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Summary. This papers studies the performance of several interior-point and active-
set methods on bound constrained optimization problems. The numerical tests show
that the sequential linear-quadratic programming (SLQP) method is robust, but is
not as effective as gradient projection at identifying the optimal active set. Interior-
point methods are robust and require a small number of iterations and function
evaluations to converge. An analysis of computing times reveals that it is essential
to develop improved preconditioners for the conjugate gradient iterations used in
SLQP and interior-point methods. The paper discusses how to efficiently implement
incomplete Cholesky preconditioners and how to eliminate ill-conditioning caused
by the barrier approach. The paper concludes with an evaluation of methods that
use quasi-Newton approximations to the Hessian of the Lagrangian.

1 Introduction

A variety of interior-point and active-set methods for nonlinear optimiza-
tion have been developed in the last decade; see Gould et al. [12] for a recent
survey. Some of these algorithms have now been implemented in high quality
software and complement an already rich collection of established methods for
constrained optimization. It is therefore an appropriate time to evaluate the
contributions of these new algorithms in order to identify promising directions
of future research. A comparison of active-set and interior-point approaches
is particularly interesting given that both classes of algorithms have matured.

A practical evaluation of optimization algorithms is complicated by de-
tails of implementation, heuristics and algorithmic options. It is also difficult
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to select a good test set because various problem characteristics, such as non-
convexity, degeneracy and ill-conditioning, affect algorithms in different ways.
To simplify our task, we focus on large-scale bound constrained problems of
the form

minimize
x

f(x) (1a)

subject to l ≤ x ≤ u, (1b)

where f : Rn → R is a smooth function and l ≤ u are both vectors in Rn. The
simple geometry of the feasible region (1b) eliminates the difficulties caused
by degenerate constraints and allows us to focus on other challenges, such as
the effects of ill-conditioning.

Furthermore, the availability of specialized (and very efficient) gradient
projection algorithms for bound constrained problems places great demands
on the general-purpose methods studied in this paper. The gradient projection
method can quickly generate a good working set and then perform subspace
minimization on a smaller dimensional subspace. Interior-point methods, on
the other hand, never eliminate inequalities and work on an n-dimensional
space, putting them at a disadvantage (in this respect) when solving bound
constrained problems.

We chose four active-set methods that are representative of the best meth-
ods currently available:

(1) The sequential quadratic programming (SQP) method implemented in
snopt [10];

(2) The sequential linear-quadratic programming (SLQP) method implemented
in knitro/active [2];

(3) The gradient projection method implemented in tron [15];
(4) The gradient projection method implemented in l-bfgs-b [4, 19].

SQP and gradient projection methods have been studied extensively since the
1980s, while SLQP methods have emerged in the last few years. These three
methods are quite different in nature. The SLQP and gradient projection
methods follow a so-called EQP approach in which the active-set identification
and optimization computations are performed in two separate stages. In the
SLQP method a linear program is used in the active-set identification phase,
while the gradient projection performs a piecewise linear search along the
gradient projection path. In contrast, SQP methods follow an IQP approach
in which the new iterate and the new estimate of the active set are computed
simultaneously by solving an inequality constrained subproblem.

We selected two interior-point methods, both of which are implemented in
the knitro software package [5]:

(5) The primal-dual method in knitro/direct [18] that (typically) computes
steps by performing a factorization of the primal-dual system;

(6) The trust region method in knitro/cg [3] that employs iterative linear
algebra techniques in the step computation.
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The algorithm implemented in knitro/direct is representative of various
line search primal-dual interior-point methods developed since the mid 1990s
(see [12]), whereas the algorithm in knitro/cg follows a trust region approach
that is significantly different from most interior-point methods proposed in
the literature. We have chosen the two interior-point methods available in the
knitro package, as opposed to other interior-point codes, to minimize the
effect of implementation details. In this way, the same type of stop tests and
scalings are used in the two interior-point methods and in the SLQP method
used in our tests.

The algorithms implemented in (2), (3) and (6) use a form of the con-
jugate gradient method in the step computation. We study these iterative
approaches, giving particular attention to their performance in interior-point
methods where preconditioning is more challenging [8, 1, 13]. Indeed, whereas
in active-set methods ill-conditioning is caused only by the objective func-
tion and constraints, in interior-point methods there is an additional source
of ill-conditioning caused by the barrier approach.

The paper is organized as follows. In Section 2, we describe numerical tests
with algorithms that use exact Hessian information. The observations made
from these results set the stage for the rest of the paper. In Section 3 we
describe the projected conjugate gradient method that plays a central role
in several of the methods studied in our experiments. A brief discussion on
preconditioning for the SLQP method is given in Section 4. Preconditioning
in the context of interior-point methods is the subject of Section 5. In Sec-
tion 6 we study the performance of algorithms that use quasi-Newton Hessian
approximations.

2 Some Comparative Tests

In this section we report test results for four algorithms, all using ex-
act second derivative information. The algorithms are: tron (version 1.2),
knitro/direct, knitro/cg and knitro/active (versions 5.0). The lat-
ter three were not specialized in any way to the bound constrained case. In
fact, we know of no such specialization for interior-point methods, although
advantage can be taken at the linear algebra level, as we discuss below. A
modification of the SLQP approach that may prove to be effective for bound
constraints is investigated by Byrd and Waltz [6], but was not used here.

