properties of the new algorithm and
presents a set of numerical experiments to illustrate its practical performance.

1 Introduction

Sequential quadratic programming (SQP) methods are very effective techniques for solv-
ing small, medium-size and certain classes of large-scale nonlinear programming problems.
They are often preferable to interior-point methods when a sequence of related problems
must be solved (as in branch and bound methods) and more generally, when a good estimate
of the solution is available. Some SQP methods employ convex quadratic programming sub-
problems for the step computation (typically using quasi-Newton Hessian approximations)
while other variants define the Hessian of the SQP model using second derivative informa-
tion, which can lead to nonconvex quadratic subproblems; see [27, 1] for surveys on SQP
methods.

∗Departamento de Matemáticas, Instituto Tecnológico Autónomo de México, México. This author was
supported by Asociación Mexicana de Cultura AC and CONACyT-NSF grant J110.388/2006.

†Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL,
60208-3118, USA. These authors was supported by Department of Energy grant DE-FG02-87ER25047 and
National Science Foundation grant CCF-0514772.

1

A Sequential Quadratic Programming Algorithm 2

All these approaches have drawbacks. SQP methods that employ convex quasi-Newton
approximations [36, 22, 16] can be slow when solving large or badly scaled problems, whereas
methods that employ the exact Hessian of the Lagrangian [19] are confronted with the diffi-
cult task of computing global solutions of indefinite quadratic programs [27]. In this paper,
we propose an algorithm that aims to overcome some of these drawbacks by formulating
the SQP iteration in two phases. The algorithm first solves a convex quadratic program
to estimate the optimal active set, and then employs second-derivative information in an
additional equality constrained (EQP) phase that promotes rapid convergence. The EQP
subproblem is normally less expensive to solve than a general quadratic program and allows
for the application of iterative methods that scale up well in the number of variables. We
call our algorithm SQP+ because of the incorporation of the additional EQP phase.

Recently, Gould and Robinson [28] proposed an SQP algorithm that has some similarities
with the method discussed here. Their method solves a convex quadratic programming
problem to compute a so-called predictor step. But rather than using this step to estimate
a working set as is done in our algorithm, they then solve another inequality constrained
quadratic programming problem (now using second derivative information) and employ the
predictor step to guide the solution of this second quadratic program. Other methods that
separate the SQP approach in two phases are discussed in [17].

The nonlinear programming problem under consideration is stated as

min
x

f(x)

s.t. h(x) = 0,

g(x) ≥ 0,

(1.1)

where f : Rn → R, h : Rn → Rm and g : Rn → Rt are smooth functions. We write the
Lagrangian of this problem as

L(x, λ, µ) = f(x)− λT h(x)− µT g(x). (1.2)

The SQP approach presented in this paper can be implemented both in a line search or
a trust region framework. In either case, global convergence can be promoted by imposing
decrease in the `1 merit function

φπ(x) = f(x) + π‖h(x)‖1 + π‖g(x)−‖1, (1.3)

where g(x)− , max{0, −gi(x)} and π > 0 is a penalty parameter.
The paper is organized in 6 sections. In Section 2 we describe the proposed SQP method

and outline various implementation options. In Sections 3 and 4 we discuss the global and
local convergence properties of the new algorithm, and in Section 5 we report the results of
some numerical experiments. Some concluding remarks are made in Section 6.

2 The SQP+ Method

The SQP+ approach can be implemented in a line search or trust region framework. For
concreteness, we consider only a line search implementation in this paper. Given a primal-
dual iterate (xk, λk, µk), the algorithm first computes a step dIQ

k in the primal variables x

A Sequential Quadratic Programming Algorithm 3

by solving the standard quadratic programming subproblem

min
d

∇f(xk)T d + dT Bkd (2.1a)

subject to h(xk) + H(xk)d = 0, (2.1b)

g(xk) + G(xk)d ≥ 0, (2.1c)

where H and G are the Jacobian matrices of h and g, respectively, and Bk is a positive
definite approximation to the Hessian of the Lagrangian ∇2

xxL(xk, λk, µk). In practice,
we would like for Bk to be as simple as possible to keep the cost of solving the convex
quadratic program (2.1) to a minimum. The multipliers associated with the solution of
(2.1) are denoted by λIQ

k+1, µ
IQ

k+1 and will be referred to as the “IQP multipliers”. One of the
goals of this IQP phase, is to provide a good estimate, say Wk, of the optimal active set. To
this end, we solve problem (2.1) accurately and define Wk as the indices of the constraints
(2.1b)-(2.1c) that are satisfied as equalities at the solution dIQ

k , i.e.,

Wk = {i ∈ E} ∪ {i ∈ I | gi(xk) +∇gi(xk)T dIQ

k = 0}, (2.2)

where E , I are the index sets of the equality and inequality constraints, respectively.
To compensate for the limitations of the IQP phase and to try to promote a fast rate of

convergence, the algorithm computes an additional step by solving an equality constrained
quadratic problem (EQP) in which the constraints in Wk are imposed as equalities and all
other constraints are (temporarily) ignored. The EQP subproblem is given by

min
d

(∇f(xk) + Wkd
IQ

k)T d + 1
2dT Wkd (2.3a)

subject to ∇hi(xk)T d = 0, i ∈ E , (2.3b)

∇gi(xk)T d = 0, i ∈ I ∩Wk, (2.3c)

where
Wk , ∇2

xxL(xk, λk, µk) (2.4)

and ∇hi(xk)T and ∇gi(xk)T denote the rows of the matrices H(xk) and G(xk), respectively.
Problem (2.3) could be unbounded because, away from the solution, the Hessian of the
Lagrangian may not be positive definite on the tangent space of the constraints defined by
Wk. In this case, we can add a regularization term to the objective (2.3a) or include a trust
region constraint in problem (2.3) to ensure that the EQP subproblem is well defined.

We denote an approximate solution to (2.3) by dEQ

k and the corresponding Lagrange
multipliers by λEQ

k+1, µ
EQ

k+1. In Section 3 we show that there is much freedom in the selection
of the EQP step. There are two effective procedures for computing dEQ

k , namely a projected
conjugate gradient method [29, 12, 25] and the direct solution of the (possibly modified)
KKT system of (2.3) [37, 2].

Next, the algorithm computes a contraction parameter β ∈ [0, 1] such that the step
d = dIQ

k + βdEQ

k satisfies all linearized constraints that are not in the working set Wk, i.e.,

gi(xk) +∇gi(xk)T d ≥ 0, i ∈ Wc
k, (2.5)

A Sequential Quadratic Programming Algorithm 4

where Wc
k denotes the complement of Wk. Thus, all the steps of the algorithm will satisfy

the linearized constraints (2.1b)-(2.1c).
Before the line search is performed, the algorithm updates the penalty parameter π in

(1.3). For this purpose, we define a model of the merit function φπ around the point xk as

qπ(d) = fk +∇fT
k d + 1

2dT Bkd + π‖hk + Hkd‖1 + π‖[gk + Gkd]−‖1, (2.6)

where fk is shorthand for f(xk) and similarly for other functions. We define the model
reduction from xk to xk + d, by

qred(d) = qπ(0)− qπ(d). (2.7)

For a step that satisfies the linearized constraints (2.1b)-(2.1c), we have

qred(d) = −∇fT
k d− 1

2dT Bkd + π(‖hk‖1 + ‖g−k ‖1). (2.8)

The update of the penalty parameter is based on the IQP step. As is now common [3, 38, 7],
we require that the new penalty parameter πk be large enough that

qred(dIQ

k) ≥ ρπk(‖hk‖1 + ‖g−k ‖1), (2.9)

for some prescribed constant ρ ∈ (0, 1). From (2.8) we see that condition (2.9) is equivalent
to the requirement

πk ≥
∇fT

k dIQ

k + 1
2dIQ

k
T Bkd

IQ

k

(1− ρ)(‖hk‖1 + ‖g−k ‖1)
, πtrial. (2.10)

We can enforce this condition by updating the penalty parameter at every iteration k by
means of the following rule:

πk =

{
πk−1 if (2.9) is satisfied
πtrial + πb otherwise,

(2.11)

where πb > 0 is a given constant and πtrial is defined in (2.10).
The algorithm then performs a backtracking line search along the piecewise linear seg-

ment that starts at xk, goes through xk + dIQ

k and ends at xk + dIQ

k + βdEQ

k . The line
search first attempts to find a steplength αk ∈ [αmin, 1] that satisfies the sufficient decrease
condition

