
EECS 361
Computer Architecture

Lecture 2 – performance

2-1EECS 361

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu



TodayToday’’s Lectures Lecture

2-2EECS 361

Performance Concepts
• Response Time
• Throughput

Performance Evaluation
• Benchmarks

Announcements

Processor Design Metrics

• Cycle Time
• Cycles per Instruction

Amdahl’s Law
• Speedup what is important

Critical Path



Performance Concepts

2-3EECS 361



Performance PerspectivesPerformance Perspectives

2-4EECS 361

Purchasing perspective 
• Given a collection of machines, which has the 

- Best performance ?
- Least cost ?
- Best performance / cost ?

Design perspective
• Faced with design options, which has the 

- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require
• basis for comparison
• metric for evaluation

Our goal: understand cost & performance 
implications of architectural choices



Two Notions of Two Notions of ““PerformancePerformance””

2-5EECS 361

Which has higher performance?
Execution time (response time, latency, …)

• Time to do a task

Throughput (bandwidth, …)
• Tasks per unit of time

Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput 
(pmph)

286,700

178,200



DefinitionsDefinitions

2-6EECS 361

Performance is typically in units-per-second
• bigger is better

If we are primarily concerned with response time
• performance =   1               

execution_time

" X is n times faster than Y"  means

n
ePerformanc
ePerformanc

imeExecutionT
imeExecutionT

y

x

x

y
==



ExampleExample

• Time of Concorde vs. Boeing 747?
• Concord is 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?
• Concord is 178,200 pmph / 286,700 pmph = 0.62 “times faster”
• Boeing  is 286,700 pmph / 178,200 pmph = 1.60 “times faster”

• Boeing is 1.6 times (“60%”) faster in terms of throughput
• Concord is 2.2 times (“120%”) faster in terms of flying time

We will focus primarily on execution time for a single job
Lots of instructions in a program => Instruction thruput important!

2-7EECS 361



Benchmarks

2-8EECS 361



Evaluation ToolsEvaluation Tools

2-9EECS 361

Benchmarks, traces and mixes
• Macrobenchmarks and suites
• Microbenchmarks
• Traces

Workloads

Simulation at many levels
• ISA, microarchitecture, RTL, gate circuit
• Trade fidelity for simulation rate (Levels of abstraction)

Other metrics
• Area, clock frequency, power, cost, …

Analysis
• Queuing theory, back-of-the-envelope
• Rules of thumb, basic laws and principles



BenchmarksBenchmarks

Microbenchmarks
• Measure one performance dimension

- Cache bandwidth
- Memory bandwidth
- Procedure call overhead
- FP performance

• Insight into the underlying performance factors
• Not a good predictor of application performance

Macrobenchmarks
• Application execution time

- Measures overall performance, but on just one application
- Need application suite

2-10EECS 361



Why Do Benchmarks?Why Do Benchmarks?

2-11EECS 361

How we evaluate differences
• Different systems
• Changes to a single system

Provide a target
• Benchmarks should represent large class of important 

programs
• Improving benchmark performance should help many 

programs

For better or worse, benchmarks shape a field

Good ones accelerate progress
• good target for development

Bad benchmarks hurt progress
• help real programs v. sell machines/papers?
• Inventions that help real programs don’t help benchmark



Popular Benchmark SuitesPopular Benchmark Suites

2-12EECS 361

Desktop
• SPEC CPU2000 - CPU intensive, integer & floating-point applications
• SPECviewperf, SPECapc - Graphics benchmarks
• SysMark, Winstone, Winbench

Embedded
• EEMBC - Collection of kernels from 6 application areas
• Dhrystone - Old synthetic benchmark

Servers
• SPECweb, SPECfs
• TPC-C - Transaction processing system
• TPC-H, TPC-R - Decision support system
• TPC-W - Transactional web benchmark

Parallel Computers
• SPLASH - Scientific applications & kernels

Most markets have specific benchmarks 
for design and marketing.