We do not include snopt in these tests because this algorithm works more
effectively with quasi-Newton Hessian approximations, which are studied in
Section 6. Similarly, l-bfgs-b is a limited memory quasi-Newton method and
will also be discussed in that section. All the test problems were taken from
the CUTEr collection [11] using versions of the models formulated in Ampl
[9]. We chose all the bound constrained CUTEr problems available as Ampl
models for which the sizes could be made large enough for our purposes,
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while excluding some of the repeated models (e.g., we only used torsion1

and torsiona from the group of torsion models).
The results are summarized in Table 1, which reports the number of vari-

ables for each problem, as well as the number of iterations, function evalua-
tions and computing time for each solver. For tron we also report the number
of active bounds at the solution; for those solvers that use a conjugate gradi-
ent (CG) iteration, we report the average number of CG iterations per outer
iteration. In addition, for knitro/cg we report the number of CG iterations
performed in the last iteration of the optimization algorithm divided by the
number of variables (endCG/n).

We use a limit of 10000 iterations for all solvers. Unless otherwise noted,
default settings were used for all solvers, including default stopping tests and
tolerances which appeared to provide comparable solution accuracy in prac-
tice.

We also provide in Figures 1 and 2 performance profiles based, respectively,
on the number of function evaluations and computing time. All figures plot
the logarithmic performance profiles described in [7].



tron knitro/direct knitro/cg knitro/active
problem n iter feval CPU actv@sol aveCG iter feval CPU iter feval CPU aveCG endCG/n iter feval CPU aveCG
biggsb1 20000 X1 X1 X1 X1 X1 12 13 2.61 12 13 245.48 942.50 0.1046 X1 X1 X1 X1

bqpgauss 2003 206 206 6.00 95 6.93 20 21 0.88 42 43 183.85 3261.14 2.0005 232 234 65.21 1020.46
chenhark 20000 72 72 4.30 19659 1.00 18 19 2.57 20 21 1187.49 4837.60 0.7852 847 848 1511.60 1148.74
clnlbeam 20000 6 6 0.50 9999 0.83 11 12 2.20 12 13 2.60 3.67 0.0001 3 4 0.41 1.00
cvxbqp1 20000 2 2 0.11 20000 0.00 9 10 51.08 9 10 3.60 6.33 0.0003 1 2 0.18 0.00
explin 24000 8 8 0.13 23995 0.88 24 25 6.79 26 27 16.93 16.46 0.0006 13 14 1.45 3.08
explin2 24000 6 6 0.10 23997 0.83 26 27 6.39 25 26 16.34 16.72 0.0005 12 13 1.26 2.17
expquad 24000 X2 X2 X2 X2 X2 X4 X4 X4 X4 X4 X4 X4 X4 183 663 56.87 1.42
gridgena 26312 16 16 14.00 0 1.75 8 23 17.34 7 8 43.88 160.86 0.0074 6 8 9.37 77.71
harkerp2 2000 X3 X3 X3 X3 X3 15 16 484.48 27 28 470.76 12.07 0.0010 7 8 119.70 0.86
jnlbrng1 21904 30 30 6.80 7080 1.33 15 16 6.80 18 19 163.62 632.33 0.1373 39 40 27.71 92.23
jnlbrnga 21904 30 30 6.60 7450 1.37 14 16 6.31 18 19 184.75 708.67 0.1608 35 36 30.05 122.03
mccormck 100000 6 7 2.60 1 1.00 9 10 11.60 12 13 20.89 4.17 0.0001 X5 X5 X5 X5

minsurfo 10000 10 10 2.10 2704 3.00 367 1313 139.76 X1 X1 X1 X1 X1 8 10 4.32 162.33
ncvxbqp1 20000 2 2 0.11 20000 0.00 35 36 131.32 32 33 10.32 4.63 0.0006 3 4 0.36 0.67
ncvxbqp2 20000 8 8 0.50 19869 1.13 75 76 376.01 73 74 58.65 26.68 0.0195 30 39 5.90 4.26
nobndtor 32400 34 34 10.00 5148 2.85 15 16 8.66 13 14 6817.52 24536.62 2.0000 66 67 78.85 107.42
nonscomp 20000 8 8 0.82 0 0.88 21 23 5.07 129 182 81.64 12.60 0.0003 10 11 1.37 4.20
obstclae 21904 31 31 4.90 10598 1.84 17 18 7.66 17 18 351.83 846.00 0.3488 93 116 40.36 37.01
obstclbm 21904 25 25 4.20 5262 1.64 12 13 5.52 11 12 562.34 2111.64 0.1819 43 50 16.91 39.08
pentdi 20000 2 2 0.17 19998 0.50 12 13 2.24 14 15 3.40 5.36 0.0005 1 2 0.21 1.00
probpenl 5000 2 2 550.00 1 0.50 3 4 733.86 3 4 6.41 1.00 0.0002 1 2 2.79 1.00
qrtquad 5000 28 58 1.60 5 2.18 39 63 1.56 X5 X5 X5 X5 X5 783 2403 48.44 2.02
qudlin 20000 2 2 0.02 20000 0.00 17 18 2.95 24 25 12.74 16.08 0.0004 3 4 0.20 0.67
reading1 20001 8 8 0.78 20001 0.88 16 17 6.11 14 15 5.64 7.21 0.0001 3 4 0.44 0.33
scond1ls 2000 592 1748 18.00 0 2.96 1276 4933 754.57 1972 2849 10658.26 2928.17 0.3405 X1 X1 X1 X1

sineali 20000 11 15 1.30 0 1.27 9 12 3.48 18 61 13.06 4.57 0.0001 34 112 8.12 1.58
torsion1 32400 59 59 14.00 9824 1.86 11 12 8.13 7 8 359.78 1367.14 0.2273 65 66 57.53 64.65
torsiona 32400 59 59 16.00 9632 1.88 10 11 7.62 6 7 80.17 348.33 0.0279 62 63 62.43 74.06
X1: iteration limit reached
X2: numerical result out of range
X3: solver did not terminate
X4: current solution estimate cannot be improved

X5: relative change in solution estimate < 10−15

Table 1. Comparative results of four methods that use exact second derivative information
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We now comment on these results.
In terms of robustness, there appears to be no significant difference be-

tween the four algorithms tested, although knitro/direct is slightly more
reliable.