φπk
(xk + dIQ

k + αkβdEQ

k) ≤ φπk
(xk)− σqred(dIQ

k), (2.12)

for some given constant σ ∈ (0, 1), and where αmin is a threshold such as 0.25. If this line
search is successful, we define the total step as

dk = dIQ

k + αkβdEQ

k . (2.13)

Otherwise, we choose a constant τ ∈ (0, 1) and let αk ∈ (0, 1] be the first member of the
sequence {1, τ, τ2, . . .} such that

φπk
(xk + αkd

IQ

k) ≤ φπk
(xk)− σαkqred(dIQ

k), (2.14)

A Sequential Quadratic Programming Algorithm 5

where σ is the same constant as in (2.12); we then set

dk = αkd
IQ

k . (2.15)

Regardless of whether dk is defined by (2.13) or (2.15), the new primal iterate is defined as

xk+1 = xk + dk. (2.16)

The new Lagrange multipliers are defined at the EQP point. First, we set the multipliers
corresponding to the inactive linearized constraints to zero. The rest of the multipliers are
set to the EQP multipliers λEQ

k+1, µEQ

k+1 — except that if any such multipliers are negative,
they are set to zero.

Before describing the algorithm in more detail, we introduce the following notation to
denote subvectors. Given a vector, say µ, and a working set Wk, we denote by µWk

the
subvector of µ restricted to the set Wk, i.e.,

µWk
= [µi]i∈Wk

.

The new SQP algorithm is specified as follows.

Algorithm I

Initial data: x0, π0 > 0, πb > 0, ρ > 0, τ ∈ (0, 1) and σ ∈ (0, 1).

For k = 1, 2, ... until the KKT conditions for the nonlinear program (1.1) are satisfied

1. Define a positive definite matrix Bk and compute the step dIQ

k and multipliers λIQ

k+1, µ
IQ

k+1

by solving the subproblem (2.1);

2. Determine the working set Wk;

3. Compute the EQP step dEQ

k and multipliers λEQ

k+1, µ
EQ

k+1 by finding an approximate
solution of problem (2.3);

4. Compute the largest number β ∈ [0, 1] that ensures that the step d = dIQ

k + βdEQ

k

satisfies the constraints (2.5);

5. Compute the penalty parameter πk by (2.11);

6. Compute the steplength αk, define dk by (2.13) or (2.15), and set xk+1 = xk + dk.

7. Set
λk+1 = λEQ

k+1, [µk+1]Wk
= max

(
0, µEQ

k+1

)
, [µk+1]Wc

k
= 0,

where Wc
k denotes the complement of Wk.

A Sequential Quadratic Programming Algorithm 6

We have defined the model qπ in terms of the positive definite Hessian approximation
Bk so that the IQP step drives the global convergence of the algorithm — while the EQP
phase yields superlinear convergence.

Many enhancements and safeguards are needed to transform this general (and somewhat
idealized) algorithm into a practical approach. For example, the constraints in (2.1) are not
always feasible. This issue can be resolved by modifying the constraints using relaxations
[32, 3] or by following a penalty approach [18, 10, 6]. The algorithm should also include
regularization strategies for controlling singularity and ill conditioning [24, 13], as well as
second-order corrections [18] or watchdog steps [9] to improve the efficiency of the iteration.
Step 4 is quite restrictive (for simplicity) and in a practical implementation we might allow
the EQP step to violate some of the linearized constraints that are not in the working set.
In Section 6 we comment on a variant that employs a projection in the EQP phase instead
of backtracking to satisfy the constraints (2.5).

A fully developed implementation of the proposed approach is outside the scope of this
paper. We focus, instead, on some of the key aspects of the algorithm so that its potential
can be assessed in a simple setting. One of the main questions we wish to investigate is
whether the EQP phase does, in fact, add significant benefits to the standard SQP approach.

One motivation for the SQP+ algorithm stems from the difficulties that have been
encountered in trying to introduce second-derivative information in SQP codes that were
originally designed to solve convex quadratic subproblems, such as snopt. Another motiva-
tion arose from the numerical experience with the sequential linear-quadratic programming
(SLQP) method described in [4, 5]. The linear programming phase of that algorithm is
normally able to make a good selection of the working set, but it can be erratic in the
presence of degenerate constraints. Moreover, it has proved to be difficult to warm start
this linear programming phase because the trust region constraint, which is defined as a
box constraint [20, 4, 11], is typically active at every iteration and it is difficult to predict
which sides of the box will be active. The IQP phase of the SQP+ algorithm is both easier
to warm start and provides a better working set estimation than the SLQP method — at
the price of a more expensive step computation.

3 Global Convergence Properties

In this section we show that Algorithm I enjoys favorable global convergence properties.
We make the following assumptions about problem (1.1) and the iterates generated by the
algorithm.

Assumptions 3.1

(a) The sequence {xk} generated by Algorithm I is contained in a convex set Ω where the
functions f, h, g are twice differentiable; the sequence {fk} is bounded below and the
sequences {∇fk}, {hk, }, {gk}, {Hk} and {Gk} are bounded.

(b) The quadratic program (2.1) is feasible for all k;

A Sequential Quadratic Programming Algorithm 7

(c) The sequence of IQP multipliers is bounded, i.e. there exists a positive constant η
such that ‖(λIQ

k , µIQ

k)‖∞ ≤ η for all k;

(d) The sequence of Hessian approximations {Bk} is bounded above and there exists a
constant M > 0 such that for all k,

1
2dIQ

k
T Bkd

IQ

k ≥ M‖dIQ

k ‖
2
2. (3.1)

These assumptions are fairly restrictive, in particular (b) and (c). Although they have
often been used in the literature (see e.g. Powell [34]), recent studies of SQP methods
establish global convergence properties under weaker assumptions. This requires, however,
that the SQP method be modified significantly by incorporating constraint relaxations,
Hessian modifications, trust regions or other devices [13, 6, 10]. The resulting algorithms
are complex and the analysis is long and laborious. By making benign assumptions, we
can develop a fairly compact convergence analysis that highlights the key properties of the
SQP+ approach.

We begin the analysis by noting that the primal-dual solution (dIQ

k , λIQ

k+1, µ
IQ

k+1) of the
IQP subproblem (2.1) satisfies the following first-order conditions:

∇fk + Bkd
IQ

k −Hk
T λIQ

k+1 −Gk
T µIQ

k+1 = 0 (3.2a)

hk + Hkd
IQ

k = 0 (3.2b)
gk + Gkd

IQ

k ≥ 0 (3.2c)
µIQ

k+1 ≥ 0 (3.2d)

µIQ

k+1
T (gk + Gkd

IQ

k) = 0. (3.2e)

It is not difficult to show (cf. [31, page 628]) that the directional derivative of the merit
function φπk

at a point xk along the direction dIQ

k satisfies

Dφπk
(xk; d

IQ

k) ≤ ∇fT
k dIQ

k − π‖h(xk)‖1 − π‖g(xk)−‖1.

By comparing the right hand side of this expression with (2.8), we obtain

Dφπk
(xk; d

IQ

k) ≤ −qred(dIQ

k)− 1
2dIQ

k
T Bkd

IQ

k . (3.3)

Recalling from (2.9) that qred(dIQ

k) ≥ 0 and since Bk is positive definite, we conclude that
dIQ

k is a descent direction for φπk
. Relation (3.3) also shows that, by using qred(dIQ

k) in the
right hand sides of (2.12) and (2.14) (instead of using the directional derivative Dφπk

(xk; d
IQ

k)
as in a standard Armijo condition), the sufficient decrease condition is less demanding and
accounts for the nondifferentiability of the penalty function. This allows the algorithm to
take longer steps.

An immediate consequence of Assumption 3.1-(c) is that the penalty parameters πk

generated by the update rule (2.11) are bounded.

Lemma 3.2 There is an index k̄ and a positive constant π̄ such that πk = π̄ for all k ≥ k̄.

