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Abstract

A new method for derivative�free optimization is presented� It is designed for solv�

ing problems in which the objective function is smooth and the number of variables

is moderate� but the gradient is not available� The method generates a model that

interpolates the objective function at a set of sample points� and uses trust regions

to promote convergence� The step�generation subproblem ensures that all the iterates

satisfy a geometric condition and are therefore adequate for updating the model� The

sample points are updated using a scheme that improves the accuracy of the inter�

polation model when needed� Two versions of the method are presented� one using

linear models and the other using quadratic models� Numerical tests comparing the

new approach with established methods for derivate�free optimization are reported�
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� Introduction

We are concerned with the problem of minimizing a smooth function f of several variables
whose derivatives are unavailable� Formally�

min
x�IRn

f	x
� 	���


We restrict our attention to problems with a moderate number of variables� and assume that
the cost of evaluating the function is much higher than the linear algebra required in the
optimization iteration� Derivatives are not available in many applications for a variety of
reasons� For example� the value f	x
 could be the result of a physical measurement� or the
code that computes f	x
 could use di�erent programming languages or include proprietary
components that cannot be examined� making the use of automatic di�erentiation or the
calculation of analytical derivatives impractical� An option for solving problems of this
kind is to use gradient�based methods that employ 
nite�di�erence approximations to the
gradient� and the algorithms we discuss here will be compared with that approach�

Several methods have been proposed� in addition to 
nite di�erences� for solving 	���

when derivatives are not available� They include pattern�search� simulated annealing� and
trust region methods based on interpolation models 	see Powell ���� and Wright ���� for a
survey of these techniques
� Our approach belongs to the latter class� it forms a linear or
quadratic model of the objective and makes use of trust regions to promote convergence�
In contrast to the methods described in ��� �� ��� ���� our method includes a constraint
in the trust region problem that ensures that the position of all the points generated by
the algorithm is such that they adequately de
ne a linear or quadratic model� Since this
additional constraint has the form of a wedge when the model is linear� we refer to our
approach as a �wedge method��

Model�based trust region methods exploit the smoothness in the objective function and
attempt to preserve the convergence properties of their gradient�based counterparts� A
model s �� mc	xc � s
 is created to approximate f around the current iterate xc� The
model is required to interpolate f at xc� as well as at a set �c of additional sample points�
i�e��

mc	xc
 � f	xc
� mc	y
 � f	y
 for all y � �c� 	���


We can write these interpolation conditions as a linear system of equations whose unknowns
are the coe�cients of the model mc�

For the linear system de
ned by 	���
 to be well de
ned� one must ensure that the
position of the sample points is such that the rows of the linear system are linearly inde�
pendent� we call this the geometric condition� and if it holds we say that the sample point
set is non�degenerate� In the methods described in ��� �� ��� ���� a step sc is obtained by
minimizing mc	xc� s
 subject to a trust region ksk� � �c� where the radius �c is adjusted
automatically according to established rules� After replacing one of the sample points by
the new point x� � xc� sc the geometric condition may� however� not be satis
ed� To cope
with this di�culty two types of iterations are performed to generate a new trial point x�
	we use the nomenclature in ����
�
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�� �minimization� iterations aimed at reducing f �

�� �simplex� iterations designed to de
ne a model that approximates f more adequately�

If the trial point x� fails to reduce the value of f � the model mc is considered to be a poor
local approximation of f � and one of two courses of action is taken�

� If the set of sample points is nearly degenerate or some of the points interpolated by
mc are considered to be too far from xc� then an improved sample set is required� and
a simplex iteration is invoked� It returns a point that is close to xc and that increases
some measure of the goodness of the geometry of the simplex 	e�g�� the determinant
of the system induced by 	���

�

� Otherwise� the new point x� is considered to be too far from xc for mc to be an
accurate approximation of f � Then the trust region radius is reduced and another
minimization iteration is carried out�

Our method performs only one type of iteration� Instead of solving a standard trust
region subproblem and taking special action if the new point x� � xc � sc does not enjoy
favorable geometric properties� we impose a geometric condition explicitly in the step com�
putation procedure� thereby guaranteeing that the new set of points de
nes an adequate
model� This� together with a mechanism that controls the accuracy of mc in approximat�
ing f � make up the key components of the method� which has two versions� depending on
whether we use linear or quadratic interpolation models mc�

In section � we give a general description of the algorithm� In section � we consider the
case when the model is linear� and in section � we discuss quadratic models� In section �
we report the results of numerical tests comparing the new method with a 
nite�di�erence
quasi�Newton method and with two model�based methods� DFO ��� and COBYLA �����

Notation� Throughout the paper k � k denotes the Euclidean norm� and k � kF the Frobenius
norm of a matrix�

� The Algorithm

In this section we describe a general framework for the wedge trust region method� At the
current iterate xc we de
ne the model

mc	xc � s
 � f	xc
 � gTc s�
�
�s

TGcs� 	���


where the vector gc � IRn and the n� n symmetric matrix Gc must be determined so that
the model interpolates f at a set of sample points� 	Of course� for linear models we de
ne
Gc � ��
 The model 	���
 is minimized with respect to s � IRn� subject to a constraint of
the form jjsjj � �c� to generate a step sc � IRn that leads to the trial point x� � xc � sc�
If x� reduces the objective function� it is accepted as the new iterate� and the trust region
radius � may be increased� otherwise � is decreased and a new trial step is computed�
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To de
ne the model mc uniquely we maintain� in addition to xc� a set of m points

�c � fy�� � � � � ymg�

which we call satellites of xc� It is easy to see 	see sections � and �
 that for a linear model we
must de
nem � n� and for a quadratic modelm should be chosen asm � 	n��
	n��
��	��
We then impose the interpolation conditions

mc	xc
 � f	xc
� m	yl
 � f	yl
� l � �� � � � �m�

When the model mc is uniquely determined by these conditions� we say that the interpola�
tion set fxcg 
�c is non�degenerate�

Let us suppose that we start the current iteration with a non�degenerate set of sample
points fxcg 
 �c� Before computing a new trial point using the model mc� the farthest
satellite from the current iterate xc� say ylout � is identi
ed as the point that will be removed
from �c� This choice promotes the conservation of points that provide local information of
f around xc� We then de
ne a �taboo region� in IRn that contains all the points xc � s
that� if included in the interpolation set in place of ylout � would result in a degenerate set of
sample points� We also de
ne a setWc that contains Tc� and that is designed to avoid points
that are very near Tc� The description of Tc and Wc for the case of linear and quadratic
models will be given in sections � and �� respectively� where we also show that appropriate
representations of these sets are inexpensive to compute�

Once the �wedge�Wc has been determined� we compute a trial step sc by approximately
solving

min
s

mc	xc � s
 � f	xc
 � gTc s�
�
�s

TGcs 	���a


subject to jjsjj � �c� 	���b


s �� Wc� 	���c


and de
ne x� � xc � sc� If this trial point x� reduces f � then x� becomes the new iterate�
and xc becomes a satellite point� replacing ylout � If� on the other hand� x� does not reduce
f � the current iterate is not updated� and x� may or may not be discarded� depending on
how far it is from the current iterate xc compared with ylout � This and other aspects of the
algorithm are described below�

Algorithm �

Choose the trust region parameters �� � � 	�� �
� an initial trust region radius �c � �� and
an initial guess xc� Select an initial set of satellites �c � fy�� y�� � � � � ymg such that xc 
�c

is non�degenerate� Here m � n for a linear model� and m � �
�	n � �
	n � �
 	 � for a

quadratic model� 	We assume that f	xc
 � f	y
 �y � �c�

Repeat

�� Find a satellite that is farthest from the current iterate 	break ties arbitrarily
�

ylout � argmaxy��c ky 	 xck�
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�� Form a model mc	xc � s
 that interpolates fxcg 
�c� and de
ne the wedge Wc�

�� Compute sc by approximately solving subproblem 	���
� and evaluate f	xc � sc
�

�� Set ared	sc
 � f	xc
	 f	xc � sc
 and pred	sc
 � mc	xc
	mc	xc � sc
�

�� Update �c�
If ared	sc
 � � pred	sc
� choose �� such that �� 
 �c�
else set �� � ��c�

�� If f	xc � sc
 � f	xc
 	successful iteration

Update the current iterate� and include xc in the satellite set� discarding ylout �
a� x� � xc � sc
b� �� � fxcg 
 �c n fy

loutg�
else 	unsuccessful iteration


If the new trial point is not further to the current iterate than ylout �
admit it to the satellite set� discarding ylout � otherwise� discard the new trial point�
c� x� � xc

d� �� �

�
fxc � scg 
 �c 
 nfy

loutg if kylout 	 xck 
 k	xc � sc
	 xck
�c otherwise�

�� xc � x�� �c � ��� �c � ���

End

In the next sections we discuss the de
nition of the model mc and of the wedge Wc� and
the procedure for approximately solving the trust region subproblem�

Algorithm � is conceptually simple since it generates only one type of step� namely a
minimization step that always attempts to decrease f � Its novelty lies in the use of the
wedge constraint� and in in the acceptance strategy in step �� This strategy ensures that
the model is su�ciently accurate when needed� and therefore contributes signi
cantly to
the robustness of the iteration� as we now discuss�

Trust region methods for gradient�based optimization guarantee that a successful step
will be generated whenever the trust region is small enough 	and assuming that xc is not
a stationary point of f
� In order to retain this important property in interpolation�based
models� we deviate from the standard practice of discarding trial points that give rise to an
increase the objective function� if these points help to improve the accuracy of the model in
a vicinity of xc� More speci
cally� suppose that the model mc is poor and that� as a result�
a sequence of unsuccessful trial points are computed� If these trial points were discarded�
then the interpolation model would not change� and subsequent steps may still be poor in
spite of the fact that the trust region has been reduced�

To ensure that the quality of model improves as steps are being rejected� we propose
the mechanism described in Step � of the algorithm� Since an unsuccessful trial point
xc � sc will be retained as a satellite if it is no further from xc than ylout 	Step �d
� we
promote the generation of trial points in the vicinity of xc� and also avoid wasting expensive
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function evaluations� If a sequence of consecutive unsuccessful trial steps is generated and
� decreases su�ciently� the trial points will eventually be admitted as satellites of xc� As
a result� the interpolation model mc will become increasingly accurate� so that eventually
a successful step will be computed� This endows Algorithm � with satisfactory global
convergence properties ��� 	see also ��� for a convergence analysis when linear models are
used
�

The values of the trust region parameters � and �� and the updating rule of the trust
region radius in Step � used in our numerical tests are given in section ��

� Linear Models

Linear models can be useful in derivative�free optimization because they only require n��
sample points�a useful feature when the number of variables is not very small� The model�
at the current iterate xc takes the form

mc	xc � s
 � f	xc
 � gTc s� 	���


where gc is a vector in IRn to be determined� Since gc has n components� we maintain� in
addition to xc� the set of n satellites

�c � fy�� � � � � yng�

and impose the interpolation conditions m	yl
 � f	yl
� l � �� ���� n� which can be written
as

gTc s
l � f	yl
	 f	xc
 l � �� � � � � n� 	���


Here sl is the displacement from xc to yl� i�e�

yl � xc � sl l � �� � � � � n�

It follows from 	���
� that the linear model 	���
 is uniquely determined if and only if the
set of sample points fxcg 
 �c is such that the set

fsl � l � �� � � � � ng

is linearly independent�
To compute a new iterate� we 
rst select ylout � the satellite that is farthest from xc� The

taboo region Tc� which is the region that we want to avoid when computing a new point so
that the new sample set is non�degenerate� is therefore de
ned as the 	n	 �
�dimensional
subspace spanned by the displacement vectors

fsl � l � �� � � � � n� l �� loutg 	���


corresponding to the satellites that will remain in the sample set� see Figure �� A more
convenient representation is

Tc � fs � IRn � bTc s � �g�
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Figure �� Example for n � �� The set of sample points at the current iteration is fxcg 

�c � fxc� y

�� y�g� Since y� is the farthest point from xc� it will be removed from the
sample set� If the trial step sc lies on the taboo region the new set of sample points�
fx�g 
 �� � fx�� xc� y

�g� will be degenerate�

where bc � IRn is normal to the displacement vectors 	���
�
As mentioned in section �� we would also like to avoid steps sc that are very close to

the taboo region� so that the system 	���
 is not too ill�conditioned� and to ensure that the
sample points are reasonably spaced out� To achieve this� we demand that the magnitude
of the cosine of the angle between the step sc and the normal bc is not less than a given
constant � � 	�� �
� i�e��

jbTc sj 
 � kbckksk� 	���


We call inequality 	���
 the wedge constraint� and the parameter � determines the �width�
of the wedge� see Figure �� We compute a trial step sc by solving