Function Evaluations. In terms of function evaluations (or iterations), we
observe some significant differences between the algorithms. knitro/active
requires more iterations overall than the other three methods; if we compare
it with tron—the other active-set method—we note that tron is almost
uniformly superior. This suggests that the SLQP approach implemented in
knitro/active is less effective than gradient projection at identifying the
optimal active set. We discuss this issue in more detail below.

As expected, the interior-point methods typically perform between 10 and
30 iterations to reach convergence. Since the geometry of bound constraints
is simple, only nonlinearity and nonconvexity in the objective function cause
interior-point methods to perform a large number of iterations. It is not sur-
prising that knitro/cg requires more iterations than knitro/direct given
that it uses an inexact iterative approach in the step computation.

Figure 1 indicates that the gradient projection method is only slightly more
efficient than interior-point methods, in terms of function evaluations. As in
any active-set method, tron sometimes converges in a very small number
of iterations (e.g. 2), but on other problems it requires significantly more
iterations than the interior-point algorithms.

CPU Time. It is clear from Table 1 that knitro/cg requires the largest
amount of computing time among all the solvers. This test set contains a
significant number of problems with ill-conditioned Hessians, ∇2f(x), and
the step computation of knitro/cg is dominated by the large number of
CG steps performed. tron reports the lowest computing times; the average
number of CG iterations per step is rarely greater than 2. This method uses
an incomplete Cholesky preconditioner [14], whose effectiveness is crucial to
the success of tron.

The high number of CG iterations in knitro/cg is easily explained by the
fact that it does not employ a preconditioner to remove ill-conditioning caused
by the Hessian of the objective function. What is not so simple to explain is the
higher number of CG iteration in knitro/cg compared to knitro/active.
Both methods use an unpreconditioned projected CG method in the step com-
putation (see Section 3), and therefore one would expect that both methods
would suffer equally from ill-conditioning. Table 1 indicates that this is not
the case. In addition, we note that the average cost of the CG iteration is
higher in knitro/cg than in knitro/active.

One possible reason for this difference is that the SLQP method applies CG
to a smaller problem than the interior-point algorithm. The effective number
of variables in the knitro/active CG iteration is n − tk, where tk is the
number of constraints in the working set at the kth iteration. On the other
hand, the interior-point approach applies the CG iteration in n-dimensional
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space. This, however, accounts only partly for the differences in performance.
For example, we examined some runs in which tk is about n/3 to n/2 during
the run of knitro/active and noticed that the differences in CG iterations
between knitro/cg and knitro/active are significantly greater than 2 or
3 toward the end of the run. As we discuss in Section 5, it is the combination
of barrier and Hessian ill-conditioning that can be very detrimental to the
interior-point method implemented in knitro/cg.

Active-set identification. The results in Table 1 suggest that the SLQP ap-
proach will not be competitive with gradient projection on bound constrained
problems, unless the SLQP method can be redesigned so as to require fewer
outer iterations. In other words, it needs to improve its active-set identifi-
cation mechanism. As already noted, the SLQP method in knitro/active
computes the step in two phases. In the linear programming phase, an estimate
of the optimal active set is computed. This linear program takes a simple form
in the bound constrained case, and can be solved very quickly. Most of the
computing effort goes in the EQP phase, which solves an equality constrained
quadratic program where the constraints in the working set are imposed as
equalities (i.e., fixed variables in this case) and all other constraints are ig-
nored. This subproblem is solved using a projected CG iteration. Assuming
that the cost of this CG phase is comparable in tron and knitro/active
(we can use the same preconditioners in the two methods), the SLQP method
needs to perform a similar number of outer iterations to be competitive.

Comparing the detailed results of tron versus knitro/active highlights
two features that provide tron with superior active-set identification proper-
ties. First, the active set determined by SLQP is given by the solution of one
LP (whose solution is constrained by an infinity norm trust-region), whereas
the gradient projection method, minimizes a quadratic model along the gradi-
ent projection path to determine an active-set estimate. Because it explores a
whole path as opposed to a single point, this often results in a better active-set
estimate for gradient projection. An enhancement to SLQP proposed in [6]
mimics what is done in gradient projection by solving a parameteric LP (pa-
rameterized by the trust-region radius) rather than a single LP to determine
an active set with improved results.

Second, the gradient projection implementation in tron has a feature
which allows it to add bounds to the active set during the unconstrained
minimization phase, if inactive bounds are encountered. On some problems
this significantly decreases the number of iterations required to identify the
optimal active set. In the bound constrained case, it is easy to do something
similar for SLQP. In [6], this feature was added to an SLQP algorithm and
shown to improve performance on bound constrained problems.

The combination of these two features may result in an SLQP method that
is competitive with tron. However, more research is needed to determine if
this goal can be achieved.
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In the following section we give attention to the issue of preconditioning.
Although, in this paper, we are interested in preconditioners applied to bound
constrained problems, we will first present our preconditioning approach in the
more general context of constrained optimization where it is also applicable.