A Sequential Quadratic Programming Algorithm 8

Proof. From (3.2b) and (3.2e) we have that

(Hkd
IQ

k)T λIQ

k+1 = −hT
k λIQ

k+1, (Gkd
IQ

k)T µIQ

k+1 = −gT
k µIQ

k+1. (3.4)

Next, since µIQ

k+1 ≥ 0, we have that

−(µIQ

k+1)
T gk ≤ (µIQ

k+1)
T max{0,−gk} = (µIQ

k+1)
T g−k ≤ ‖µIQ

k+1‖∞‖g
−
k ‖1,

and we also have
(λIQ

k+1)
T hk ≤ ‖λIQ

k+1‖∞‖hk‖1.

By combining these two relations with (3.2a) and (3.4), and by Assumptions 3.1-(c), we
obtain

∇fT
k dIQ

k + 1
2dIQ

k
T Bkd

IQ

k ≤ ∇fT
k dIQ

k + dIQ

k
T Bkd

IQ

k

≤ ‖(λIQ

k+1, µ
IQ

k+1)‖∞(‖hk‖1 + ‖g−k ‖1)

≤ η(‖hk‖1 + ‖g−k ‖1).

From this relation and (2.10) we have that πtrial ≤ η/(1− ρ). Consequently, we have from
(2.11) that for all k,

πk ≤ max
{

π0,
η

1− ρ
+ πb

}
,

showing that the sequence of penalty parameters is bounded from above. Finally, note
that when the penalty parameter is increased, it is increased by the finite amount πb. This
implies that the sequence of penalty parameters is eventually constant, which completes the
proof. �

The next result is crucial.

Lemma 3.3 Under Assumptions 3.1, Algorithm I yields the limit

lim
k→∞

qred(dIQ

k) = 0. (3.5)

Proof. By Lemma 3.2, there exists an integer k̄ such that for all k ≥ k̄, πk = π̄. Since for
the purpose of proving convergence, the initial finite number of iterations are not relevant,
we consider only those iterations with k ≥ k̄ + 1.

Let Te denote the set of iterates for which the line search along the EQP direction was
successful, and hence (2.12) is satisfied. In this case we have

φπ̄(xk)− φπ̄(xk+1) ≥ σqred(dIQ

k) for k ∈ Te. (3.6)

Similarly, let Ti denote the set of iterates for which a backtracking line search along the
direction dIQ is performed. In this case we have from (2.14) that

φπ̄(xk)− φπ̄(xk+1) ≥ σαkqred(dIQ

k) for k ∈ Ti. (3.7)

By (2.9) we have that qred(dIQ

k) ≥ 0 for all k and therefore the sequence {φπ̄(xk+1)} is
monotonically decreasing. By Assumption 3.1-(a), f(xk) is bounded from below and g(xk),
h(xk) are bounded, and so is φπ̄(xk). Thus, {φπ̄(xk)} must converge, i.e.,

lim
k→∞

(
φπ̄(xk+1)− φπ̄(xk)

)
= 0,

A Sequential Quadratic Programming Algorithm 9

which implies

lim
k∈Te,k→∞

qred(dIQ

k) = 0 and lim
k∈Ti,k→∞

αkqred(dIQ

k) = 0. (3.8)

If the set Ti is finite, the limit (3.5) holds since k ∈ Te for all large k. Therefore, we assume
that Ti is infinite and show that Assumptions 3.1, the backtracking line search procedure
and the second limit in (3.8) imply that limk∈Ti,k→∞ qred(dIQ

k) = 0; this will prove the
lemma.

Recalling the definitions (1.3) and (2.6) and Assumptions 3.1-(a) we have that

φπ̄(xk + αkd
IQ

k)− qπ̄(αkd
IQ

k) ≤ f(xk + αkd
IQ

k)− (fk + αk∇fT
k dIQ

k)
+ π̄(‖h(xk + αkd

IQ

k)‖1 − ‖hk + αkHkd
IQ

k ‖1)
+ π̄(‖g(xk + αkd

IQ

k)−‖1 − ‖[gk + αkGkd
IQ

k]−‖1)

≤ L1α
2
k‖d

IQ

k ‖
2
2,

(3.9)

for some constant L1 > 0 independent of k. From (3.2a) we have

dIQ

k = B−1
k [−∇fk + Hk

T λIQ

k+1 + Gk
T µIQ

k+1].

By Assumptions 3.1-(a), all the terms inside the square brackets are bounded and the
matrices Bk are uniformly positive definite. Therefore, for all k, there is a constant L2 such
that

‖dIQ

k ‖
2
2 ≤ L2,

and (3.9) yields
φπ̄(xk + αkd

IQ

k)− qπ̄(αkd
IQ

k) ≤ L1L2α
2
k. (3.10)

The positive definiteness of Bk also implies that qπ̄ is a convex function, and therefore,

qπ̄(αkd
IQ

k) ≤ (1− αk)qπ̄(0) + αkqπ̄(dIQ

k).

Recalling (2.7), this inequality gives

qπ̄(αkd
IQ

k)− qπ̄(0) ≤ −αkqred(dIQ

k).

Combining this expression with (3.10), and noting that φπ̄(xk) = qπ̄(0), we obtain

φπ̄(xk + αkd
IQ

k)− φπ̄(xk) =
[
φπ̄(xk + αkd

IQ

k)− qπ̄(αkd
IQ

k)
]
+

[
qπ̄(αkd

IQ

k)− φπ̄(xk)
]

≤ −αkqred(dIQ

k) + L1L2α
2
k.

(3.11)

Now, if

αk ≤
(1− σ)
L1L2

qred(dIQ

k), (3.12)

we have

φπ̄(xk + αkd
IQ

k)− φπ̄(xk) ≤ −σαkqred(dIQ

k)− αk(1− σ)qred(dIQ

k) + L1L2α
2
k

≤ −σαkqred(dIQ

k),

A Sequential Quadratic Programming Algorithm 10

and therefore, the sufficient decrease condition (2.14) is satisfied. Since k ∈ Ti, αk is chosen
by a backtracking line search with a contraction factor τ , we conclude that

αk ≥ τ
(1− σ)
L1L2

qred(dIQ

k).

Substituting this inequality in the second limit in (3.8) gives

0 = lim
k∈Ti,k→∞

αkqred(dIQ

k) ≥ lim
k∈Ti,k→∞

τ (1−σ)
L1L2

qred2(dIQ

k) ≥ 0,

which implies that limk∈Ti,k→∞ qred(dIQ

k) = 0. �

We can now establish some limiting properties of the iterates.

Lemma 3.4 The sequence {xk} generated by Algorithm I is asymptotically feasible, i.e.,

lim
k→∞

(‖hk‖1 + ‖g−k ‖1) = 0. (3.13)

Furthermore,
lim

k→∞
gT
k µIQ

k+1 = 0 (3.14)

and
lim

k→∞
dIQ

k = 0. (3.15)

Proof. From Lemma 3.3 and condition (2.9) we get

0 = lim
k→∞

qred(dIQ

k) ≥ lim
k→∞

ρπk(‖hk‖1 + ‖g−k ‖1) ≥ 0.

Since πk is bounded above by Lemma 3.2, we have that the limit (3.13) holds.
As to (3.14) and (3.15), we first observe from (3.2a) and (3.4) that

0 = ∇fT
k dIQ

k + dIQ

k
T Bkd

IQ

k − (Hkd
IQ

k)T λIQ

k+1 − (Gkd
IQ

k)T µIQ

k+1

= ∇fT
k dIQ

k + dIQ

k
T Bkd

IQ

k + hT
k λIQ

k+1 + gT
k µIQ

k+1

= {∇fT
k dIQ

k + 1
2dIQ

k
T Bkd

IQ

k }+ 1
2dIQ

k
T Bkd

IQ

k + hT
k λIQ

k+1 + gT
k µIQ

k+1.