SPEC CINT2000SPEC CINT2000

2-13EECS 361



tpCtpC

2-14EECS 361



Basis of EvaluationBasis of Evaluation

Actual Target Workload

Full Application Benchmarks

2-15EECS 361

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
measure

• hard to identify cause
• portable
• widely used
• improvements 
useful in reality

• less representative

• easy to “fool”• easy to run, early 
in design cycle

• “peak” may be a long 
way from application 
performance

• identify peak 
capability and 
potential 
bottlenecks



Programs to Evaluate Processor PerformancePrograms to Evaluate Processor Performance

2-16EECS 361

(Toy) Benchmarks
• 10-100 line
• e.g.,: sieve, puzzle, quicksort

Synthetic Benchmarks
• attempt to match average frequencies of real 

workloads
• e.g., Whetstone, dhrystone

Kernels
• Time critical excerpts



AnnouncementsAnnouncements

Website http://www.ece.northwestern.edu/~ada829/ece361

Next lecture
• Instruction Set Architecture

2-17EECS 361

http://www.ece.northwestern.edu/~ada829/ece361


Processor Design Metrics

2-18EECS 361



Metrics of PerformanceMetrics of Performance

Compiler

Programming 
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Seconds per program

Useful Operations per second

2-19EECS 361



Organizational TradeOrganizational Trade--offsoffs

Compiler

Programming 
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI is a useful design measure relating the 
Instruction Set Architecture with the 
Implementation of that architecture, and the 
program measured

2-20EECS 361



Processor CyclesProcessor Cycles

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

Cycle

Most contemporary computers have fixed, 
repeating clock cycles

2-21EECS 361



CPU PerformanceCPU Performance

2-22EECS 361



Cycles Per Instruction (Throughput)Cycles Per Instruction (Throughput)

“Cycles per Instruction”
CPI = (CPU Time * Clock Rate) / Instruction Count 

=  Cycles / Instruction Count    

j
n

j
j I CPI   TimeCycle  time CPU ×∑×=

=1

“Instruction Frequency”

Count nInstructio
I

 F where     F CPI  CPI j
j

n

j
jj =∑ ×=

=1

2-23EECS 361



Principal Design Metrics: CPI and Cycle TimePrincipal Design Metrics: CPI and Cycle Time

Seconds
nsInstructio

Cycle
Seconds

nInstructio
CyclesePerformanc

CycleTimeCPI
ePerformanc

imeExecutionT
ePerformanc

=
×

=

×
=

=

1

1

1

2-24EECS 361



ExampleExample Typical Mix

Op Freq Cycles CPI
ALU 50% 1 .5
Load 20% 5 1.0
Store 10% 3 .3
Branch 20% 2 .4

2.2

2-25EECS 361

How much faster would the machine be if a better data cache reduced the 
average load time to 2 cycles?

• Load 20% x 2 cycles = .4
• Total CPI 2.2 1.6
• Relative performance is 2.2 / 1.6 = 1.38

How does this compare with reducing the branch instruction to 1 cycle?
• Branch 20% x 1 cycle = .2
• Total CPI 2.2 2.0
• Relative performance is 2.2 / 2.0 = 1.1



Summary: Evaluating Instruction Sets and ImplementationSummary: Evaluating Instruction Sets and Implementation

Design-time metrics:
• Can it be implemented, in how long, at what cost?
• Can it be programmed?  Ease of compilation?

Static Metrics:
• How many bytes does the program occupy in memory?

Dynamic Metrics:
• How many instructions are executed?
• How many bytes does the processor fetch to execute the program?
• How many clocks are required per instruction?
• How  "lean" a clock is practical?

Best Metric: 
Time to execute the program!   

NOTE: Depends on instructions set, processor 
organization, and compilation techniques.