3 The Projected Conjugate Gradient Method

Both knitro/cg and knitro/active use a projected CG iteration in
the step computation. To understand the challenges of preconditioning this
iteration, we now describe it in some detail.

The projected CG iteration is a method for solving equality constrained
quadratic programs of the form

minimize
x

1

2
xT Gx + hT x (2a)

subject to Ax = b, (2b)

where G is an n × n symmetric matrix that is positive definite on the null
space of the m×n matrix A, and h is an n-vector. Problem (2) can be solved
by eliminating the constraints (2b), applying the conjugate gradient method
to the reduced problem of dimension (n − m), and expressing this solution
process in n-dimensional space. This procedure is specified in the following
algorithm. We denote the preconditioning operator by P ; its precise definition
is given below.

Algorithm PCG. Preconditioned Projected CG Method.
Choose an initial point x0 satisfying Ax0 = b. Set x← x0, compute r = Gx+h,
z = Pr and p = −z.
Repeat the following steps, until ‖z‖ is smaller than a given tolerance:

α = rT z/pT Gp

x← x + αp

r+ = r + αGp

z+ = Pr+

β = (r+)T z+/rT z

p← −z+ + βp

z ← z+ and r ← r+

End

The preconditioning operation is defined indirectly, as follows. Given a
vector r, we compute z = Pr as the solution of the system

[

D AT

A 0

] [

z
w

]

=

[

r
0

]

, (3)
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where D is a symmetric matrix that is required to be positive definite on the
null space of A, and w is an auxiliary vector. A preconditioner of the form (3)
is often called a constraint preconditioner. To accelerate the convergence of
Algorithm PCG, the matrix D should approximate G in the null space of A
and should be sparse so that solving (3) is not too costly. It is easy to verify
that since initially Ax0 = b, all subsequent iterates x of Algorithm PCG also
satisfy the linear constraints (2b).

The choice D = I gives an unpreconditioned projected CG iteration. To
improve the performance of Algorithm PCG, we consider some other choices
for D. One option is to let D be a diagonal matrix; see e.g. [1, 16]). An-
other option is to define D by means of an incomplete Cholesky factorization
of G, but the challenge is how to implement it effectively in the setting of
constrained optimization. An implementation that computes the incomplete
factors L and LT of G, multiplies them to give D = LLT , and then factors the
system (3), is of little interest; one might as well use the perfect preconditioner
D = G. However, for special classes of problems, such as bound constrained
optimization, it is possible to rearrange the computations and compute the
incomplete Cholesky factorization on a reduced system, as discussed in the
next sections.

We note that the knitro/cg and knitro/active algorithms actually
solve quadratic programs of the form (2) subject to a trust region constraint
‖x‖ ≤ ∆; in addition, G may not always be positive definite on the null space
of A. To deal with these two requirements, Algorithm PCG can be adapted by
following Steihaug’s approach: we terminate the iteration if the trust region
is crossed or if negative curvature is encountered [17]. In this paper, we will
ignore these additional features and consider preconditioning in the simpler
context of Algorithm PCG.

4 Preconditioning the SLQP Method

In the SLQP method implemented in knitro/active, the equality con-
straints (2b) are defined as the linearization of the problem constraints be-
longing to the working set. We have already mentioned that this working set
is obtained by solving an auxiliary linear program. In the experiments re-
ported in Table 1, we used D = I in (3), i.e. the projected CG iteration in
knitro/active was not preconditioned. This explains the high number of
CG iterations and computing time for many of the problems.

Let us therefore consider other choices for D. Diagonal preconditioners are
straightforward to implement, but are often not very effective. A more attrac-
tive option is incomplete Cholesky preconditioning, which can be implemented
as follows.

Suppose for the moment that we use the perfect preconditioner D = G in
(3). Since z satisfies Az = 0, we can write z = Zu, where Z is a basis matrix
such that AZ = 0 and u is some vector of dimension (n−m). Multiplying the
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first block of equations in (3) by ZT and recalling the condition Az = 0 we
have that

ZT GZu = ZT r. (4)

We now compute the incomplete Cholesky factorization of the reduced Hes-
sian,

LLT ≈ ZT GZ, (5)

solve the system
LLT û = ZT r, (6)

and set z = Zû. This defines the preconditioning step. Since for nonconvex
problems ZT GZ may not be positive definite, we can apply a modified in-
complete Cholesky factorization of the form LLT ≈ ZT (G + δI)Z, for some
positive scalar δ; see [14].

For bound constrained problems, the linear constraints (2b) are defined to
be the bounds in the working set. Therefore the columns of Z are unit vectors
and the reduced Hessian ZT GZ is obtained by selecting appropriate rows
and columns from G. This preconditioning strategy is therefore practical and
efficient since the matrix Z need not be computed and the reduced Hessian
ZT GZ is easy to form.

In fact, this procedure is essentially the same as that used in tron. The
gradient projection method selects a working set (a set of active bounds) by
using a gradient projection search, and computes a step by solving a quadratic
program of the form (2). To solve this quadratic program, the gradient projec-
tion method in tron eliminates the constraints and applies a preconditioned
CG method to the reduced problem

minimize
u

uT ZT GZu + hT Zu.

The preconditioner is defined by the incomplete Cholesky factorization (5).
Thus the only difference between the CG iterations in tron and the precon-
ditioned projected CG method based on Algorithm PCG is that the latter
works in Rn while the former works in Rn−m. (It is easy to see that the two
approaches are equivalent and that the computational costs are very similar.)