min
s

mc	xc � s
 � f	xc
 � gTc s 	���a


subject to jjsjj � �c 	���b


jbTc sj 
 � jjbcjj jjsjj� 	���c


This problem can be easily solved� If we ignore the wedge constraint 	���c
� the solution
is sTR � 		�c�kgck
gc� If sTR satis
es 	���c
 	i�e�� if it lies �outside� the wedge
� then
sc � sTR is the solution of the subproblem 	���
� Otherwise� the wedge constraint is active�
and it is easy to verify that an optimal solution lies in the span of gc and bc� By rotating
sTR in the plane spanfsTR� bcg we 
nd the two points on this plane at which the wedge
constraint is satis
ed as an equality� and we chose the one with lowest model objective�
This provides a global solution to subproblem 	���
� which is unique�except in the case
when bTc gc � �� when there are exactly two global solutions�
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Figure �� Example for n � �� Steps s that fall in the shaded area will satisfy 	���
� and will
not belong to the taboo region Tc� The circle represents the trust region�

� Quadratic Models

In order to uniquely de
ne a quadratic model

mc	xc � s
 � f	xc
 � gTc s�
�
�s

TGcs 	���


that interpolates a set of points� we need to determine the coe�cients gc � IRn� and the
symmetric n� n matrix Gc� a total of m � �

�	n� �
	n � �
	 � scalar unknowns� Thus� in
addition to the current approximation to the minimizer xc� we will maintain m satellites

yl � xc � sl l � �� � � � �m�

The quadratic model 	���
 can be expressed as 	we drop the subscript c from the elements
of Gc to keep the notation simple


mc	xc � s
 � f	xc
 � gTc s�
X
i�j

Gijsisj �
�
�

P
iGiis

�
i

� f	xc
 � bgTc bs� 	���


where we have collected the elements of gc and Gc in the m�vector of unknowns

bgc � �gTc � fGijgi�j �
n

�p
�
Gii

o�T
� 	���


and de
ned the m�vector bs � �sT � fsisjgi�j �n �p
�
s�i

o�T
�

Since the model 	���
 has the same form as 	���
� the determination of the vector of unknown
coe�cients bg will be done as in the linear case� We deduce� from 	���
� that the interpolation
conditions take the form

	�sl
T �gc � f	yl
	 f	xc
 l � �� � � � �m� 	���




�

where

�sl �
�
	sl
T � fslis

l
jgi�j �

n
�p
�
	sli


�
o�T

l � �� � � � �m�

The model 	���
 will thus be uniquely determined if and only if the system 	���
 has a
unique solution� or equivalently� if and only if the set

f�sl � l � �� � � � �mg 	���


is linearly independent� This is the condition that the set of sample points must satisfy in
order to be non�degenerate� The taboo region is de
ned as

spanf�sl � l � �� � � � �m� l �� loutg� 	���


and can also be expressed as

Tc � f�s � IRm � �bTc �s � �g� 	���


where �bc � IRm is perpendicular to the subspace 	���
� As in the linear case� we de
ne a
region that contains Tc by demanding that the magnitude of the cosine of the angle between
�s and the normal �bc be greater than or equal to a given scalar � � 	�� �
� i�e��

j�bTc �sj 
 �k�bckk�sk� 	���


All that is left to do is to express this condition and the taboo region 	���
 in terms of
the variables s � IRn of the original problem� Writing �bc in the form 	���
 we have

�bc �
�
bTc � fBijgi�j � f

�p
�
Biig

�T
	���


where bc � IRn� We now let Bc be the n � n symmetric matrix with upper triangular
elements given by fBijgi�j � The taboo region 	���
 is thus given by

Tc � fs � IRn � bTc s�
�
�s

TBcs � �g� 	����


and is therefore the set of solutions to a quadratic equation� Let us assume without loss of

generality that the vector �bc is normalized so that k�bck �
q
kbck� �

�
�kBck

�
F
� �� Then the

wedge condition 	���
 can be written as

jbTc s�
�
�s

TBcsj 
 �
q
ksk� � �

�ks s
T k�

F
� 	����


Since
kssT kF � ksk��

inequality 	����
 can be written as

jbTc s�
�
�s

TBcsj 
 �ksk
q
� � �

�ksk
��

This de
nes the wedge constraint when the model is quadratic�
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To determine the coe�cients gc� Gc� bc and Bc we compute the QR factorization of the
matrix whose columns are the vectors f�slg in 	���
� Using this factorization we can then
solve for �gc the system 	���
� obtaining gc and Gc through 	���
� The QR factorization also
gives us the vector �bc in 	���
� and through 	���
� the vector bc and the matrix Bc�

