EECS 361 Computer Architecture Lecture 1

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

Class Info:

Timings:

• Tue-Thu 11:00-12:20 Tech M128

Class Web Site:

http://www.ece.northwestern.edu/~ada829/ece361/

Teaching Assistants:

- Avery Ching [aching@ece.northwestern.edu] Office: Tech L460 Phone: 847-467-2299
- Abhishek Das [ada829@ece.northwestern.edu] Office: Tech L458 Phone: 847-467-4610

Announcement:

Mid Term Exam on Nov 14 2006

Today's Lecture

Computer Design

- Levels of abstraction
- Instruction sets and computer architecture
- Architecture design process

Interfaces

Course Structure

Technology as an architectural driver

- Evolution of semiconductor and magnetic disk technology
- New technologies replace old
- Industry disruption

Break

Cost and Price

• Semiconductor economics

Computers, Levels of Abstraction and Architecture

Computer Architecture's Changing Definition

1950s Computer Architecture

• Computer Arithmetic

1960s

• Operating system support, especially memory management

1970s to mid 1980s Computer Architecture

- Instruction Set Design, especially ISA appropriate for compilers
- Vector processing and shared memory multiprocessors

1990s Computer Architecture

- Design of CPU, memory system, I/O system, Multi-processors, Networks
- Design for VLSI

2000s Computer Architecture:

 Special purpose architectures, Functionally reconfigurable, Special considerations for low power/mobile processing, highly parallel structures

Levels of Representation

Levels of Abstraction

The Instruction Set: A Critical Interface

Instruction Set Architecture

Data Types

Encoding and representation

Memory Model

Program Visible Processor State

General registers Program counter Processor status

Instruction Set

Instructions and formats Addressing modes Data structures

System Model

States Privilege Interrupts IO

External Interfaces

IO Management Architecture Reference Manual

Principles of Operation

Programming Guide

•••

... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation.

Amdahl, Blaaw, and Brooks, 1964

Capabilities & Performance Characteristics of Principal Functional Units

(e.g., Registers, ALU, Shifters, Memory Management, etc.

Ways in which these components are interconnected

- Datapath nature of information flows and connection of functional units
- Control logic and means by which such information flow is controlled

Choreography of functional units to realize the ISA

Register Transfer Level Description / Microcode

"Hardware" designer's view includes logic and firmware

This Course Focuses on General Purpose Processors

A general-purpose computer system

- Uses a programmable processor
- Can run "any" application
- Potentially optimized for some class of applications
- Common names: CPU, DSP, NPU, microcontroller, microprocessor

Unified main memory

- For both programs & data
- Von Neumann computer

Busses & controllers to connect processor, memory, IO devices

MIT Whirlwind, 1951

Computers are pervasive - servers, standalone PCs, network processors, embedded processors, ...

Today, "Computers" are Connected Processors

All have interfaces & organizations

What does a computer architect do?

Translates business and technology drives into efficient systems for computing tasks.

Metrics of Efficiency - Examples

Desktop computing

- Examples: PCs, workstations
- Metrics: performance (latency), cost, time to market

Server computing

- Examples: web servers, transaction servers, file servers
- Metrics: performance (throughput), reliability, scalability

Embedded computing

- Examples: microwave, printer, cell phone, video console
- Metrics: performance (real-time), cost, power consumption, complexity

Applications Drive Design Points

Numerical simulations

- Floating-point performance
- Main memory bandwidth

Transaction processing

- I/Os per second and memory bandwidth
- Integer CPU performance

Media processing

- Repeated low-precision 'pixel' arithmetic
- Multiply-accumulate rates
- Bit manipulation

Embedded control

- I/O timing
- Real-time behavior

Architecture decisions will often exploit application behavior

Characteristics of a Good Interface Design

Well defined for users and implementers

Interoperability (Hardware) / Compatibility (Software)