(3.16)

Using the definition (2.8) of qred, the limits (3.5) and (3.13), and the boundedness of {πk},
we obtain

lim
k→∞

∇fT
k dIQ

k + 1
2dIQ

k
T Bkd

IQ

k = 0, (3.17)

and consequently by (3.16)

lim
k→∞

1
2dIQ

k
T Bkd

IQ

k + hT
k λIQ

k+1 + gT
k µIQ

k+1 = 0. (3.18)

By Assumption 3.1-(c), the IQP multipliers are bounded and thus from (3.13) we have

lim
k→∞

hT
k λIQ

k+1 = 0. (3.19)

A Sequential Quadratic Programming Algorithm 11

Therefore (3.18) simplifies to

lim
k→∞

1
2dIQ

k
T Bkd

IQ

k + gT
k µIQ

k+1 = 0. (3.20)

We also have from (3.13) that ||g−k || → 0, and thus by the boundedness of the IQP multipliers
we obtain

lim
k→∞

∑
i∈J−k

gi(xk)[µ
IQ

k+1]i = 0, (3.21)

where J−k = {i : gi(xk) < 0}. Therefore,

lim
k→∞

gT
k µIQ

k+1 = lim
k→∞


∑
i∈J−k

gi(xk)[µ
IQ

k+1]i +
∑
i∈J+

k

gi(xk)[µ
IQ

k+1]i


= lim

k→∞

∑
i∈J+

k

gi(xk)[µ
IQ

k+1]i

≥ 0,

(3.22)

where J+
k = {i : gi(xk) > 0}. By (3.1) and (3.22) both terms in (3.20) are nonnegative, so

we conclude that
lim

k→∞
gT
k µIQ

k+1 = 0 and lim
k→∞

1
2dIQ

k
T Bkd

IQ

k = 0

Hence
0 = lim

k→∞
1
2dIQ

k
T Bkd

IQ

k ≥ limk→∞, M‖dIQ

k ‖
2
2 ≥ 0,

which implies that dIQ

k → 0. �

We can now prove the main result of this section.

Theorem 3.5 Any limit point of the sequence {xk, λ
IQ

k+1, µ
IQ

k+1} generated by Algorithm I
is a KKT point of the nonlinear program (1.1).

Proof. The KKT conditions for the nonlinear program (1.1) are given by

∇f(x)−H(x)T λ−G(x)T µ = 0 (3.23a)
h(x) = 0 (3.23b)
g(x) ≥ 0 (3.23c)

µ ≥ 0 (3.23d)

µT g(x) = 0. (3.23e)

Consider a limit point {x∗, λ∗, µ∗} of the sequence {xk, λ
IQ

k+1, µ
IQ

k+1}. Then there is an index
set K such that (xk, λ

IQ

k+1, µ
IQ

k+1)k∈K → (x∗, λ∗, µ∗). Taking limits in (3.2a) we obtain

lim
k→∞,k∈K

∇fT
k + Bkd

IQ

k −HT
k λIQ

k+1 −GT
k µIQ

k+1 = 0.

A Sequential Quadratic Programming Algorithm 12

We have shown in Lemma 3.4 that the sequence {dIQ

k } converges to zero, and Assump-
tion 3.1-(d) states that the matrices Bk are bounded. Hence,

∇f(x∗)−H(x∗)T λ∗ −G(x∗)T µ∗ = 0,

so that (3.23a) is satisfied. Lemma 3.4 guarantees that x∗ is feasible and hence (3.23b) and
(3.23c) hold. Condition (3.23e) follows from (3.14), and the nonnegativity condition (3.23d)
holds by (3.2d). Consequently, the limit point {x∗, λ∗, µ∗} satisfies the KKT conditions
(3.23). �

This theorem shows that the primal-dual variables (xk, λ
IQ

k+1, µ
IQ

k+1) can be used to ter-
minate the algorithm. An alternative (primal) stop test would be to terminate the iteration
when ||dIQ

k || is smaller than a given tolerance. One can also base the convergence test on
the new iterate, (xk+1, λk+1, µk+1).

4 Local Convergence Properties

We now show that Algorithm I identifies the optimal active set once an iterate xk is close
enough to a solution satisfying standard conditions. Furthermore, since for large k the
EQP phase computes Newton steps along the optimal active set, we show that the rate of
convergence of the iteration is quadratic.

We begin by introducing some notation. The working set Wk is given by (2.2) and the
(optimal) active set corresponding to a solution x∗ of the nonlinear program (1.1) is defined
as

W∗ = {i ∈ E} ∪ {i ∈ I | gi(x∗) = 0}. (4.1)

We denote by cW the vector of constraints in the working set, i.e.,

cW(xk) =
[

h(xk)
gW(xk)

]
, (4.2)

and denote its Jacobian by AW , specifically

AW(xk) =
[

H(xk)
GW(xk)

]
, with GW(xk) = [∇gi(xk)T]i∈W . (4.3)

Our local convergence results are established under the following assumptions.

Assumptions 4.1 Let (x∗, λ∗, µ∗) be a primal-dual solution to (1.1) and let W∗ be the
corresponding optimal active set.

(a) (Smoothness) The functions f , g and h are twice continuously differentiable in a
neighborhood of x∗;

(b) (Regularity) The Jacobian of the active constraints at x∗, denoted as AW∗(x∗), has
full row rank;

A Sequential Quadratic Programming Algorithm 13

(c) (Strict Complementarity) µ∗ + g(x∗) > 0;

(d) (Regularity of IQP Model) The subproblem (2.1) is feasible for all k. The matrices Bk

are positive definite and their smallest eigenvalue is bounded away from zero;

(e) (Second Order Sufficiency) The Hessian W (x, λ, µ) satisfies yT W (x∗, λ∗, µ∗)y > 0 for
all y 6= 0 such that AW∗(x∗)y = 0.

Throughout the analysis, we assume that ‖ · ‖ denotes the 2-norm, unless indicated
otherwise. The following lemma, which was first proved by Robinson [35], states that near
a solution x∗, the IQP step identifies the optimal active set W∗. We give a proof of this
result because some of the arguments are used again in the proof of Theorem 4.3.

Lemma 4.2 Suppose that Assumptions 4.1 hold. If xk is sufficiently close to x∗, the work-
ing set (2.2) identified by the solution of the IQP subproblem (2.1) is the optimal active set,
i.e., Wk = W∗.

Proof. By Assumption 4.1-(d), the IQP subproblem (2.1) has a unique primal optimal
solution dIQ

k , and hence the working set Wk is uniquely determined by (2.2). Let us recall
definitions (4.2) and (4.3), and consider the system[

Bk −AT
W∗(xk)

AW∗(xk) 0

] [
d

γ

]
= −

[
∇fk

cW∗(xk)

]
, (4.4)

which is defined in terms of the optimal active set W∗. We now show that when xk is close
to x∗, the IQP step can be computed via solution of the system (4.4).

Let us define the neighborhood

N∗(ε) , { x | ‖x− x∗‖ ≤ ε} with ε > 0. (4.5)

By Assumptions 4.1-(a), (b), (d), for ε sufficiently small and xk ∈ N∗(ε), the linear system
(4.4) is nonsingular and the inverse of its coefficient matrix is bounded above in norm by
some constant δ1 > 0. Let us define

γ∗ =
[

λ∗
[µ∗]W∗

]
. (4.6)

From (4.4) we have that[
d

γ − γ∗

]
= −

[
Bk −AT

W∗(xk)

AW∗(xk) 0

]−1 [
∇fk −AT

W∗(xk)γ∗
cW∗(xk)

]
, (4.7)

and hence ∥∥∥∥[
d

γ − γ∗

]∥∥∥∥ ≤ δ1

∥∥∥∥∥
[
∇fk −AT

W∗(xk)γ∗
cW∗(xk)

]∥∥∥∥∥ . (4.8)

A Sequential Quadratic Programming Algorithm 14

Furthermore, Assumptions 4.1-(a) imply that ∇f , cW∗ , AW∗ are Lipschitz continuous and
therefore for all xk ∈ N∗(ε) there exist constants κf , κc and κa such that

‖∇fk −∇f(x∗)‖ ≤ κf ε, ‖cW∗(xk)− cW∗(x∗)‖ ≤ κcε, ‖AW∗(xk)−AW∗(x∗)‖ ≤ κaε. (4.9)

By (4.6), we can express the KKT conditions (3.23) of the nonlinear program (1.1) as[
∇f(x∗)−AT

W∗(x∗)γ∗
cW∗(x∗)

]
= 0, (4.10)

together with
[µ∗]W∗ > 0, [µ∗]Wc

∗
= 0, gWc

∗(x∗) > 0, (4.11)

where the second condition follows from Assumption 4.1-(c). Therefore, we have from (4.10)
and (4.9) that∥∥∥∥∥

[
∇fk −AT

W∗(xk)γ∗
cW∗(xk)

]∥∥∥∥∥ =

∥∥∥∥∥
[
(∇fk −∇f(x∗))− (AW∗(xk)−AW∗(x∗))

T γ∗

cW∗(xk)− cW∗(x∗)

]∥∥∥∥∥
≤ ‖∇fk −∇f(x∗)‖+ ‖cW∗(xk)− cW∗(x∗)‖+ ‖AW∗(xk)−AW∗(x∗)‖‖γ∗‖
≤

(
κf + κc + κa‖γ∗‖

)
ε.

