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Today’s Lecture

Performance Concepts
e Response Time
e Throughput

Performance Evaluation
e Benchmarks

Announcements

Processor Design Metrics

e Cycle Time
e Cycles per Instruction

Amdahl’s Law
e Speedup what is important

Critical Path
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Performance Perspectives

Purchasing perspective
e Given a collection of machines, which has the
- Best performance ?
- Least cost ?
- Best performance / cost ?

Design perspective
e Faced with design options, which has the
- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require
e basis for comparison
e metric for evaluation

Our goal: understand cost & performance
implications of architectural choices
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Two Notions of “Performance™

Throughput
(pmph)

Plane DC to Paris  Speed Passengers

LA WY 6.5 hours 286,700

Concorde 3 hours | 1350 mph 132 178,200

Which has higher performance?

Execution time (response time, latency, ...)
e Time to do a task

Throughput (bandwidth, ...)
e Tasks per unit of time

Response time and throughput often are in opposition
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Definitions

Performance is typically in units-per-second
e bigger is better

If we are primarily concerned with response time

e performance = 1
execution_time

"X 1s n times faster than Y' means

ExecutionTime, Performance. ,
ExecutionTime.  Performance,
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Example

- Time of Concorde vs. Boeing 747?
» Concord is 1350 mph / 610 mph = 2.2 times faster
= 6.5 hours / 3 hours

 Throughput of Concorde vs. Boeing 747 ?
» Concord is 178,200 pmph / 286,700 pmph = 0.62 "fimes faster”
* Boeing is 286,700 pmph / 178,200 pmph = 1.60 "times faster”

* Boeing is 1.6 times ("60%") faster in terms of throughput
* Concord is 2.2 times ("120%") faster in terms of flying time

We will focus primarily on execution time for a single job
Lots of instructions in a program => Instruction thruput important!
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Evaluation Tools

Benchmarks, traces and mixes e —— _—
« Macrobenchmarks and suites A o
. STORE 10%
e Microbenchmarks o
LD 5EA3 ALU 1%

e Traces ST 31FF

LD 1EA2

Workloads

Simulation at many levels
e |SA, microarchitecture, RTL, gate circuit
» Trade fidelity for simulation rate (Levels of abstraction)

Other metrics
e Area, clock frequency, power, cost, ...

Analysis
e Queuing theory, back-of-the-envelope = _.O»
e Rules of thumb, basic laws and principles
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Benchmarks

Microbenchmarks
e Measure one performance dimension Perf. Dimensions

Cache bandwidth

Memory bandwidth Macro

Procedure call overhead

FP performance

e Insight into the underlying performance factors
e Not a good predictor of application performance

Applications
Micro

Macrobenchmarks
e Application execution time
- Measures overall performance, but on just one application
- Need application suite
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Why Do Benchmarks?

How we evaluate differences
e Different systems
e Changes to a single system

Provide a target

e Benchmarks should represent large class of important
programs

e Improving benchmark performance should help many
programs

For better or worse, benchmarks shape a field

Good ones accelerate progress
e good target for development

Bad benchmarks hurt progress
» help real programs v. sell machines/papers?
e |[nventions that help real programs don’t help benchmark
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Popular Benchmark Suites

Desktop
e SPEC CPU2000 - CPU intensive, integer & floating-point applications
e SPECviewperf, SPECapc - Graphics benchmarks
e SysMark, Winstone, Winbench

Embedded
e EEMBC - Collection of kernels from 6 application areas
e Dhrystone - Old synthetic benchmark

Servers
e SPECweb, SPECTs
e TPC-C - Transaction processing system
e TPC-H, TPC-R - Decision support system
e TPC-W - Transactional web benchmark

Parallel Computers
e SPLASH - Scientific applications & kernels

Most markets have specific benchmarks

for design and marketing.
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SPEC CINT2000

600 250
d SPECbase CINT2000 1225
00 7o g N —- SPEC CINT2000 900
performance/cost
175
400 [
150
SPECbase 300 b 125 SPEC CINTZOC_)O
CINT2000 per $1000 in price
100
200 [ 75
50
100
25
0 0
Compagq Dell Dell HP Sun IBM Sun
Presario  Precision  Precision Workstation Sunblade RS6000 Sunblade
7000 530 420 €3600 1000/1750  44P/170 100

© 2003 Elsevier Science (USA). All rights reserved.
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— Performance (transactions per minute)

Dell
PowerEdge
6400

IBM Compaq HP NEC
xSeries Proliant NetServer LH Express
250 c/s ML570 6000 5800/180

6/700 2

© 2003 Elsevier Science (USA). All rights reserved.
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Basis of Evaluation

Pros Cons
- very specific
* representative * non-portable
Actual Target Workload - difficult to run, or
measure
* hard to identify cause
» portable
) W'dely used - less representative
* Improvements Full Application Benchmarks
useful in reality

- easy to run, early Small “Kernel" » easy to “fool”

in design cycle Benchmarks

- identify peak * "peak” may be a long
capability and Microbenchmarks way from application
potential performance

bottlenecks
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Programs to Evaluate Processor Performance

(Toy) Benchmarks
e 10-100 line
e e.g.,: sieve, puzzle, quicksort

Synthetic Benchmarks

e attempt to match average frequencies of real
workloads

e e.g., Whetstone, dhrystone

Kernels
e Time critical excerpts
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Announcements