Numerical tests of knitro/active using the incomplete Cholesky precon-
ditioner just described will be reported in a forthcoming publication. In the
rest of the paper, we focus on interior-point methods and report results using
various preconditioning approaches.

5 Preconditioning the Interior-Point Method

The interior-point methods implemented in knitro solve a sequence of
barrier problems of the form
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minimize
x,s

f(x)− µ
∑

i∈I

log si (7a)

subject to cE(x) = 0 (7b)

cI(x)− s = 0, (7c)

where s is a vector of slack variables, µ > 0 is the barrier parameter, and
cE(x), cI(x) denote the equality and inequality constraints, respectively. kni-
tro/cg finds an approximate solution of (7) using a form of sequential
quadratic programming. This leads to an equality constrained subproblem
of the form (2), in which the Hessian and Jacobian matrices are given by

G =

[

∇2
xxL 0
0 Σ

]

, A =

[

AE 0
AI −I

]

, (8)

where L(x, λ) is the Lagrangian of the nonlinear program, Σ is a diagonal
matrix and AE and AI denote the Jacobian matrices corresponding to the
equality and inequality constraints, respectively. (In the bound constrained
case, AE does not exist and AI is a simple sparse matrix whose rows are unit
vectors.) The matrix Σ is defined as Σ = S−1ΛI, where

S = diag {si} , ΛI = diag {λi} , i ∈ I,

and where the si are slack variables and λi , i ∈ I are Lagrange multipli-
ers corresponding to the inequality constraints. Hence there are two separate
sources of ill-conditioning in G; one caused by the Hessian ∇2

xxL and the other
by the barrier effects reflected in Σ. Any ill-conditioning due to A is removed
by the projected CG approach.

Given the block structure (8), the preconditioning operation (3) takes the
form









Dx 0 AE

T AI

T

0 Ds 0 −I
AE 0 0 0
AI −I 0 0

















zx

zs

w1

w2









=









r1

r2

0
0









. (9)

The matrix Ds will always be chosen as a diagonal matrix, given that Σ is di-
agonal. In the experiments reported in Table 1, knitro/cg was implemented
with Dx = I and Ds = S−2. This means that the algorithm does not include
preconditioning for the Hessian ∇2

xxL, and applies a form of preconditioning
for the barrier term Σ (as we discuss below). The high computing times of
knitro/cg in Table 1 indicate that this preconditioning strategy is not ef-
fective for many problems, and therefore we discuss how to precondition each
of the two terms in G.

5.1 Hessian Preconditioning

Possible preconditioners for the Hessian ∇2
xxL include diagonal precon-

ditioning and incomplete Cholesky. Diagonal preconditioners are simple to
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implement; we report results for them in the next section. To design an in-
complete Cholesky preconditioner, we exploit the special structure of (9).

Performing block elimination on (9) yields the condensed system

[

Dx + AI

T DsAI AE

T

AE 0

] [

zx

w1

]

=

[

r1 + AI

T r2

0

]

; (10)

the eliminated variables zs, w2 are recovered from the relation

zs = AIzx, w2 = Dszs − r2.

If we define Dx = LLT , where L is the incomplete Cholesky factor of ∇2L,
we still have to face the problem of how to factor (10) efficiently.

However, for problems without equality constraints, such as bound con-
strained problems, (10) reduces to

(Dx + AI

T DsAI)zx = r1 + AI

T r2. (11)

Let us assume that the diagonal preconditioning matrix Ds is given. For bound
constrained problems, AI

T DsAI can be expressed as the sum of two diagonal
matrices. Hence, the coefficient matrix in (11) is easy to form. Setting Dx =
∇2

xxL, we compute the (possibly modified) incomplete Cholesky factorization

LLT ≈ ∇2
xxL+ AI

T DsAI. (12)

The preconditioning step is then obtained by solving

LLT zx = r1 + AI

T r2 (13)

and by defining zs = AIzx.
One advantage of this approach is apparent from the structure of the ma-

trix in the right hand side of (12). Since we are adding a positive diagonal
matrix to ∇2

xxL, it is less likely that a modification of the form δI must be in-
troduced in the course of the incomplete Cholesky factorization. Minimizing
the use of the modification δI is desirable because it can introduce unde-
sirable distortions in the Hessian information. We note that the incomplete
factorization (12) is also practical for problems that contain general inequality
constraints, provided the term AI

T DsAI is not costly to form and does not
lead to severe fill-in.

5.2 Barrier Preconditioning

It is well known that the matrix Σ = S−1ΛI becomes increasingly ill-
conditioned as the iterates of the optimization algorithm approach the solu-
tion. Some diagonal elements of Σ diverge while others converge to zero. Since
Σ is a diagonal matrix, it can always be preconditioned adequately using a
diagonal matrix. We consider two preconditioners:
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Ds = Σ and Ds = µS−2.

The first is the natural choice corresponding to the perfect preconditioner for
the barrier term, while the second choice is justified because near the central
path, ΛI ≈ µS−1, so Σ = S−1ΛI ≈ S−1(µS−1) = µS−2.

5.3 Numerical Results

We test the preconditioners discussed above using a MATLAB implemen-
tation of the algorithm in knitro/cg. Our MATLAB program does not con-
tain all the features of knitro/cg, but is sufficiently robust and efficient to
study the effectiveness of various preconditioners.

