EECS 361
Computer Architecture
Lecture 2 - performance

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

EECS 361

2-1

Today’s Lecture

Performance Concepts
e Response Time
e Throughput

Performance Evaluation
e Benchmarks

Announcements

Processor Design Metrics

e Cycle Time
e Cycles per Instruction

Amdahl’s Law
e Speedup what is important

Critical Path

EECS 361

2-2

EECS 361

Performance Concepts

2-3

Performance Perspectives

Purchasing perspective
e Given a collection of machines, which has the
- Best performance ?
- Least cost ?
- Best performance / cost ?

Design perspective
e Faced with design options, which has the
- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require
e basis for comparison
e metric for evaluation

Our goal: understand cost & performance
implications of architectural choices

EECS 361 2-4

Two Notions of “Performance™

Throughput
(pmph)

Plane DC to Paris Speed Passengers

LA WY 6.5 hours 286,700

Concorde 3 hours | 1350 mph 132 178,200

Which has higher performance?

Execution time (response time, latency, ...)
e Time to do a task

Throughput (bandwidth, ...)
e Tasks per unit of time

Response time and throughput often are in opposition
EECS 361 2-5

Definitions

Performance is typically in units-per-second
e bigger is better

If we are primarily concerned with response time

e performance = 1
execution_time

"X 1s n times faster than Y' means

ExecutionTime, Performance. ,
ExecutionTime. Performance,

EECS 361

2-6

Example

- Time of Concorde vs. Boeing 747?
» Concord is 1350 mph / 610 mph = 2.2 times faster
= 6.5 hours / 3 hours

 Throughput of Concorde vs. Boeing 747 ?
» Concord is 178,200 pmph / 286,700 pmph = 0.62 "fimes faster”
* Boeing is 286,700 pmph / 178,200 pmph = 1.60 "times faster”

* Boeing is 1.6 times ("60%") faster in terms of throughput
* Concord is 2.2 times ("120%") faster in terms of flying time

We will focus primarily on execution time for a single job
Lots of instructions in a program => Instruction thruput important!

EECS 361 2-7

EECS 361

Benchmarks

2-8

Evaluation Tools

Benchmarks, traces and mixes e —— _—
« Macrobenchmarks and suites A o
. STORE 10%
e Microbenchmarks o
LD 5EA3 ALU 1%

e Traces ST 31FF

LD 1EA2

Workloads

Simulation at many levels
e |SA, microarchitecture, RTL, gate circuit
» Trade fidelity for simulation rate (Levels of abstraction)

Other metrics
e Area, clock frequency, power, cost, ...

Analysis
e Queuing theory, back-of-the-envelope = _.O»
e Rules of thumb, basic laws and principles

EECS 361 2-9

Benchmarks

Microbenchmarks
e Measure one performance dimension Perf. Dimensions

Cache bandwidth

Memory bandwidth Macro

Procedure call overhead

FP performance

e Insight into the underlying performance factors
e Not a good predictor of application performance

Applications
Micro

Macrobenchmarks
e Application execution time
- Measures overall performance, but on just one application
- Need application suite

EECS 361 2-10

Why Do Benchmarks?

How we evaluate differences
e Different systems
e Changes to a single system

Provide a target

e Benchmarks should represent large class of important
programs

e Improving benchmark performance should help many
programs

For better or worse, benchmarks shape a field

Good ones accelerate progress
e good target for development

Bad benchmarks hurt progress
» help real programs v. sell machines/papers?
e |[nventions that help real programs don’t help benchmark

EECS 361 2-11

Popular Benchmark Suites

Desktop
e SPEC CPU2000 - CPU intensive, integer & floating-point applications
e SPECviewperf, SPECapc - Graphics benchmarks
e SysMark, Winstone, Winbench

Embedded
e EEMBC - Collection of kernels from 6 application areas
e Dhrystone - Old synthetic benchmark

Servers
e SPECweb, SPECTs
e TPC-C - Transaction processing system
e TPC-H, TPC-R - Decision support system
e TPC-W - Transactional web benchmark

Parallel Computers
e SPLASH - Scientific applications & kernels

Most markets have specific benchmarks

for design and marketing.
EECS 361 2-12

SPEC CINT2000

600 250
d SPECbase CINT2000 1225
00 7o g N —- SPEC CINT2000 900
performance/cost
175
400 [
150
SPECbase 300 b 125 SPEC CINTZOC_)O
CINT2000 per $1000 in price
100
200 [75
50
100
25
0 0
Compagq Dell Dell HP Sun IBM Sun
Presario Precision Precision Workstation Sunblade RS6000 Sunblade
7000 530 420 €3600 1000/1750 44P/170 100

© 2003 Elsevier Science (USA). All rights reserved.