- Lasts through multiple implementations across multiple technologies (portability, compatibility)
- Efficiently supports multiple implementations
 - Competitive market
 - Compatible at multiple cost / performance design points

IP Investment Preservation

- Extensible function grows from a stable base
- Generality of application permits reuse of training, tools and implementations

Applies to many types of interfaces

- Instruction set architectures
- Busses
- Network protocols
- Library definitions
- OS service calls
- Programming languages

Interface usage can far exceed the most optimistic projections of it's designer:

- Instruction sets
 - S/360 1964 ~ present
 - X86 1972 ~ present
 - SPARC 1981 ~ present
- Network protocols
 - Ethernet 1973 ~ present
 - TCP/IP 1974 ~ present
- Programming languages
 - C 1973 ~ present

Course Structure

What You Need to Know from prerequisites

Basic machine structure

• Processor, memory, I/O

Assembly language programming

Simple operating system concepts

Logic design

• Logical equations, schematic diagrams, FSMs, Digital design

Course Basics

Website

- www.ece.northwestern.edu/~ada829/ece361/
- Check regularly for announcements
- All course materials posted -- lecture notes, homework, labs, supplemental materials
- Communicate information, questions and issues

Office Hours - Tech L469 - Tuesday 2-3pm (or by appointment)

Text supplements lectures and assigned reading should be done prior to lectures. I assume that all assigned readings are completed even if the material is not covered in class.

Homework, Labs and Exams

- Collaborative study and discussion is highly encouraged
- Work submitted must be your own
- Individual grade

Project

- Collaborative effort
- Team grade

<u>Grade</u>

35% Homework and Labs

- 4 homework sets
- Lab individual grade, collaboration is strongly encouraged
 - ALU

30% Team Project

- MIPS subset
- Design and CAD intensive effort
- 35% Late midterm Exam (Nov 14)
 - Open book, open notes

Project

Teams of 3-4 students

You will be required to

- Use advanced CAD tools Mentor Graphics
- Design a simple processor (structural design and implementation) MIPS subset
- Validate correctness using sample programs of your own and provided as part of the assignment

Written presentation submitted (due Dec 1, 2006)

You may also use VHDL (structural) to design your system if you know VHDL sufficiently well

Course Structure

Lectures:

- 1 week on Overview and Introduction (Chap 1 and 2)
- 2 weeks on ISA Design
- 4 weeks on Proc. Design
- 2 weeks on Memory and I/O

Reading assignments posted on the web for each week. Please read the appropriate material before the class.

Note that the above is approximate

Copy of all lecture notes available from the department for a charge (bound nicely)

Technology Drivers

Technology Drives Advances in Computer Design

Evolution Each level of abstraction is continually trying to improve

Disruption Fundamental economics or capability cross a major threshold

Significant technology disruptions

Logic	Relays → Vacuum tubes → single transistors → SSI/MSI (TTL/ECL) → VLSI (MOS)
Registers	Delay lines \rightarrow drum \rightarrow semiconductor
Memory	Delay lines \rightarrow magnetic drum \rightarrow core \rightarrow SRAM \rightarrow DRAM
External Storage	Paper tape → Paper cards → magnetic drum → magnetic disk

Today, technology is driven by semiconductor and magnetic disk technology. What are the the next technology shifts?

Semiconductor and Magnetic Disk Technologies Have Sustained Dramatic Yearly Improvement since 1975

64x more devices since 1992 4x faster devices

Moore's "Law" - The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but *data density has* doubled approximately every 18 months, and this is the current definition of Moore's Law, which Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

	Capacity	Speed	Cost
Logic	60%	40%	25%
Clock Rate		20%	
DRAM	60%	7%	25%
Disk	60%	3%	25%
Network		40%	25%

Device Density Increases Faster Than Die Size

1971

Intel 4004 was a 3 chip set with a 2kbit ROM chip, a 320bit RAM chip and the 4bit processor each housed in a 16 pin DIP package. The 4004 processor required roughly 2,300 transistors to implement, used a silicon gate PMOS process with 10µm linewidths, had a 108KHz clock speed and a die size of 13.5mm2. Designer - Ted Hoff.