The results are given by Table 2, which reports the preconditioning op-
tion (option), the final objective function value, the number of iterations of
the interior-point algorithm, the total number of CG iterations, the average
number of CG iterations per interior-point iteration, and the CPU time. The
preconditioning options are labeled as:

option = (a, b)

where a denotes the Hessian preconditioner and b the barrier preconditioner.
The options are:

a = 0: No Hessian preconditioning (current default in knitro)
a = 1: Diagonal Hessian preconditioning
a = 2: Incomplete Cholesky preconditioning
b = 0: Ds = S−2 (current default in knitro)
b = 1: Ds = µS−2

b = 2: Ds = Σ.

Since our MATLAB code is not optimized for speed, we have chosen test
problems with a relatively small number of variables.
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problem option final objective #iteration #total CG #average CG time

biggsb1 (0,0) +1.5015971301e − 02 31 3962 1.278e + 02 3.226e + 01
(n = 100) (0,1) +1.5015971301e − 02 29 2324 8.014e + 01 1.967e + 01

(0,2) +1.5015971301e − 02 28 2232 7.971e + 01 1.880e + 01
(1,0) +1.5015971301e − 02 30 3694 1.231e + 02 3.086e + 01
(1,1) +1.5015971301e − 02 30 2313 7.710e + 01 2.010e + 01
(1,2) +1.5015971301e − 02 30 2241 7.470e + 01 2.200e + 01
(2,0) +1.5015971301e − 02 31 44 1.419e + 00 1.950e + 00
(2,1) +1.5015971301e − 02 29 42 1.448e + 00 1.870e + 00
(2,2) +1.5015971301e − 02 28 41 1.464e + 00 1.810e + 00

cvxbqp1 (0,0) +9.0450040000e + 02 11 91 8.273e + 00 4.420e + 00
(n = 200) (0,1) +9.0453998374e + 02 8 112 1.400e + 01 4.220e + 00

(0,2) +9.0450040000e + 02 53 54 1.019e + 00 1.144e + 01
(1,0) +9.0454000245e + 02 30 52 1.733e + 00 9.290e + 00
(1,1) +9.0450040000e + 02 30 50 1.667e + 00 9.550e + 00
(1,2) +9.0454001402e + 02 47 48 1.021e + 00 1.527e + 01
(2,0) +9.0450040000e + 02 11 18 1.636e + 00 2.510e + 00
(2,1) +9.0454000696e + 02 8 15 1.875e + 00 1.940e + 00
(2,2) +9.0450040000e + 02 53 53 1.000e + 00 1.070e + 01

jnlbrng1 (0,0) −1.7984674056e − 01 29 5239 1.807e + 02 8.671e + 01
(n = 324) (0,1) −1.7984674056e − 01 27 885 3.278e + 01 1.990e + 01

(0,2) −1.7984674056e − 01 29 908 3.131e + 01 2.064e + 01
(1,0) −1.7984674056e − 01 29 5082 1.752e + 02 9.763e + 01
(1,1) −1.7984674056e − 01 27 753 2.789e + 01 3.387e + 01
(1,2) −1.7988019171e − 01 26 677 2.604e + 01 2.917e + 01
(2,0) −1.7984674056e − 01 30 71 2.367e + 00 6.930e + 00
(2,1) −1.7984674056e − 01 27 59 2.185e + 00 6.390e + 00
(2,2) −1.7984674056e − 01 29 66 2.276e + 00 6.880e + 00

obstclbm (0,0) +5.9472925926e + 00 28 7900 2.821e + 02 1.919e + 02
(n = 225) (0,1) +5.9473012340e + 00 18 289 1.606e + 01 1.268e + 01

(0,2) +5.9472925926e + 00 31 335 1.081e + 01 1.618e + 01
(1,0) +5.9472925926e + 00 27 6477 2.399e + 02 1.620e + 02
(1,1) +5.9472925926e + 00 29 380 1.310e + 01 2.246e + 01
(1,2) +5.9473012340e + 00 18 197 1.094e + 01 1.192e + 01
(2,0) +5.9472925926e + 00 27 49 1.815e + 00 7.180e + 00
(2,1) +5.9473012340e + 00 17 32 1.882e + 00 4.820e + 00
(2,2) +5.9472925926e + 00 25 49 1.960e + 00 6.650e + 00

pentdi (0,0) −7.4969998494e − 01 27 260 9.630e + 00 6.490e + 00
(n = 250) (0,1) −7.4969998502e − 01 25 200 8.000e + 00 5.920e + 00

(0,2) −7.4969998500e − 01 28 205 7.321e + 00 5.960e + 00
(1,0) −7.4969998494e − 01 28 256 9.143e + 00 1.111e + 01
(1,1) −7.4992499804e − 01 23 153 6.652e + 00 9.640e + 00
(1,2) −7.4969998502e − 01 26 132 5.077e + 00 9.370e + 00
(2,0) −7.4969998494e − 01 27 41 1.519e + 00 3.620e + 00
(2,1) −7.4969998502e − 01 25 39 1.560e + 00 3.350e + 00
(2,2) −7.4969998500e − 01 28 42 1.500e + 00 3.640e + 00

torsion1 (0,0) −4.8254023392e − 01 26 993 3.819e + 01 9.520e + 00
(n = 100) (0,1) −4.8254023392e − 01 25 298 1.192e + 01 4.130e + 00