EECS 361 2-13

180
160
140
120

Transactions per L

minute per $1000

60
40

20

EECS 361

[l Price-performance (TPM per $1000)

— Performance (transactions per minute)

Dell
PowerEdge
6400

IBM Compaq HP NEC
xSeries Proliant NetServer LH Express
250 c/s ML570 6000 5800/180

6/700 2

© 2003 Elsevier Science (USA). All rights reserved.

60

Transactions per
minute (thouands)

2-14

Basis of Evaluation

Pros Cons
- very specific
* representative * non-portable
Actual Target Workload - difficult to run, or
measure
* hard to identify cause
» portable
) W'dely used - less representative
* Improvements Full Application Benchmarks
useful in reality

- easy to run, early Small “Kernel" » easy to “fool”

in design cycle Benchmarks

- identify peak * "peak” may be a long
capability and Microbenchmarks way from application
potential performance

bottlenecks
EECS 361 2-15

Programs to Evaluate Processor Performance

(Toy) Benchmarks
e 10-100 line
e e.g.,: sieve, puzzle, quicksort

Synthetic Benchmarks

e attempt to match average frequencies of real
workloads

e e.g., Whetstone, dhrystone

Kernels
e Time critical excerpts

EECS 361 2-16

Announcements

Website http://www.ece.northwestern.edu/~ada829/ece361

Next lecture
e |nstruction Set Architecture

EECS 361 2-17

http://www.ece.northwestern.edu/~ada829/ece361

Processor Design Metrics

EECS 361 2-18

Metrics of Performance

Seconds per program
Application —

: Useful Operations per second
Programming

Language
Compiler

(millions) of Instructions per second - MIPS
[(TsA] (millions) of (F.P.) operations per second - MFLOP/s

Datapath

Control — Megabytes per second

Function Units

Transistors Wires Pins — Cycles per second (clock rate)

EECS 361 510

Organizational Trade-offs

Application

Programming
Language

Compiler

Lisad InstrLAction Mix
Datapath
Control CPI
Function Units !
Transistors Wires Pins —— CycleTime

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the
program measured

EECS 361 2-20

Processor Cycles

Clock

|

: Combination Logic

D

| Cycle

v

l .
o

-é-

Most contemporary computers have fixed,
repeating clock cycles

EECS 361 2-21

CPU Performance

Seconds _ Cycles Seconds

CPUtime = =
Program Program Cycle
_ Instructions Cycles Seconds
Program Instruction Cycle
IC CPI Clock Cycle
Program \
Compiler \ (V)

Instruction Set

.\IIII

Organization

.\1:!I

Technology

EECS 361

2-22

Cycles Per Instruction (Throughput)

"Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x znj CPI; x I,

j=1

"Instruction Frequency”

n I
CPI = Y.CPI x F here F, = j
jZ=:1 %0 WHEre Ti = Instruction Count

EECS 361 2-23

Principal Design Metrics: CPl and Cycle Time

1
Performance = : _
ExecutionTime
1
Performance =

CPI xCycleTime

1 _ Instructions

Cycles Seconds ~ Seconds

Instruction Cycle

Performance =

EECS 361 2-24

Example

Op
ALU
Load
Store
Branch

Typical Mix
Freé Cycles CPI
50% 1 .5
20% 5 1.0
10% 3 .3
20% 2 4
2.2

How much faster would the machine be if a better data cache reduced the

average load time to 2 cycles?

e Load = 20% x 2 cycles = .4
e Total CPI 2.2 > 1.6
e Relative performanceis2.2/ 1.6 =1.38

How does this compare with reducing the branch instruction to 1 cycle?
e Branch - 20% x 1 cycle = .2

e Total CPI 2.2 > 2.0
e Relative performanceis2.2/2.0=1.1

EECS 361

2-25

Summary: Evaluating Instruction Sets and Implementation

Design-time metrics:
e Can it be implemented, in how long, at what cost?
e Can it be programmed? Ease of compilation?