1996

HP PA8000 -17.68mmx19.1mm, 3.8M transistors.

			<u>i4004</u>	PA9000	<u>Factor</u>	<u>Yearly Improvement</u>
		Area (mm)	13.5	338	1:25	14%
Source:	http://micro.magnet.fsu.edu/chipshots/	Transistors	2300	3,800,000	1:1652	34%

EECS 361

Example: Intel Semiconductor Roadmap

Process	<u>P856</u>	<u>P858</u>	<u>Px60</u>	<u>P1262</u>	<u>P1264</u>	<u>P1266</u>
1st Production	1997	1999	2001	2003	2005	2007
Lithography	0.25um	0.18um	0.13um	90nm	65nm	45nm
Gate Length	0.20um	0.13um	<70nm	<50nm	<35nm	<25nm
Wafer Diameter (mm)	200	200	200/300	300	300	300

Source: Mark Bohr, Intel, 2002

DRAM Drives the Semiconductor Industry

size

Memory Wall: Speed Gap between Processor and DRAM

Source: Junji Ogawa, Stanford

The divergence between performance and cost drives the need for memory hierarchies, to be discussed in future lectures.

EECS 361

Semiconductor evolution drives improved designs

1970s

- Multi-chip CPUs
- Semiconductor memory very expensive
- Complex instruction sets (good code density)
- Microcoded control

1980s

- 5K 500 K transistors
- Single-chip CPUs
- RAM is cost-effective
- Simple, hard-wired control
- Simple instruction sets
- Small on-chip caches

1990s

- 1 M 64M transistors
- Complex control to exploit instruction-level parallelism
- Super deep pipelines

2000s

- 100 M 5 B transistors
- Slow wires
- Power consumption
- Design complexity

Note: Gate speeds and power/cooling also improved

EECS 361

Processor Performance (SPEC)

System performance improves 50% per year. More about SPEC in a future lecture.

Technology drives industry disruption and creates opportunity

Why Such Change in 10 years?

Performance

- Technology Advances
 - CMOS VLSI dominates older technologies (TTL, ECL) in cost and performance
- Computer architecture advances improves low-end
 - RISC, superscalar, RAID, ...

Price: Lower costs due to ...

- Simpler development
 - CMOS VLSI: smaller systems, fewer components
- Higher volumes
 - CMOS VLSI : same dev. cost 1,000 vs. 100,000,000 units
- Lower margins by class of computer, due to fewer services

Function

• Rise of networking / local interconnection technology

Cost and Price

Integrated Circuit Manufacturing Costs

$Die Cost = \frac{Wafer Cost}{Dies per Wafer \times Die Yield}$

IC yield is a largely a function of defect density. Yield curves improve over time with manufacturing experience.

Relationship of complexity, cost and yield

Source: The History of the Microcomputer - Invention and Evolution, Stan Mazor

Example: FPGA Cost per 1M Gates

Source: Xilinx

System Cost Example: Web Server

<u>System</u>	Subsystem	% of total cost
Cabinet	Sheet metal, plastic Power supply, fans Cables, nuts, bolts (Subtotal)	1% 2% 1% (4%)
Motherboard	Processor DRAM I/O system Network interface Printed Circuit board (Subtotal)	20% 20% 10% 4% 1% (60%)
I/O Devices	Disks (Subtotal)	36% (36%)

Picture: http://developer.intel.com/design/servers/sr1300/

Example: Cost vs Price

Summary

Computer Design

- Levels of abstraction
- Instruction sets and computer architecture

Architecture design process

Interfaces

Course Structure

Technology as an architectural driver

- Evolution of semiconductor and magnetic disk technology
- New technologies replace old
- Industry disruption

Cost and Price

• Semiconductor economics