(0,2) −4.8254023392e − 01 24 274 1.142e + 01 3.820e + 00
(1,0) −4.8254023392e − 01 26 989 3.804e + 01 9.760e + 00
(1,1) −4.8254023392e − 01 25 274 1.096e + 01 4.520e + 00
(1,2) −4.8254023392e − 01 25 250 1.000e + 01 3.910e + 00
(2,0) −4.8254023392e − 01 25 52 2.080e + 00 1.760e + 00
(2,1) −4.8254023392e − 01 25 53 2.120e + 00 1.800e + 00
(2,2) −4.8254023392e − 01 24 51 2.125e + 00 1.660e + 00

torsionb (0,0) −4.0993481087e − 01 25 1158 4.632e + 01 1.079e + 01
(n = 100) (0,1) −4.0993481087e − 01 25 303 1.212e + 01 4.160e + 00

(0,2) −4.0993481087e − 01 23 282 1.226e + 01 3.930e + 00
(1,0) −4.0993481087e − 01 25 1143 4.572e + 01 1.089e + 01
(1,1) −4.0993481087e − 01 24 274 1.142e + 01 4.450e + 00
(1,2) −4.0993481087e − 01 23 246 1.070e + 01 3.700e + 00
(2,0) −4.0993481087e − 01 24 49 2.042e + 00 1.720e + 00
(2,1) −4.0993481087e − 01 24 49 2.042e + 00 1.700e + 00
(2,2) −4.0993481087e − 01 23 48 2.087e + 00 1.630e + 00

Table 2. Results of various preconditioning options
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Note that for all the test problems, except cvxbqp1, the number of interior-
point iterations is not greatly affected by the choice of preconditioner. There-
fore, we can use Table 2 to measure the efficiency of the preconditioners, but
we must exercise caution when interpreting the results for problem cvxbqp1.

Let us consider first the case when only barrier preconditioning is used,
i.e., where option has the form (0, ∗). As expected, the options (0, 1) and
(0, 2) generally decrease the number of CG iterations and computing time
with respect to the standard option (0, 0), and can therefore be considered
successful in this context. From these experiments it is not clear whether
option (0, 1) is to be preferred over option (0, 2).

Incomplete Cholesky preconditioning is very successful. If we compare the
results for options (0,0) and (2,0), we see substantial reductions in the num-
ber of CG iterations and computing time for the latter option. When we add
barrier preconditioning to incomplete Cholesky preconditioning (options (2, 1)
and (2, 2)) we do not see further gains. Therefore, we speculate that the stan-
dard barrier preconditioner Ds = S−2 may be adequate, provided the Hessian
preconditioner is effective.

Diagonal Hessian preconditioning, i.e, options of the form (1, ∗), rarely
provides much benefit. Clearly this preconditioner is of limited use.

One might expect that preconditioning would not affect much the number
of iterations of the interior-point method because it is simply a mechanism for
accelerating the step computation procedure. The results for problem cvxbqp1

suggest that this is not the case (we have seen a similar behavior on other
problems). In fact, preconditioning changes the form of the algorithm in two
ways: it changes the shape of the trust region and it affects the barrier stop
test.

We introduce preconditioning in knitro/cg by defining the trust region
as

∥

∥

∥

∥

∥

[

D
1/2
x dx

D
1/2
s ds

]∥

∥

∥

∥

∥

2

≤ ∆.

The standard barrier preconditioner Ds = S−2 gives rise to the trust-region
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which has proved to control well the rate at which the slacks approach zero.
(This is the standard affine scaling strategy used in many optimization meth-
ods.) On the other hand, the barrier preconditioner Ds = µS−2 results in the
trust region
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≤ ∆. (15)

When µ is small, (15) does not penalize a step approaching the bounds s ≥ 0
as severely as (14). This allows the interior-point method to approach the
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boundary of the feasible region prematurely and can lead to very small steps.
An examination of the results for problem cvxbqp1 shows that this is indeed
the case. The preconditioner Ds = Σ = S−1ΛI can be ineffective for a different
reason. When the multiplier estimates λi are inaccurate (too large or too
small) the trust region will not properly control the step ds.

These remarks reinforce our view that the standard barrier preconditioner
Ds = S−2 may be the best choice and that our effort should focus on Hessian
preconditioning.

Let us consider the second way in which preconditioning changes the
interior-point algorithm. Preconditioning amounts to a scaling of the variables
of the problem; this scaling alters the form of the KKT optimality conditions.
knitro/cg uses a barrier stop test that determines when the barrier prob-
lem has been solved to sufficient accuracy. This strategy forces the iterates to
remain in a (broad) neighborhood of the central path. Each barrier problem
is terminated when the norm of the scaled KKT conditions is small enough,
where the scaling factors are affected by the choice of Dx and Ds. A poor
choice of preconditioner, including diagonal Hessian preconditioning, intro-
duces an unwanted distortion in the barrier stop test, and this can result in
a deterioration of the interior-point iteration. Note in contrast that the in-
complete Cholesky preconditioner (option (2, ∗)) does not adversely affect the
overall behavior of the interior-point iteration in problem cvxbqp1.