CPI

Inst. Count Cycle Time

2-26EECS 361



Amdahl's Amdahl's ““LawLaw””:  Make the Common Case Fast:  Make the Common Case Fast

Speedup  due to enhancement E:

ExTime w/o E            Performance w/ E

Speedup(E) =   -------------------- =      ---------------------

ExTime w/  E              Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E)  = ((1-F) + F/S) X ExTime(without E) 

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E) 

Performance improvement 
is limited by how much the 
improved feature is used 
Invest resources where 
time is spent.

2-27EECS 361



Marketing MetricsMarketing Metrics

2-28EECS 361

MIPS = Instruction Count / Time * 10^6
= Clock Rate / CPI * 10^6

• machines with different instruction sets ?
• programs with different instruction mixes ?
• dynamic frequency of instructions
• uncorrelated with performance

MFLOP/s= FP Operations / Time * 10^6
• machine dependent
• often not where time is spent



SummarySummary

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds
Program Program          Instruction       Cycle

2-29EECS 361

Time is the measure of computer performance!

Good products created when have:
• Good benchmarks
• Good ways to summarize performance

If not good benchmarks and summary, then choice between improving 
product for real programs vs. improving product to get more sales sales 
almost always wins

Remember Amdahl’s Law: Speedup is limited by unimproved part of program



Critical Path

2-30EECS 361



Range of Design StylesRange of Design Styles

Gate Array/FPGA/CPLD
Cu

st
om

 C
on

tr
ol

 L
og

ic

Custom
Register File

Custom Design Standard Cell

2-31EECS 361

Standard
ALU

Standard Registers

Gates Gates

Routing Channel

Gates

Routing Channel

Gates

Custom
ALU

Performance
Design Complexity (Design Time)

Longer wiresCompact



Implementation as Combinational Logic + LatchImplementation as Combinational Logic + Latch

2-32EECS 361

“M
ea

le
y

M
ac

hi
ne

”
“M

oo
re

 M
ac

hi
ne

”

La
tc

h

Co
m

bi
na

ti
on

al
Lo

gi
c

Clock



Clocking MethodologyClocking Methodology

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

2-33EECS 361

All storage elements are clocked by the same clock edge (but there may be 
clock skews)

The combination logic block’s:
• Inputs are updated at each clock tick
• All outputs MUST be stable before the next clock tick



Critical Path & Cycle TimeCritical Path & Cycle Time

Clock

.

.

.

.

.

.

.

.

.

.

.

.

2-34EECS 361

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path



Tricks to Reduce Cycle TimeTricks to Reduce Cycle Time

Reduce the number of gate levels

2-35EECS 361

Pay attention to loading

• One gate driving many gates is a bad idea

• Avoid using a small gate to drive a long wire

Use multiple stages to drive large load

Revise design

A
B

C
D

A
B

C
D

INV4x

INV4x

Clarge



SummarySummary

2-36EECS 361

Performance Concepts
• Response Time
• Throughput

Performance Evaluation
• Benchmarks

Processor Design Metrics
• Cycle Time
• Cycles per Instruction

Amdahl’s Law
• Speedup what is important

Critical Path


	EECS 361Computer ArchitectureLecture 2 – performance
	Today’s Lecture
	Performance Concepts
	Performance Perspectives
	Two Notions of “Performance”
	Definitions
	Example
	Benchmarks
	Evaluation Tools
	Benchmarks
	Why Do Benchmarks?
	Popular Benchmark Suites
	SPEC CINT2000
	tpC
	Basis of Evaluation
	Programs to Evaluate Processor Performance
	Announcements
	Processor Design Metrics
	Metrics of Performance
	Organizational Trade-offs
	Processor Cycles
	CPU Performance
	Cycles Per Instruction (Throughput)
	Principal Design Metrics: CPI and Cycle Time
	Example
	Summary: Evaluating Instruction Sets and Implementation
	Amdahl's “Law”:  Make the Common Case Fast
	Marketing Metrics
	Summary
	Critical Path
	Range of Design Styles
	Implementation as Combinational Logic + Latch
	Clocking Methodology
	Critical Path & Cycle Time
	Tricks to Reduce Cycle Time
	Summary