(4.12)
If we define κo = κf + κc + κa‖γ∗‖, we obtain from (4.8)∥∥∥∥[

d
γ − γ∗

]∥∥∥∥ ≤ κoδ1ε. (4.13)

Let us now write γ in terms of components whose dimensions are compatible with those of
γ∗ in (4.6), i.e.,

γ =
[

λ
ν

]
. (4.14)

Then, from (4.13)
‖d‖ ≤ κoδ1ε and ‖ν − [µ∗]W∗‖ ≤ κoδ1ε.

Hence,
ν = [µ∗]W∗ − ([µ∗]W∗ − ν)
≥ [µ∗]W∗ − κoδ1ε1,

(4.15)

and

gWc
∗(xk) + GWc

∗(xk)d = gWc
∗(x∗)− (gWc

∗(x∗)− gWc
∗(xk))

− (GWc
∗(x∗)−GWc

∗(xk))d + GWc
∗(x∗)d

≥ gWc
∗(x∗)−

(
κg + κGκoδ1ε + ‖GWc

∗(x∗)‖κoδ1

)
ε1,

(4.16)

where κg and κG are, respectively, Lipschitz constants for gWc
∗(x∗) and GWc

∗(x) over N∗(ε)
and 1 is a vector of all ones of appropriate dimension. Therefore, if ε is small enough we
have from (4.11), (4.15), (4.16) that

ν > 0, gWc
∗(xk) + GWc

∗(xk)d > 0. (4.17)

A Sequential Quadratic Programming Algorithm 15

We can now construct the solution of the IQP subproblem as follows

dIQ

k = d,

[
λIQ

k+1

[µIQ

k+1]W∗

]
= γ =

[
λ

ν

]
, [µIQ

k+1]Wc
∗

= 0. (4.18)

By (4.4) and (4.17), it is easy to verify that this primal-dual solution satisfies the KKT
conditions (3.2) of the IQP subproblem. Therefore, the vector dIQ

k constructed in this
manner is indeed the unique primal optimal solution of the IQP subproblem and its working
set satisfies Wk = W∗. �

We now present the main result of this section. It shows that, if the algorithm takes the
full step for all (xk, λk, µk) is sufficiently close to (x∗, λ∗, µ∗), the iteration is quadratically
convergent.

Theorem 4.3 Suppose that: i) Assumptions 4.1 hold; ii) For (xk, λk, µk) sufficiently close
to (x∗, λ∗, µ∗), Algorithm I computes the step dk by (2.13) with αk = 1. Then, there ex-
ists a neighborhood N∗∗(ε) such that if (xk, λk, µk) ∈ N∗∗(ε), the sequence {(xl, λl, µl)}∞l=k

converges quadratically to (x∗, λ∗, µ∗).

Proof. By Lemma 4.2, if xk is sufficiently close to x∗ we have Wk = W∗. The KKT
conditions of the EQP subproblem (2.3) are therefore given by[

Wk −AT
W∗(xk)

AW∗(xk) 0

] [
d

θ

]
= −

[
∇fk + Wkd

IQ

k

0

]
. (4.19)

By Assumptions 4.1-(b),(e), if xk is sufficiently near x∗, the linear system (4.19) is nonsin-
gular and its solution is thus given by

(d, θ) = (dEQ

k , θk+1) where θk+1 ,

[
λEQ

k+1

µEQ

k+1

]
. (4.20)

Let us rewrite (4.19) as[
Wk −AT

W∗(xk)

AW∗(xk) 0

] [
d + dIQ

k

θ

]
= −

[
∇fk

cW∗(xk)

]
, (4.21)

and note that the inverse of the coefficient matrix is bounded above in norm by some
constant δ2, for all xk close to x∗. Now, since (4.21) has the same form as (4.4), except that
Bk is replaced by Wk, we can follow the same reasoning as in the proof of Lemma 4.2 and
deduce that the solution (dEQ

k + dIQ

k , θk+1) of (4.21) also satisfies (4.17), i.e.,

µEQ

k+1 > 0 and gWc
∗(xk) + GWc

∗(xk)(d
IQ

k + dEQ

k) > 0. (4.22)

Therefore, for (xk, λk, µk) sufficiently close to (x∗, λ∗, µ∗), step 4 of Algorithm I will choose
β = 1, step 6 will set

dk = dIQ

k + dEQ

k and xk+1 − xk = dIQ

k + dEQ

k , (4.23)

A Sequential Quadratic Programming Algorithm 16

and step 7 will set

λk+1 = λEQ

k+1, [µk+1]W∗ = µEQ

k+1, [µk+1]Wc
∗

= 0. (4.24)

Let us define

Ŵ (x, θ) = ∇2f(x)−
∑
i∈E

λEQ

i ∇2hi(x)−
∑

i∈I∩W∗

µEQ

i ∇2gi(x) with θ =

[
λEQ

µEQ

]
. (4.25)

For (xk, λk, µk) sufficiently close to (x∗, λ∗, µ∗), we have by (4.24) that Ŵ (xk, θk) = Wk (see
(2.4)), and thus recalling (4.23) we can write (4.21) as[

Ŵ (xk, θk) −AT
W∗(xk)

AW∗(xk) 0

] [
xk+1 − xk

θk+1 − θk

]
= −

[
∇f(xk)−AT

W∗(xk)θk

cW∗(xk)

]
. (4.26)

Note that this is the Newton iteration applied to the nonlinear system

∇f(x)−AT
W∗(x)θ = 0 (4.27a)
cW∗(x) = 0. (4.27b)

We can now perform standard Newton analysis to establish quadratic convergence. We first
observe that the matrix

F (x, θ) ,

[
Ŵ (x, θ) −AT

W∗(x)
AW∗(x) 0

]
is continuous by Assumptions 4.1-(a). Thus F is also Lipschitz continuous near x∗, with
Lipschitz constant κ1. If we define

θ∗ =
[

λ∗
[µ∗]W∗

]
, (4.28)

then by assumptions 4.1-(e), F is nonsingular in a neighborhood of (x∗, θ∗). Hence F is
invertible and F−1 is bounded above in norm by a constant κ2 in a neighborhood of (x∗, θ∗).
By Theorem 5.2.1 of [14], if (xk, θk) satisfies∥∥∥∥[

xk − x∗
θk − θ∗

]∥∥∥∥ ≤ 1
2κ1κ2

, (4.29)

then ∥∥∥∥[
xk+1 − x∗
θk+1 − θ∗

]∥∥∥∥ ≤ κ1κ2

∥∥∥∥[
xk − x∗
θk − θ∗

]∥∥∥∥2

. (4.30)

Let us define the neighborhood

N∗∗(ε) =

(x, λ, µ)

∣∣∣∣∣
∥∥∥∥∥∥
x− x∗

λ− λ∗
µ− µ∗

∥∥∥∥∥∥ ≤ min
(

ε,
1

2κ1κ2

) ,

A Sequential Quadratic Programming Algorithm 17

where µ ∈ Rt and where ε > 0 is small enough that all the properties derived so far in
this proof hold for (xk, λk, µk) ∈ N∗∗(ε). In particular, by (4.24), we have that [µk+1]Wc

∗
=

[µ∗]Wc
∗

= 0. Thus, recalling the definitions (4.20), (4.28), and using (4.30), we have that if
(xk, λk, µk) ∈ N∗∗(ε), ∥∥∥∥∥∥

xk+1 − x∗
λk+1 − λ∗
µk+1 − µ∗

∥∥∥∥∥∥ =
∥∥∥∥[

xk+1 − x∗
θk+1 − θ∗

]∥∥∥∥
≤ κ1κ2

∥∥∥∥[
xk − x∗
θk − θ∗

]∥∥∥∥2

≤ κ1κ2

∥∥∥∥∥∥
xk − x∗

λk − λ∗
µk − µ∗

∥∥∥∥∥∥
2

≤ min
(

κ1κ2ε
2,

1
4κ1κ2

)
.