6 Quasi-Newton Methods

We now consider algorithms that use quasi-Newton approximations. In
recent years, most of the numerical studies of interior-point methods have
focused on the use of exact Hessian information. It is well known, how-
ever, that in many practical applications, second derivatives are not avail-
able, and it is therefore of interest to compare the performance of active-set
and interior-point methods in this context. We report results with 5 solvers:
snopt version 7.2-1 [10], l-bfgs-b [4, 19], knitro/direct, knitro/cg and
knitro/active version 5.0. Since all the problems in our test set have more
than 1000 variables, we employ the limited memory BFGS quasi-Newton op-
tions in all codes, saving m = 20 correction pairs. All other options in the
codes were set to their defaults.

snopt is an active-set SQP method that computes steps by solving an
inequality constrained quadratic program. l-bfgs-b implements a gradient
projection method. Unlike tron, which is a trust region method, l-bfgs-b is
a line search algorithm that exploits the simple structure of limited memory
quasi-Newton matrices to compute the step at small cost. Table 3 reports the
results on the same set of problems as in Table 1. Performance profiles are
provided in Figures 3 and 4.



snopt l-bfgs-b knitro/direct knitro/cg knitro/active
(m = 20) (m = 20) (m = 20) (m = 20) (m = 20)

problem n iter feval CPU iter feval CPU iter feval CPU iter feval CPU iter feval CPU
biggsb1 20000 X1 X1 X1 X1 X1 X1 6812 6950 1244.05 3349 3443 1192.32 X1 X1 X1

bqpgauss 2003 5480 6138 482.87 9686 10253 96.18 X1 X1 X1 X1 X1 X1 X4 X4 X4

chenhark 20000 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1

clnlbeam 20000 41 43 45.18 22 28 0.47 19 20 31.42 14 15 11.94 16 17 6.42
cvxbqp1 20000 60 65 139.31 1 2 0.04 29 30 89.03 25 26 71.44 2 3 0.59
explin 24000 72 100 28.08 29 36 0.52 50 51 239.29 47 48 76.84 32 34 35.84
explin2 24000 63 72 25.62 20 24 0.30 33 34 133.65 40 41 69.74 23 28 17.32
expquad 24000 X4 X4 X4 X2 X2 X2 X4 X4 X4 X5 X5 X5 206 645 513.75
gridgena 26312 X6 X6 X6 X7 X7 X7 X5 X5 X5 X5 X5 X5 20 97 120.59
harkerp2 2000 50 57 7.05 86 102 4.61 183 191 76.26 164 168 58.82 10 11 1.48
jnlbrng1 21904 1223 1337 8494.55 1978 1992 205.02 1873 1913 992.23 1266 1309 1968.66 505 515 1409.80
jnlbrnga 21904 1179 1346 1722.60 619 640 59.24 2134 2191 10929.97 1390 1427 221.73 395 417 1236.32
mccormck 100000 1019 1021 10820.22 X8 X8 X8 53 166 1222.38 X4 X4 X4 X5 X5 X5

minsurfo 10000 904 1010 8712.90 1601 1648 97.66 3953 3980 801.87 1633 1665 16136.98 497 498 743.37
ncvxbqp1 20000 41 43 60.54 1 2 0.04 85 86 382.62 X1 X1 X1 9 10 2.03
ncvxbqp2 20000 X6 X6 X6 151 191 4.76 3831 3835 20043.27 8118 8119 993.03 124 125 178.97
nobndtor 32400 1443 1595 12429 1955 1966 314.42 1100 1129 8306.03 1049 1069 27844.21 873 886 3155.06
nonscomp 20000 233 237 1027.41 X8 X8 X8 31 34 99.36 1098 1235 2812.25 87 92 123.82
obstclae 21904 547 597 4344.33 1110 1114 109.11 982 1009 1322.69 618 639 11489.74 1253 1258 2217.58
obstclbm 21904 342 376 1332.14 359 368 35.94 383 391 2139.91 282 286 1222.99 276 279 641.07
pentdi 20000 2 6 0.57 1 3 0.05 59 61 221.98 60 62 67.39 3 7 0.72
probpenl 5000 3 5 8.86 2 4 0.03 4 8 0.53 4 5 0.30 2 4 0.10
qrtquad 5000 X6 X6 X6 241 308 4.85 X4 X4 X4 X5 X5 X5 X1 X1 X1

qudlin 20000 41 43 19.80 1 2 0.02 17 18 27.78 24 25 34.81 4 5 0.43
reading1 20001 81 83 114.18 7593 15354 234.93 359 625 1891.24 66 69 150.48 15 16 5.17
scond1ls 2000 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1

sineali 20000 466 553 918.33 14 19 0.63 X5 X5 X5 X4 X4 X4 X1 X1 X1

torsion1 32400 662 733 4940.83 565 579 86.39 696 716 1564.78 336 362 15661.85 300 303 1251.40
torsiona 32400 685 768 5634.62 490 496 77.42 625 643 950.16 349 370 15309.47 296 306 1272.50
X1: iteration limit reached
X2: numerical result out of range
X4: current solution estimate cannot be improved

X5: relative change in solution estimate < 10−15

X6: dual feasibility cannot be satisfied
X7: rounding error
X8: line search error

Table 3. Comparative results for five methods that approximate second derivative information by limited memory quasi-Newton
updates
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A sharp drop in robustness and speed is noticeable for the three knitro
algorithms; compare with Table 1. In terms of function evaluations, l-bfgs-
b and knitro/active perform the best. snopt and the two interior-point
methods require roughly the same number of function evaluations, and this
number is often dramatically larger than that obtained by the interior-point
solvers using exact Hessian information.

In terms of CPU time, l-bfgs-b is by far the best solver and kni-
tro/active comes in second. Again, snopt and the two interior-point meth-
ods require a comparable amount of CPU, and for some of these problems the
times are unacceptably high.

In summation, as was the case with tron when exact Hessian information
was available, the specialized quasi-Newton method for bound constrained
problems l-bfgs-b has an edge over the general purpose solvers. The use of
preconditioning has helped bridge the gap in the exact Hessian case, but in
the quasi-Newton case, improved updating procedures are clearly needed for
general purpose methods.
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