
Homework #3 Solutions (abridged)

1)

 RegDst=0 ALUSrc=0 MemtoReg=0 Zero=0
Loads Y N N Y
Stores Y N Y Y
R-type N Y Y Y
Branch Y Y Y N

2)

 RegDst=1 ALUSrc=1 MemtoReg=1 Zero=1
Loads N Y Y Y
Stores Y Y Y Y
R-type Y N N Y
Branch Y N Y N

3)

The gcc data from Chapter 4 has the following instruction mix:
Instruction class Frequency

Instruction Class Frequency
Loads 23%
Stores 13%
R-type 43%
Jump/branch 21%

I
Here are the CPIs:
 CPI on 500-MHz machine CPI on 750-MHz machine

Instruction Class CPI500 MHz CPI750 MHz
Loads 5 6
Stores 4 5
R-type 4 4
Jump/branch 3 3

CPI500 MHz = (0.23 × 5) + (0.13 × 4) + (0.43 × 4) + (0.21 × 3) = 4.02

CPI750 MHz = (0.23 × 6) + (0.13 × 5) + (0.43 × 4) + (0.21 × 3) = 4.38

The 750 MHz is faster by: (750 / 4.38) / (500 / 4.02) = 1.3767

4)

The second instruction is dependent upon the first ($2).

The third instruction is dependent upon the first ($2).
The fourth instruction is dependent upon the first ($2) and second ($4).

All of these dependencies will be resolved via forwarding.

5)

The forwarding unit is seeing if it needs to forward. It is looking at the instructions in the
fourth and fifth stages and checking to see whether they intend to write to the register file
and whether the register written is being used as an ALU input. Thus, it is comparing:
8 = 4? 8 = 1? 9 = 4? 9 = 1?

6)

There are multiple solutions for problem number 6. Here are the most common two
solutions.

This solution checks for the lw-sw combination when the lw is in the MEM stage and
the sw is in the EX stage.

if (ID/EX.MemWrite and // sw in EX stage?
 EX/mEM.MemRead and // lw in MEM stage?
 (ID/EX.RegisterRt = EX/MEM.RegisterRd) and // same register?
 (EX/Mem.RegisterRd != 0)) // but not r0?
then
 Mux = 1 // forward lw value
else
 Mux = 0 // do not forward

The following solution checks for the lw-sw combination when the lw is in the WB
stage and the sw is in the MEM stage.

if (EX/MEM.MemWrite and // sw in MEM stage?
 (MEM/WB.MemToReg = 1) and MEM/WB.RegWrite and // lw in WB stage?
 (EX/MEM.RegisterRd = MEM/WB.RegisterRd) and // same register?
 (MEM/WB.RegisterRd != 0)) // but not r0?
then
 Mux = 1 // forward lw value?
else
 Mux = 0 // do not forward

For this solution to work, we have to make a slight hardware modification: We must be
able to check whether or not the sw source register (rt) is the same as the lw
destination register (as in the previous solution). However, the sw source register is not
necessarily available in the MEM stage. This is easily remedied: As it is now, the
RegDst setting for sw is X, or “don’t care” (refer to Figure 6.28 on page 469).
Remember that RegDst chooses whether rt or rd is the destination register of an
instruction. Since this value is never used by a sw, we can do whatever we like with it—
so let’s always choose rt. This guarantees that the source register of a sw is available
for the above equation in the MEM stage (rt will be in EX/MEM.WriteRegister).
(See Figure 6.30 on page 470.)

A lw–sw stall can be avoided if the sw offset register (rs) is not the lw destination
register or if the lw destination register is r0.

if (ID/EX.MemRead and // lw in EX stage?
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or // same register?
 (ID/EX.RegisterRt = IF/ID.RegisterRt)) and // but not...
 not (IF/ID.MemWrite and // sw in ID stage?
 (ID/EX.RegisterRt = IF/ID.RegisterRs)) and // same register?
 (ID/EX.RegisterRt != 0)) // register r0?
then
 Stall the pipeline

Note that IF/ID.MemWrite is a new signal signifying a store instruction. This must
be decoded from the opcode. Checking that the lw destination is not r0 is not done in
the stall formula on page 490. That is fine. The compiler can be designed to never emit
code to load register r0, or an unnecessary stall can be accepted, or the check may be
added, as is done here.

	Instruction Class
	Frequency

