
EECS 361 Homework 3
Fall 2006

Due: 11/09/06

1. [5] Describe the effect that a single stuck-at-0 fault (i.e., regardless of what it should

be, the signal is always 0) would have on the multiplexors in the single-cycle datapath
in Figure 1. Which instructions, if any, would still work? Consider each of the
following faults separately: RegDst = 0, ALUSrc = 0, MemtoReg = 0, Zero = 0. Fill
in the provided table below.

2. [5] This exercise is similar to problem 1, but this time consider stuck-at-1 faults (the

signal is always 1).

Working Instructions for stuck-at-0 faults
 RegDst = 0 ALUSrc = 0 MemtoReg = 0 Zero = 0
Loads
Stores
R-type
Branch
Jump
Working Instructions for stuck-at-1 faults
 RegDst = 1 ALUSrc = 1 MemtoReg = 1 Zero = 1
Loads
Stores
R-type
Branch
Jump

(Fig 1)

3. [20] Say the critical path that sets the clock cycle length of a CPU with a multicycle

datapath is the memory access stage for loads and stores (not for instructions). This
has caused this particular CPU to run at a clock rate of 500 MHz rather than the
intended target clock rate of 750 MHz. However, if all the cycles that access memory
are broken into two clock cycles, then the machine can run at its target clock rate.
Using the gcc mixes shown in Table 1, how many times faster the machine with the
two-cycle memory accesses is compared with the 500-MHz machine with single-
cycle memory access. Assume that all jumps and branches take the same number of
cycles and that the set instructions and arithmetic immediate instructions are
implemented as R-type instructions. (Minor Hint: What does lui do?)

4. [10] Identify all the data dependencies in the following code. Which dependencies are
data hazards that will be resolved via forwarding?

(Table 1)
Core MIPS Name gcc Arithmetic core + MIPS I Name gcc

add add 0% branch on equal (zero) beq 9%
add immediate addi 0% branch on not equal (zero) bne 8%
add unsigned addu 9% jump and link jal 1%
add immediate unsigned addiu 17% jump register jr 1%
subtract unsigned subu 0% set less than slt 2%
and and 1% set less than immediate slti 1%
and immediate andi 2% set less than unsigned sltu 1%
shift left logical sll 5% set less than imm. Uns. sltiu 1%
shift right logical srl 0% shift right arithmetic sra 2%
load upper immediate lui 2% load half lh 1%
load word lw 21% branch less than zero bltz 1%
store word sw 12% branch greater or equal zero bgez 1%
load byte lb 1% branch less or equal zero blez 0%
store byte sb 1%

add $2, $5, $4
add $4, $2, $5
sw $5, 100($2)
add $3, $2, $4

5. [5] With regard to the following program executing on the pipelined datapath of

Figure 2.

Explain what the forwarding unit is doing during the fifth cycle of execution. If any
comparisons are being made, mention them.

add $1, $2, $3
add $4, $5, $6
add $7, $8, $9
add $10, $11, $12
add $13, $14, $15

(Fig 2)

6. [20] Consider an instruction sequence used for a memory-to-memory copy:

 The elaboration discusses this situation and states that additional forwarding hardware
can improve its performance. Show the necessary additions to the datapath of Figure
3 to allow code like this to run without stalling. Include forwarding equations (such
as the ones appearing on the next page) for all of the control signals for any new or
modified multiplexors in your datapath. Finally, rewrite the stall formula on the next
page so that this code sequence won’t stall.

lw $2, 100($5)
sw $2, 200($6)

Elaboration: Forwarding can also help with hazards when store
instructions are dependent on other instructions. Since they use just one
data value during the MEM stage, forwarding is easy. But consider loads
immediately followed by stores. We need to add more forwarding
hardware to make memory-to-memory copies run faster. With a sw that
immediately follows a lw, a stall can be avoided since the data exists in
the MEM/WB register of a load instruction in time for its use in the MEM
stage of a store instruction. We would need to add forwarding into the
memory access stage for this option.
 The signed-immediate input to the ALU, needed by loads and stores
has been added in the datapath in Figure 3. Since central control decides
between register and immediate, and since the forwarding unit chooses
the pipeline register input to the ALU, the easiest solution is to add a 2:1
multiplexor that chooses between the ForwardB multiplexor output and the
signed immediate. Figure 3 shows this addition. Note that the solution
differs from a modification where the multiplexor controlled by line
ALUSrcB was expanded to include the immediate input. This solution also
solves store forwarding by connecting the forwarding multiplexor output-
containing store data in this case-to the EX/MEM pipeline register.

(Fig 3)

Forwarding Equation Examples:

EX hazard:
 if (EX/MEM.RegWrite
 and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

 if (EX/MEM.RegWrite
 and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

MEM hazard:
 if (MEM/WB.RegWrite
 and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

 if (MEM/WB.RegWrite
 and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Stall Formula:

If (ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt)))
 stall the pipeline