(4.31)

If ε is sufficiently small such that κ1κ2ε
2 ≤ ε, we have that (xk+1, λk+1, µk+1) ∈ N∗∗(ε).

Therefore, we have shown that if (xk, λk, µk) ∈ N∗∗(ε), all subsequent iterates remain in
N∗∗(ε) and converge quadratically to (x∗, λ∗, µ∗). �

This quadratic convergence result is more satisfying than those established in the liter-
ature of SQP methods that use exact Hessians. This is because, even in a neighborhood
of a solution satisfying Assumptions 4.1, the quadratic program (2.1) may have several
local minimizers if Bk is replaced by the Hessian Wk. Thus, for classical SQP methods it
is necessary to assume that the quadratic programming solver selects a local with certain
properties; for example, the one closest to the current iterate. Our quadratic convergence
result, relies only on the second-order sufficiency conditions of the problem.

To establish Theorem 4.3, we have assumed that near the solution the line search con-
dition (2.12) is satisfied for αk = 1. As is well known, however, the nonsmooth penalty
function φπ may reject unit steplengths (the Maratos effect) and some additional features
must be incorporated into the algorithm to prevent this from happening. They include
second-order corrections or watchdog steps; see e.g. [30].

5 Implementation and Numerical Results

The SQP+ algorithm can be implemented as an extension of any SQP method that solves
convex quadratic programs for the step computation. Our implementation is based on
sqplab, a Matlab package developed by Gilbert [21] that offers a classical line search SQP
method using an `1 merit function and BFGS quasi-Newton updating. sqplab does not
contain many of the algorithmic features of production SQP codes such as snopt [23, 22]
or filtersqp [19], and is not well suited for large scale problems. Nevertheless, it provides
a good platform for the development of a prototype implementation of the SQP+ approach
that allows us to study the benefits of the EQP phase on small and medium size problems.

A Sequential Quadratic Programming Algorithm 18

We made two modifications to sqplab in order to improve its performance. Instead of
using The Mathworks’ routine quadprog to solve the quadratic program (2.1), we employed
knitro/active [8] for this task. Unlike quadprog, the knitro/active code had no dif-
ficulties solving the quadratic subproblems generated during the IQP phase, and provided
reliable multiplier estimates. The second modification concerns the choice of the penalty
parameter π, which in sqplab is based on the size of Lagrange multiplier estimates. We
replaced this technique by the rule (2.10)-(2.11) and observed a notable improvement in
performance.

The BFGS quasi-Newton approximation Bk used in the IQP phase of the method is
updated using information from the full step. We define the correction pairs as

sk = xk+1 − xk and yk = ∇xL(xk+1, λk+1, µk+1)−∇xL(xk, λk+1, µk+1),

and modify yk, if necessary, by means of Powell’s damping procedure [33] to ensure that all
Hessian approximations Bk are positive definite.

The gradients of the constraints in the working set Wk (defined in (2.2)) may not be
linearly independent, and this can cause difficulties in the EQP step computation. In a
production implementation of the SQP+ algorithm, we would define Wk to be a subset of
(2.2) that has (sufficiently) linearly independent constraint gradients. In our simple imple-
mentation of SQP+, we choose to simply skip the EQP phase if the constraints gradients
in Wk are dependent (or nearly so).

As mentioned in Section 2, we can compute an approximate solution of the EQP problem
(2.3) by either applying the projected conjugate gradient method [30] (and adding a trust
region constraint to (2.3)) or using a direct method. Here we follow the latter approach.
When the EQP problem (2.3) is convex, its solution solves the KKT system Wk HT (xk) GT

Wk
(xk)

H(xk) 0 0
GWk

(xk) 0 0

dEQ

λEQ

µEQ

 = −

∇f(xk) + Wkd
IQ

0
0

 , (5.1)

where, as in the previous section, GWk
is the matrix obtained by selecting the rows of G

corresponding to the elements of Wk. If the inertia of the KKT matrix in (5.1) is given by

(n, |Wk|, 0), (5.2)

then we know that problem (2.3) is convex [30]. If this is not the case, we could repeatedly
add an increasingly large multiple of the identity matrix to Wk, as discussed in [37], until
the inertia of the modified system is given by (5.2). We have tested such an approach, but
found this modification procedure to be a heuristic that is not always satisfactory. Therefore
in keeping with our minimalist implementation of the SQP+ method, we simply skip the
EQP step if the inertia of (5.1) is not given by (5.2).

In the line search procedure, we only test the unit steplength along the full step dIQ +
βdEQ. If αk = 1 does not yield the sufficient decrease condition (2.12), we simply fall back
on the IQP step and commence the backtracking line search from there. The algorithm

A Sequential Quadratic Programming Algorithm 19

terminates when the following conditions are satisfied

‖∇f(xk)−H(xk)T λk −G(xk)T µk‖2 ≤ ε1

‖
(
h(xk),max[0,−g(xk)]

)
‖2 ≤ ε2 (5.3)

‖µT
k g(xk)‖2 ≤ ε3,

for some constants ε1, ε2, ε3. We can now give a detailed description of the algorithm used
in our tests.

Algorithm SQP+

Initial data: x0, π0 > 0, πb > 0, ε1 > 0, ε2 > 0, ε3 > 0, σ > 0, τ ∈ (0, 1) and B1 = I

For k = 1, 2, ... until (xk, λk, µk) satisfies the termination test (5.3):

1. Compute the step dIQ and multipliers λIQ, µIQ by solving (2.1).

2. Determine the working set Wk. If |Wk| ≥ n, go to step 7.

3. Factor the system (5.1); if its inertia is not given by (5.2), then go to step 7.

Else, compute the EQP step dEQ and multipliers λEQ, µEQ by solving the linear system
(5.1).

4. Compute β ≥ 0 to be the largest number in [0, 1] such that d = dIQ + βdEQ satisfies
(2.1b), (2.1c).

5. Update the penalty parameter πk by the rule (2.10)-(2.11).

6. If the sufficient decrease condition (2.12) is satisfied, for αk = 1, then set

xk+1 = xk + dIQ + βdEQ,

λk+1 = λEQ

k+1, [µk+1]Wk
= max

(
0, µEQ

k+1

)
, [µk+1]Wc

k
= 0,

and go to step 8.

7. Let αk ∈ (0, 1] be the first member of the sequence {1, τ, τ2, . . .} such that

φπk
(xk + αkd

IQ) ≤ φπk
(xk)− σαkqred(dIQ), (5.4)

and set

xk+1 = xk + αkd
IQ; (λk+1, µk+1) =

(
(1−αk)λk + αkλ

IQ, (1−αk)µk + αkµ
IQ

)
. (5.5)

8. Update Bk+1 from Bk using the BFGS method with Powell damping.

The constants in the algorithm are chosen as follows: ε1 = ε2 = ε3 = 10−5, σ = 10−4,
τ = 0.5. Initially, πb = 0 and at the end of the first iteration it is reset to πb =
max(

√
εm, ‖(λ1, µ1)‖∞/100).

A Sequential Quadratic Programming Algorithm 20

5.1 Numerical Experiments

We tested Algorithm SQP+ on a set of problems from the CUTEr [26] collection. Our test
set consists primarily of small-dimensional problems, but we have included also a signif-
icant number of medium-size problems. The characteristics of the problems are given in
Tables 1-4 of the Appendix. The test set was selected before the numerical experiments
were performed; no problems were removed or added during the testing process.

We compared the performance of SQP+ and sqplab (with the improvements described
above) in terms of the number of iterations needed to achieve convergence. The results
are reported in Figure 5.1 using the logarithmic performance profiles described in [15]. (A
comparison based on number of function evaluations would give very similar performance
profiles.) Detailed results are given in Tables 1-4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

SQP+
SQPLAB

Figure 1: Comparison of sqplab and sqp+ in terms of iterations.