Static Metrics:
e How many bytes does the program occupy in memory?

Dynamic Metrics:
e How many instructions are executed?
e How many bytes does the processor fetch to execute the program?
e How many clocks are required per instruction?

e How "lean" a clock is practical? CPL

Best Metric:
Time to execute the program!

NOTE: Depends on instructions set, processor

organization, and compilation techniques. Inst. Count Cycle Time

EECS 361 2-26

Amdahl's “Law’’: Make the Common Case Fast

Speedup due to enhancement E:

ExTime w/0 E Performance w/ E
Speedup(E) = -----------------——- =

ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

Performance improvement
is limited by how much the
improved feature is used >
Invest resources where

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

time is spent.
Spoedi _ ExecTime ,, _ 1
P puvemH ExecTime Fraction
- enhanced —]
new + (1 Fracnonenhanced)

Sp eedup enhanced

EECS 361 2-27

Marketing Metrics

MIPS = |nstruction Count / Time * 1076
= Clock Rate / CPI * 1076

e machines with different instruction sets ?
e programs with different instruction mixes ?
e dynamic frequency of instructions

e uncorrelated with performance

MFLOP/s= FP Operations / Time * 106
e machine dependent
e often not where time is spent

EECS 361

2-28

Summary

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

Time is the measure of computer performance!

Good products created when have:
e Good benchmarks
e Good ways to summarize performance

If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales - sales
almost always wins

Remember Amdahl’s Law: Speedup is limited by unimproved part of program

EECS 361 2-29

Critical Path

EECS 361 2-30

Range of Design Styles

Custom Design

Standard Cell

Gate Array/FPGA/CPLD

Gates Gates
ﬂé Custom
o
= ALU Routing Channel
E Standard
§ ALU Gates
S
+‘§, Custom Standard Registers Routing Channel
> Register File

Gates
Performance

Design Complexity (Design Time)

Compact

EECS 361

Longer wires

2-31

Implementation as Combinational Logic + Latch

Clock

"Moore Machine"

"Mealey Machine”

EECS 361 2-32

Clocking Methodoloqy

Clock Il l

N P 2

Combination Logic

|

D e D

\ 4

l.

All storage elements are clocked by the same clock edge (but there may be
clock skews)

The combination logic block’s:
e |nputs are updated at each clock tick
e All outputs MUST be stable before the next clock tick

EECS 361 2-33

Critical Path & Cycle Time
Clock Il l

\ 4

91% mp. 'l%;

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path

EECS 361 2-34

Tricks to Reduce Cycle Time

Reduce the number of gate levels

A
B

-

C

Beps

= Pay attention to loading

* One gate driving many gates is a bad idea

- Avoid using a small gate to drive a long wire

= Use multiple stages to drive large load

= Revise design

EECS 361

P

INV4x

2-35

Summary

Performance Concepts
e Response Time
e Throughput

Performance Evaluation
e Benchmarks

Processor Design Metrics
e Cycle Time
e Cycles per Instruction

Amdahl’s Law
e Speedup what is important

Critical Path

EECS 361

2-36

	EECS 361Computer ArchitectureLecture 2 – performance
	Today’s Lecture
	Performance Concepts
	Performance Perspectives
	Two Notions of “Performance”
	Definitions
	Example
	Benchmarks
	Evaluation Tools
	Benchmarks
	Why Do Benchmarks?
	Popular Benchmark Suites
	SPEC CINT2000
	tpC
	Basis of Evaluation
	Programs to Evaluate Processor Performance
	Announcements
	Processor Design Metrics
	Metrics of Performance
	Organizational Trade-offs
	Processor Cycles
	CPU Performance
	Cycles Per Instruction (Throughput)
	Principal Design Metrics: CPI and Cycle Time
	Example
	Summary: Evaluating Instruction Sets and Implementation
	Amdahl's “Law”: Make the Common Case Fast
	Marketing Metrics
	Summary
	Critical Path
	Range of Design Styles
	Implementation as Combinational Logic + Latch
	Clocking Methodology
	Critical Path & Cycle Time
	Tricks to Reduce Cycle Time
	Summary