Website http://www.ece.northwestern.edu/~ada829/ece361

Next lecture
e |nstruction Set Architecture

EECS 361 2-17


http://www.ece.northwestern.edu/~ada829/ece361

Processor Design Metrics
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Metrics of Performance

Seconds per program
Application —

: Useful Operations per second
Programming

Language
Compiler

(millions) of Instructions per second - MIPS
[(TsA] (millions) of (F.P.) operations per second - MFLOP/s

Datapath

Control — Megabytes per second

Function Units

Transistors Wires Pins — Cycles per second (clock rate)
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Organizational Trade-offs

Application

Programming
Language

Compiler

Lisad InstrLAction Mix
Datapath
Control CPI
Function Units !
Transistors Wires Pins —— CycleTime

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the
program measured
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Processor Cycles

Clock

|

: Combination Logic

D

| Cycle

v

l .
o

-é-

Most contemporary computers have fixed,
repeating clock cycles
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CPU Performance

Seconds _ Cycles  Seconds

CPUtime = =
Program Program Cycle
_ Instructions  Cycles  Seconds
Program  Instruction Cycle
IC CPI Clock Cycle
Program \
Compiler \ (V)

Instruction Set

.\IIII

Organization

.\1:!I

Technology
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Cycles Per Instruction (Throughput)

"Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x znj CPI; x I,

j=1

"Instruction Frequency”

n I
CPI = Y.CPI x F here F, = j
jZ=:1 %0 WHEre Ti = Instruction Count
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Principal Design Metrics: CPl and Cycle Time

1
Performance = : _
ExecutionTime
1
Performance =

CPI xCycleTime

1 _ Instructions

Cycles Seconds ~ Seconds

Instruction  Cycle

Performance =
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Example

Op
ALU
Load
Store
Branch

Typical Mix
Freé Cycles CPI
50% 1 .5
20% 5 1.0
10% 3 .3
20% 2 4
2.2

How much faster would the machine be if a better data cache reduced the

average load time to 2 cycles?

e Load = 20% x 2 cycles = .4
e Total CPI 2.2 > 1.6
e Relative performanceis2.2/ 1.6 =1.38

How does this compare with reducing the branch instruction to 1 cycle?
e Branch - 20% x 1 cycle = .2

e Total CPI 2.2 > 2.0
e Relative performanceis2.2/2.0=1.1
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Summary: Evaluating Instruction Sets and Implementation

Design-time metrics:
e Can it be implemented, in how long, at what cost?
e Can it be programmed? Ease of compilation?

Static Metrics:
e How many bytes does the program occupy in memory?

Dynamic Metrics:
e How many instructions are executed?
e How many bytes does the processor fetch to execute the program?
e How many clocks are required per instruction?

e How "lean" a clock is practical? CPL

Best Metric:
Time to execute the program!

NOTE: Depends on instructions set, processor

organization, and compilation techniques. Inst. Count Cycle Time
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Amdahl's “Law’’: Make the Common Case Fast

Speedup due to enhancement E:

ExTime w/0 E Performance w/ E
Speedup(E) = -----------------——- =

ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

Performance improvement
is limited by how much the
improved feature is used >
Invest resources where

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

time is spent.
Spoedi _ ExecTime ,, _ 1
P puvemH ExecTime Fraction
- enhanced — ]
new + (1 Fracnonenhanced)

Sp eedup enhanced
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Marketing Metrics

MIPS = |nstruction Count / Time * 1076
= Clock Rate / CPI * 1076

e machines with different instruction sets ?
e programs with different instruction mixes ?
e dynamic frequency of instructions

e uncorrelated with performance

MFLOP/s= FP Operations / Time * 106
e machine dependent
e often not where time is spent
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Summary

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

Time is the measure of computer performance!

Good products created when have:
e Good benchmarks
e Good ways to summarize performance

If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales - sales
almost always wins

Remember Amdahl’s Law: Speedup is limited by unimproved part of program
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Critical Path
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Range of Design Styles

Custom Design

Standard Cell

Gate Array/FPGA/CPLD

Gates Gates
ﬂé Custom
o
= ALU Routing Channel
E Standard
§ ALU Gates
S
+‘§, Custom Standard Registers Routing Channel
> Register File

Gates
Performance

Design Complexity (Design Time)

Compact

EECS 361
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Implementation as Combinational Logic + Latch

Clock

"Moore Machine"

"Mealey Machine”
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Clocking Methodoloqy

Clock Il l

N P 2

Combination Logic

|

D e D

\ 4

l.

All storage elements are clocked by the same clock edge (but there may be
clock skews)

The combination logic block’s:
e |nputs are updated at each clock tick
e All outputs MUST be stable before the next clock tick
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Critical Path & Cycle Time
Clock Il l

\ 4

91% mp. 'l%;

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path
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Tricks to Reduce Cycle Time

Reduce the number of gate levels

A
B

-

C

Beps

= Pay attention to loading

* One gate driving many gates is a bad idea

- Avoid using a small gate to drive a long wire

= Use multiple stages to drive large load

= Revise design

EECS 361
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Summary

Performance Concepts
e Response Time
e Throughput

Performance Evaluation
e Benchmarks

Processor Design Metrics
e Cycle Time
e Cycles per Instruction

Amdahl’s Law
e Speedup what is important

Critical Path
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