The benefit of adding the EQP phase can be observed by comparing SQP+ and sqplab
since the other aspects of these two algorithms are identical. The results presented here
strongly suggest that this benefit can be quite substantial. Our Matlab implementation does
not permit timing experiments on large scale problems, therefore an evaluation of the speed
of the SQP+ approach must await the development of a sparse large-scale implementation.
We mention, however, that the additional computational cost incurred by the EQP phase is
not likely to be significant. This view is based on the numerical experiments reported in [4]
using a sequential linear-quadratic programming method that contains an EQP phase, just
like Algorithm SQP+. That paper reports that the cost of the EQP phase is dominated by
the cost of the linear programming phase. We can expect the same in the SQP+ algorithm
since solving a quadratic program is generally more expensive than solving a linear program.

To obtain another measure of the performance of the SQP+ algorithm, we also com-
pare its performance with snopt version 7.2-1 in terms of major iterations. We used the
same test set as in the previous experiment except that we removed all linear and quadratic

A Sequential Quadratic Programming Algorithm 21

programs because snopt recognizes their structure and solves them in one major iteration
(e.g. using the exact Hessian for a quadratic program) while the SQP+ method treats
linear and quadratic programs as general nonlinear programs. The results are reported in
Figure 5.1. One should be cautious in interpreting these results because they are obtained
using substantially different implementations of the SQP approach, which employ different
scalings and termination tests. snopt is a mature code with many features and enhance-
ments not present in SQP+. The results are, nevertheless, highly encouraging both in terms
of robustness and number of iterations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

SQP+
SNOPT

Figure 2: Comparison of the number of major iterations in snopt and sqp+.

We conclude this section by describing an enhancement to the EQP phase that we
developed and tested. Rather than using the contraction parameter β in step 4 of Algo-
rithm SQP+ to ensure that all linearized constraints are satisfied, we experimented with the
option of computing the minimum norm projection of the step dIQ + dEQ onto the feasible
region defined by (2.1b), (2.1c). We found that the improvements in performance obtained
with the projection approach were not substantial, except on bound constrained problems.
Since computing the projection is expensive, this option does not seem viable at this point
and further investigation is needed to determine what is the most effective implementation
of the EQP phase.

6 Final Remarks

We have presented a sequential quadratic programming method that can employ exact
second derivative information but never solves indefinite quadratic programs. It is a two-
stage method in which global convergence and active-set identification are driven by an
IQP phase (which solves convex quadratic programs), while fast asymptotic convergence is
achieved by an EQP phase (which solves equality constrained subproblems). The numerical

A Sequential Quadratic Programming Algorithm 22

results presented in this paper suggest that the addition of the EQP phase leads to an
important decrease in the total number of iterations and function evaluations.

There is considerable flexibility in the SQP+ approach. For example, if a projected CG
iteration is employed in the EQP phase, the Hessian of the Lagrangian need not be formed;
only products of this Hessian times vectors are required. Moreover, one could use gradient
differences to approximate these products, and in this case the SQP+ method would only
require first derivatives.

The approach presented here does not overcome one of the main limitations of SQP
methods, namely the major computational cost of solving large quadratic programs, par-
ticularly when the reduced space is large. Although the IQP matrix Bk can be chosen to
be a simple matrix such as a limited memory BFGS matrix, or even a diagonal matrix, the
cost of the IQP phase can still be significant. Therefore we view SQP+ as a method that is
applicable to the class of problems that is currently solved by SQP methods. An interesting
alternative approach for improving SQP methods is reported in [28].

Acknowledgement. We would like to thank Richard Byrd for many useful comments
during the course of this research.

References

[1] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica,
4:1–51, 1995.

[2] J. F. Bonnans and G. Launay. Sequential quadratic-programming with penalization of
the displacement. SIAM Journal on Optimization, 5(4):792–812, 1995.

[3] J. V. Burke and S. P. Han. A robust sequential quadratic-programming method. Math-
ematical Programming, 43(3):277–303, 1989.

[4] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for non-
linear optimization using linear programming and equality constrained subproblems.
Mathematical Programming, Series B, 100(1):27–48, 2004.

[5] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of
successive linear-quadratic programming algorithms. SIAM Journal on Optimization,
16(2):471–489, 2006.

[6] R. H. Byrd, G. López-Calva, and J. Nocedal. A line search penalty method for nonlinear
optimization. Technical Report 08/05, Optimization Technology Center, Northwestern
University, 2008.

[7] R. H. Byrd, J. Nocedal, and R. A. Waltz. Steering exact penalty methods. Optimization
Methods and Software, 23(2), 2008.

A Sequential Quadratic Programming Algorithm 23

[8] R. H. Byrd, J. Nocedal, and R.A. Waltz. KNITRO: An integrated package for nonlinear
optimization. In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization,
pages 35–59. Springer, 2006.

[9] R. M. Chamberlain, M. J. D. Powell, C. Lemaréchal, and H. C. Pedersen. The watchdog
technique for forcing convergence in algorithms for constrained optimization. Mathe-
matical Programming Studies, 16(MAR):1–17, 1982.

[10] L. Chen and D. Goldfarb. Interior-point `2 penalty methods for nonlinear programming
with strong global convergence properties. Mathematical Programming, 108(1):1–36,
2006.

[11] C. M. Chin and R. Fletcher. On the global convergence of an SLP-filter algorithm that
takes EQP steps. Mathematical Programming, Series A, 96(1):161–177, 2003.

[12] T. F. Coleman and A. Verma. A preconditioned conjugate gradient approach to linear
equality constrained minimization. Technical report, Computer Science Department
and Cornell Theory Center, Cornell University, Ithaca, NY 14850, USA, July 1998.

[13] A. R. Conn, N. I. M. Gould, and Ph. Toint. Trust-region methods. MPS-SIAM Series
on Optimization. SIAM publications, Philadelphia, Pennsylvania, USA, 2000.

[14] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983.
Reprinted as Classics in Applied Mathematics 16, SIAM, Philadelphia, Pennsylvania,
USA, 1996.

[15] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, Series A, 91:201–213, 2002.

[16] A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization
problems. Mathematical Programming, 31:153–191, 1985.

[17] F. Facchinei and S. Lucidi. Quadratically and superlinearly convergent algorithms for
the solution of inequality constrained minimization problems. Journal of Optimization
Theory and Applications, 85:265–289, 1994.

[18] R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, Eng-
land, second edition, 1987.

[19] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math-
ematical Programming, 91:239–269, 2002.

[20] R. Fletcher and E. Sainz de la Maza. Nonlinear programming and nonsmooth optimiza-
tion by successive linear programming. Mathematical Programming, 43(3):235–256,
1989.

[21] J. C. Gilbert. SQPlab - A MATLAB software package for solving nonlinear optimization
problems and optimal control problems. Technical Report Version 0.4.1, INRIA, 2007.

A Sequential Quadratic Programming Algorithm 24

[22] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.

[23] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SNOPT 7.1: a Fortran
package for large-scale nonlinear programming. Technical Report NA 05-2, Department
of Mathematics, University of California, San Diego, 2005.

[24] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
London, 1981.

[25] N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic problems arising in optimization. SIAM Journal on Scientific Computing,
23(4):1375–1394, 2001.

[26] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a Constrained and
Unconstrained Testing Environment, revisited. Technical Report TR/PA/01/04, CER-
FACS, Toulouse, France, 2003. To appear in Transactions on Mathematical Software.

[27] N. I. M. Gould, D. Orban, and Ph. L. Toint. Numerical methods for large-scale non-
linear optimization. Acta Numerica, pages 299–361, 2005.

[28] N. I. M. Gould and D. P. Robinson. A second derivative SQP method with imposed
descent. Technical Report 08/09, Oxford University Computing Laboratory, 2008.

[29] C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite
linear systems. SIAM Journal on Matrix Analysis and Applications, 21(4):1300–1317,
2000.

[30] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, 1999.

[31] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, second edition, 2006.

[32] E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. PhD thesis, University of Colorado, Boulder, Colorado, USA,
1989.

[33] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization calculations.
In G. A. Watson, editor, Numerical Analysis, Dundee 1977, number 630 in Lecture
Notes in Mathematics, pages 144–157, Heidelberg, Berlin, New York, 1978. Springer
Verlag.

[34] M. J. D. Powell. Variable metric methods for constrained optimization. In Bachem,
A., Grötschel, M., and Korte, B., editors, Mathematical Programming : The State of
the Art, Bonn 1982. Springer-Verlag, 1983.