The step sc is therefore de
ned as an approximate solution of

min
s

mc	xc � s
 � f	xc
 � gTc s�
�
�s

TGcs 	����a


subject to ksk � �c 	����b


jbTc s�
�
�s

TBcsj 
 �ksk
q
� � �

�ksk
�� 	����c


The step sc is thus dependent on the parameter �� whose choice can have an impact on
the e�ciency of the wedge algorithm� If � is too large� the wedge constraint may rule out
steps that make signi
cant progress toward the solution� To avoid these ine�ciencies� we
will include in the algorithm a procedure for decreasing �� if necessary� The update of �
will be performed while computing an approximate solution to 	����
� as will be described
in the next subsection�

��� Step Computation

It is di�cult to compute an optimal solution of subproblem 	����
 since Gc may be inde
nite
and the feasible region is usually non�convex� see Figure �� We will� however� content
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Figure �� Example for n � � of the feasible region of subproblem 	����
� The circle
centered at xc represents the trust region� The solid curves depict the taboo region 	����

	in this example Bc is inde
nite
� and the boundary of the region de
ned by the wedge
constraint 	����c
 is plotted using dashed lines�
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ourselves with 
nding an approximate solution of 	����
� and we will do so using a procedure
that is analogous to that employed in the linear case� While solving the subproblem we will
also determine if the value of the wedge parameter � needs to be decreased�

We 
rst use the technique described by Mor e and Sorensen ��� to compute a solution
sTR of the trust region problem 	����a
!	����b
� ignoring the wedge constraint� If sTR
satis
es 	����c
� then the solution of the subproblem 	����
 will be given by sc � sTR�
Otherwise� starting from sTR� we compute a sequence of trial steps si� i � �� �� � � �� with
ksik � ksTRk� that move away from the taboo region in a direction along which the violation
of the wedge constraint 	����c
 initially decreases� We generate trial steps until the wedge
constraint is satis
ed or until the value of the quadratic model 	����a
 has increased too
much with respect to its value at sTR� in which case � is decreased�

More precisely� let us de
ne the left hand side in 	����c
 by 		s
� i�e��

		s
 � jbTc s�
�
�s

TBcsj�

Its gradient is given by

r		s
 � sign	bTc s�
�
�s

TBcs
	Bcs� bc
�

provided 		s
 �� �� We compute the trial steps si� i � �� �� � � �� by incrementally rotating sTR
on the plane spanfsTR� BcsTR � bcg� and in the direction of r		sTR
� Note that BcsTR � bc
is the normal to the taboo region at sTR� and by moving along this normal� we move away
from the taboo region� 	The gradient of 	 indicates whether we should move along the
normal or the negative of it�


By means of this rotation� the violation of the wedge constraint initially decreases� as 	
initially decreases and the right hand side of 	����c
 remains constant due to the equality
ksik � ksTRk for all i�

As we generate the trial steps si� we monitor the value of the quadratic model 	����a
�
we continue the rotation until a trial step si satis
es 	����c
 or until the value of mc has
increased too much� in the sense that

pred	si
 
 �
� pred	sTR
 	����


where pred	s
 � mc	xc
	mc	xc � s
� with s � IRn� We take this as an indication that the
wedge parameter � is too large� We then �close the wedge�� i�e�� reduce �� so that the most
current trial step si satis
es 	����c
 as an equality�

� � jbTc sc �
�
�s

T
c Bcscj �

�
ksck

q
� � �

�ksck
�
�
� 	����


This new choice of � will be passed onto the next iteration� so that the values of � form a
non�increasing sequence�

This step computation procedure is described below� Here s	

 denotes a rotation of
sTR� by an angle 
� in the spanfsTR� BcsTR � bcg and in the direction of r		sTR
�

Procedure QuadStep

The input parameters are gc� Gc� bc� Bc� �� �c and �
�



��

Solve the trust region subproblem 	����a
!	����b
 to obtain sTR�
If sTR satis
es 	����c
� return sc � sTR� and �� Stop
Else

Set 
 � �

Repeat until s	

 satis
es 	����c
 or pred	s	


 
 �

� pred	sTR


� 
 � �


End Repeat

Set sc � s	


If sc violates 	����c
� de
ne � by 	����


End if

Return sc and �� Stop

� Numerical Results

To assess the robustness and e�ciency of the wedge algorithm� we will compare it with
three other methods for derivative�free optimization on a selection of problems from the
CUTE collection ���� In this section we denote the kth iterate by xk� the subscript k will
also be used in all the quantities associated with xk 	fk � f	xk
� �k� etc�


All the experiments were performed on a Sun Ultra � with ��� MB of memory� Dou�
ble precision IEEE arithmetic was used� except for COBYLA� which is written in single
precision� The wedge algorithm was implemented in Matlab�

The trust region parameters in Step � of Algorithm � were set to � � � and � � ����
and the trust region update strategy was as follows�

if ared	sk
 � �
�k�� �

�
�kskk

else

if kskk � �k� �k�� � ��k

else� �k�� � �k

end if

Other strategies are possible� but the one described here appears to work well in practice
because it permits the trust region radius � to increase fast� allowing larger steps�

We 
rst tested the linear version of the wedge algorithm 	WEDlin
 and COBYLA ����� a
trust region method that uses linear interpolation models� The starting point x� in this� and
all the results reported below� was supplied by CUTE� The n� � initial satellites required
by the 
rst iteration of WEDlin were de
ned as

yi � x� ��� ei� i � �� � � � � n� 	���


where the initial trust region radius was set to �� � �� ei denotes the ith canonical vector�
and the sign in 	���
 was chosen randomly� To account for the randomness introduced in
the selection of the initial sample points in both the linear and quadratic versions of the
wedge algorithm� each test problem was run 
ve times� The median results� in terms of
function evaluations� is reported�



��

The wedge parameter in WEDlin was chosen as � � ���� and was kept constant through�
out the iteration 	only the algorithm that uses quadratic models reduces the value of �
� The
parameter rhoend 	size of the simplex at termination
 in COBYLA was set to ���macheps�
where macheps denotes double precision unit roundo�� Similarly� WEDlin stopped if

�k � ���macheps� 	���


which is taken as an indication that no further progress can be made�
The stopping tests for WEDlin and COBYLA were as follows� We 
rst solved each

problem using the NITRO software package ���� which for unconstrained problems amounts
to a Newton method using exact second derivatives� NITRO was stopped when krf	xk
k �
���� and its 
nal function value f� was recorded� WEDlin and COBYLA were stopped when

fk 	 f�
f� 	 f�

� �� or equivalently� f� 	 fk 
 	�	 �
	f� 	 f�
� 	���


where � � ���� and f� is the objective value at the initial point� Therefore we require that
the decrease f�	fk obtained by the algorithms is at least �	 � times the decrease obtained
by NITRO� A stopping test of the form 	���
 is also used in ���� A limit of ���� function
evaluations was imposed in all runs� The results are given in Table �� where we report the
number of function evaluations and the 
nal value of the objective function obtained by
each algorithm� We also report 	" wed act
 the percentage of iterations in WEDlin where
the wedge constraint was active�

Though COBYLA was mainly designed for constrained optimization� these results sug�
gest that WEDlin is competitive with COBYLA on unconstrained problems� It is interesting
to note also that the wedge constraint is active in a signi
cant fraction of the iterations�
showing that this constraint does play an important role in the method�

We now comment on the abnormal terminations of COBYLA� ��� As mentioned before�
COBYLA is written in single precision� In problem AKIVA� the single precision version of
CUTE gives an initial function value of �������� which is lower than the optimal objective
value obtained by NITRO� f� � �������� Therefore COBYLA satis
es 	���
� and hence
terminates� at the starting point� However� when we run WEDlin in double precision� we
obtain the initial function value of �������� ��� COBYLA crashes when it tries to evaluate
f at a point where f is not de
ned� 	�
 COBYLA stopped because the size of the simplex
	rhoend
 is less than or equal to ���macheps� this is a built�in stopping test�

Next we compare the quadratic version of the wedge algorithm 	WEDquad
 with the
quasi�Newton code L�BFGS�B ���� using 
nite di�erences to approximate the gradient
	QNfd
� and all its default settings�

The initial value of the wedge parameter in WEDquad was chosen as � � ���� and as
explained in section �� it is allowed to change over the iterations� The value �
 � 
����
was used in procedure QuadStep� As suggested in ����� the �

�	n � �
	n � �
 sample points
required to de
ne the initial quadratic interpolation model can be chosen as the vertices
and the mid�points of a simplex� This was done in WEDquad� using the simplex de
ned
by x� and the points 	���
�
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	e
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e
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e��� ������e��� �	
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ROSENBR � ���� ��	� ������e��	 ��	���e��� ��

SCHMVETT � �	� 
� �������e
�� �������e
�� ��

SISSER � �	 �� ���	��e��
 ������e��
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SNAIL � ���� ���� ������e
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VARDIM �� �
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Table �� COBYLA vs WEDGElin � Number of function evaluations� 
nal objective
function value and percentage of iterations in which the wedge constraint was active in
WEDquad� The boxes indicate that an algorithm required at least �� fewer function eval�
uations than the other� if both algorithms reached the limit of ���� function evaluations�
the boxes indicate the algorithm that obtained a lower function value�



��

The results are reported in Table �� In addition to the number of function evaluations�
the 
nal function value and the percentage of iterations 	" wed act
 in which the wedge
constraint was active� we also report the 
nal value of the wedge parameter �� As mentioned
earlier� WEDquad was run 
ve times and the median of the results are reported� The
stopping test was 	���
�

The results show that WEDquad is sometimes� but not always� more e�cient than the

nite�di�erence quasi�Newton algorithm� However� WEDquad appears to be more reliable�
with one failure� compared to 
ve failures of QNfd�

In problem AKIVA� QNdf returned the function value 	� at the second iteration and
terminated� Most of the failures of QNfd are attributed to lack of progress in the line search
due to errors in the 
nite�di�erence approximations to the gradients 	the code uses forward
di�erences
�

Finally� we compare WEDquad with the code DFO ��� that implements a trust region
method using quadratic interpolation models� At the time of writing� DFO was not available
to the public� and the comparisons reported below are based on the results reported in ����
plus results on additional problems supplied by Katya Scheinberg ����� For this reason�
WEDquad was stopped when

fk � fDFO� 	���


where fDFO denotes the 
nal objective values obtained by DFO� Both algorithms were run

ve times for each problem and the median of the results is reported� The initial satellites
and all other parameters of WEDquad were chosen as in the previous experiment� The
results are given in Table ��

It is di�cult to design an adequate stopping test for comparing derivative free methods�
and this last comparison is an example of that� The code DFO may require a signi
cant
number of evaluations to recognize convergence to its best value of f ��� ��� 	which occurs
by default when �k � ���

� As a result� using the stopping test 	���
 may be adverse to
DFO� On the other hand� WEDquad does not employ any special termination mechanism�
Its default stop test is 	���
� and in this respect it is completely analogous to gradient�based
trust region methods�

Note from Tables �!� that� on most problems� the wedge parameter � is reduced signi
�
cantly from its initial value of ���� and that at the same time� the wedge constraint is active
fairly often� Therefore the algorithm appears to have achieved a good balance between
the geometric condition requirement and the desire to allow full trust region steps when
possible�

We conclude by noting that choosing the initial satellites in WEDquad as the vertices
and midpoints of a simplex is not an e�cient strategy since it requires O	n�
 function
evaluations to start the algorithm� It would be more e�cient to use� for example� linear
	or underdetermined quadratic
 models during the early iterations� but we have not yet
experimented with this option� Other re
nements that are likely to improve performance
include the option of increasing the wedge parameter in certain iterations� This can be done
either directly 	e�g�� when sTR in procedure QuadStep satis
es the wedge constraint 	����c

�
or indirectly� by relaxing the 	quite demanding
 requirement that the approximate solution
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Table �� QN
niteDi� vs WEDGEquad � Number of function evaluations� 
nal objec�
tive function value� percentage of iterations in which the wedge constraint was active in
WEDquad� and 
nal value of the wedge parameter �� The boxes indicate that an algo�
rithm required at least �� fewer function evaluations than the other� A 	#
 indicates that
the quasi�Newton code could not make further progress and terminated� The symbol $
indicates that WEDquad reached the maximum number of function evaluations allowed�
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Table �� DFO vs WEDGEquad � Number of function evaluations� 
nal objective function
value� percentage of iterations in which the wedge constraint was active in WEDquad� and

nal value of the wedge parameter �� The boxes indicate that an algorithm required at
least �� fewer function evaluations than the other�
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of the quadratic subproblem satisfy the test 	����
� An alternative test could be pred	si
 

�
� pred	sCA
� where sCA is the Cauchy point ���� for subproblem 	����a
!	����b
�
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