[35] S. M. Robinson. Perturbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear programming algorithms. Mathematical Programming, 7(1):1–16, 1974.

A Sequential Quadratic Programming Algorithm 25

[36] K. Schittkowski. The nonlinear programming method of Wilson, Han and Powell with
an augmented Lagrangian type line search function. Numerische Mathematik, 38:83–
114, 1981.

[37] R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13:231–252, 1999.

[38] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for
nonlinear optimization that combines line search and trust region steps. Mathematical
Programming, Series A, 107:391–408, 2006.

Appendix: Complete Numerical Results

A Sequential Quadratic Programming Algorithm 26

name n bounds ineq equal SQP+ SQPLAB

airport 84 168 42 0 11 89

biggsb1 144 286 0 0 72 188

bqpgasim 50 100 0 0 3 24

chenhark 200 200 0 0 4 413

clnlbeam 200 198 0 0 3 3

combustion 144 288 0 0 1 15

dixchlnv 100 100 0 50 28 -24

dnieper 57 112 0 24 23 -49

dual3 111 222 0 1 13 56

eg3 101 200 199 1 18 18

eigmaxa 101 200 0 101 6 6

eigmaxb 101 202 0 101 8 8

eigmina 101 202 0 101 2 2

eigminb 101 202 0 101 8 8

expfita 5 0 21 0 13 39

explin 144 288 0 0 97 112

explin2 144 288 0 0 72 95

grouping 100 200 0 125 1 1

haifas 7 0 9 0 10 10

haldmads 6 0 42 0 9 10

hanging 288 0 180 0 46 162

harkerp2 144 144 0 0 37 92

himmelbi 100 100 12 0 35 36

hs001 2 1 0 0 26 21

hs002 2 1 0 0 10 15

hs003 2 1 0 0 2 8

hs004 2 2 0 0 2 2

hs005 2 4 0 0 8 5

hs006 2 0 0 1 7 7

hs007 2 0 0 1 9 10

hs008 2 0 0 2 5 5

hs009 2 0 0 1 5 5

hs010 2 0 1 0 9 12

hs011 2 0 1 0 6 11

hs012 2 0 1 0 8 10

hs014 2 0 1 1 6 7

hs015 2 1 2 0 3 -7

hs018 2 4 2 0 6 8

Table 1: Number of iterations for SQP+ and SQPLAB. A negative number indicates failure
to converge.

A Sequential Quadratic Programming Algorithm 27

name n bounds ineq equal SQP+ SQPLAB

hs019 2 4 2 0 6 6

hs020 2 2 3 0 8 -22

hs021 2 4 1 0 1 3

hs022 2 0 2 0 4 4

hs023 2 4 5 0 6 6

hs024 2 2 2 0 4 4

hs025 3 6 0 0 0 0

hs026 3 0 0 1 21 21

hs027 3 0 0 1 24 32

hs028 3 0 0 1 4 4

hs029 3 0 1 0 7 10

hs030 3 6 1 0 1 2

hs031 3 6 1 0 6 -10

hs032 3 3 1 1 3 4

hs033 3 4 2 0 4 4

hs034 3 6 2 0 7 7

hs035 3 3 1 0 3 9

hs036 3 6 1 0 2 -3

hs037 3 6 1 0 5 8

hs038 4 8 0 0 60 100

hs039 4 0 0 2 12 15

hs040 4 0 0 3 6 6

hs041 4 8 0 1 5 6

hs042 3 3 0 1 5 9

hs043 4 0 3 0 7 9

hs044 4 4 6 0 6 6

hs045 5 10 0 0 0 0

hs046 5 0 0 2 51 51

hs047 5 0 0 3 28 29

hs048 5 0 0 2 7 7

hs049 5 0 0 2 29 29

hs050 5 0 0 3 16 16

hs051 5 0 0 3 3 3

hs052 5 0 0 3 8 12

hs053 5 10 0 3 1 16

hs054 6 12 0 1 2 5

hs055 6 8 0 6 2 2

hs056 7 7 0 4 5 13

hs057 2 2 1 0 6 2

hs059 2 4 3 0 10 15

hs060 3 6 0 1 6 9

hs062 3 6 0 1 7 9

hs064 3 3 1 0 35 110

hs065 3 6 1 0 8 25

hs066 3 6 2 0 4 6

Table 2: Number of iterations for SQP+ and SQPLAB. A negative number indicates failure
to converge.

A Sequential Quadratic Programming Algorithm 28

name n bounds ineq equal SQP+ SQPLAB

hs070 4 8 1 0 14 31

hs071 4 8 1 1 5 6

hs072 4 8 2 0 18 35

hs073 4 4 2 1 4 4

hs075 4 8 1 3 6 18

hs076 4 4 3 0 1 5

hs077 5 0 0 2 17 17

hs078 5 0 0 3 7 7

hs079 5 0 0 3 13 13

hs080 5 10 0 3 6 7

hs081 5 10 0 3 15 13

hs083 5 10 3 0 4 -6

hs085 5 10 36 0 0 0

hs086 5 5 6 0 5 9

hs087 9 18 0 4 67 88

hs089 3 0 1 0 23 60

hs090 4 0 1 0 24 25

hs091 5 0 1 0 18 39

hs092 6 0 1 0 26 38

hs093 6 6 2 0 76 31

hs095 6 12 4 0 2 2

hs096 6 12 4 0 2 2

hs097 6 12 4 0 13 13

hs098 6 12 4 0 13 13

hs100 7 0 4 0 8 16

hs100lnp 7 0 0 2 14 16

hs101 7 14 6 0 49 -77

hs102 7 14 6 0 32 -91

hs103 7 14 6 0 39 245

hs104 8 16 6 0 11 34

hs105 8 16 0 0 75 -94

hs106 8 16 6 0 24 46

hs108 9 1 13 0 11 12

hs110 10 20 0 0 6 7

hs111 10 20 0 3 10 47

hs111lnp 10 0 0 3 48 47

hs113 10 0 8 0 5 17

hs116 13 26 15 0 348 95

hs117 15 15 5 0 17 -17

hs118 15 30 17 0 7 13

hs119 16 32 0 8 4 -19

hs268 5 0 5 0 2 32

hs3mod 2 1 0 0 5 7

hs44new 4 4 5 0 5 5

Table 3: Number of iterations for SQP+ and SQPLAB. A negative number indicates failure
to converge.

A Sequential Quadratic Programming Algorithm 29

name n bounds ineq equal SQP+ SQPLAB

jnlbrng1 144 144 0 0 7 36

jnlbrng2 144 144 0 0 4 45

jnlbrnga 144 144 0 0 3 31

jnlbrngb 144 144 0 0 1 61

loadbal 31 42 20 11 17 79

makela3 21 0 20 0 22 -19

mccormck 144 288 0 0 4 17

minsurfo 144 144 0 0 5 43

ncvxbqp1 144 288 0 0 2 -3

ncvxbqp2 144 288 0 0 4 -6

ncvxbqp3 144 288 0 0 124 142

nobndtor 144 144 0 0 5 37

nonscomp 144 288 0 0 9 59

obstclae 169 338 0 0 11 28

obstclbm 169 338 0 0 6 26

optctrl3 118 0 1 79 7 -206

optctrl6 118 0 1 79 7 -206

optprloc 30 60 29 0 6 12

pentdi 144 144 0 0 1 2

probpenl 144 288 0 0 2 2

prodpl0 60 60 9 20 8 8

prodpl1 60 60 9 20 6 6

qrtquad 144 20 0 0 36 57

qudlin 144 288 0 0 2 -3

rk23 17 6 0 11 9 9

s368 144 288 0 0 0 0

synthes1 6 12 6 0 5 8

torsion1 144 288 0 0 4 17

torsion2 144 288 0 0 5 20

torsion3 144 288 0 0 2 9

torsion4 144 288 0 0 5 13

torsion5 144 288 0 0 1 3

torsion6 144 288 0 0 3 11

torsiona 144 288 0 0 4 17

torsionb 144 288 0 0 8 18

torsionc 144 288 0 0 2 8

torsiond 144 288 0 0 4 17

torsione 144 288 0 0 1 3

torsionf 144 288 0 0 3 8

trimloss 142 264 52 20 183 114

Table 4: Number of iterations for SQP+ and SQPLAB. A negative number indicates failure
to converge.

