
EECS 361
Computer Architecture

Lecture 3 – Instruction Set Architecture

3-1EECS 361

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

TodayToday’’s Lectures Lecture

3-2EECS 361

Quick Review of Last Week

Classification of Instruction Set Architectures

Instruction Set Architecture Design Decisions
• Operands

Annoucements
• Operations
• Memory Addressing
• Instruction Formats

Instruction Sequencing

Language and Compiler Driven Decisions

Summary of Lecture 2

3-3EECS 361

Two Notions of Two Notions of ““PerformancePerformance””

3-4EECS 361

Which has higher performance?
Execution time (response time, latency, …)

• Time to do a task

Throughput (bandwidth, …)
• Tasks per unit of time

Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

DefinitionsDefinitions

3-5EECS 361

Performance is typically in units-per-second
• bigger is better

If we are primarily concerned with response time
• performance = 1

execution_time

" X is n times faster than Y" means

n
ePerformanc
ePerformanc

imeExecutionT
imeExecutionT

y

x

x

y
==

Organizational TradeOrganizational Trade--offsoffs

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the
program measured

3-6EECS 361

Principal Design Metrics: CPI and Cycle TimePrincipal Design Metrics: CPI and Cycle Time

Seconds
nsInstructio

Cycle
Seconds

nInstructio
CyclesePerformanc

CycleTimeCPI
ePerformanc

imeExecutionT
ePerformanc

=
×

=

×
=

=

1

1

1

3-7EECS 361

Amdahl's Amdahl's ““LawLaw””: Make the Common Case Fast: Make the Common Case Fast

Speedup due to enhancement E:

ExTime w/o E Performance w/ E

Speedup(E) = -------------------- = ---------------------

ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)

Performance improvement
is limited by how much the
improved feature is used
Invest resources where
time is spent.

3-8EECS 361

Classification of Instruction Set
Architectures

3-9EECS 361

Instruction Set DesignInstruction Set Design

instruction set

software

hardware

Multiple Implementations: 8086 Pentium 4

ISAs evolve: MIPS-I, MIPS-II, MIPS-II, MIPS-IV,
MIPS,MDMX, MIPS-32, MIPS-64

3-10EECS 361

Typical Processor Execution CycleTypical Processor Execution Cycle

3-11EECS 361

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in register or storage for later use

Determine successor instruction

Instruction and Data Memory: Unified or SeparateInstruction and Data Memory: Unified or Separate

3-12EECS 361

CPU
Memory

I/O

Computer
Program
(Instructions)ADD

SUBTRACT
AND
OR
COMPARE
.
.
.

01010
01110
10011
10001
11010
.
.
.

Programmer's View

Computer's View

Harvard Architecture
--- Data & Instructions in

separate memories

--- Has advantages in certain
high performance
implementations

--- Can optimize each memory

Princeton (Von Neumann) Architecture
--- Data and Instructions mixed in same

unified memory

--- Program as data

--- Storage utilization

--- Single memory interface

Basic Addressing ClassesBasic Addressing Classes

Declining cost of registers

3-13EECS 361

Stack ArchitecturesStack Architectures

3-14EECS 361

Accumulator ArchitecturesAccumulator Architectures

3-15EECS 361

RegisterRegister--Set ArchitecturesSet Architectures

3-16EECS 361

RegisterRegister--toto--Register: LoadRegister: Load--Store ArchitecturesStore Architectures

3-17EECS 361

RegisterRegister--toto--Memory ArchitecturesMemory Architectures

3-18EECS 361

MemoryMemory--toto--Memory ArchitecturesMemory Architectures

3-19EECS 361

Instruction Set Architecture Design
Decisions

3-20EECS 361

Basic Issues in Instruction Set DesignBasic Issues in Instruction Set Design

3-21EECS 361

What data types are supported. What size.

What operations (and how many) should be provided
• LD/ST/INC/BRN sufficient to encode any computation, or just Sub and Branch!
• But not useful because programs too long!

How (and how many) operands are specified

Most operations are dyadic (eg, A <- B + C)
• Some are monadic (eg, A <- ~B)

Location of operands and result
• where other than memory?
• how many explicit operands?
• how are memory operands located?
• which can or cannot be in memory?
• How are they addressed

How to encode these into consistent instruction formats
• Instructions should be multiples of basic data/address widths
• Encoding

Typical instruction set:

•32 bit word
•basic operand addresses are 32 bits
long
•basic operands, like integers, are 32
bits long
•in general case, instruction could
reference 3 operands (A := B + C)

Typical challenge:

•encode operations in a small number
of bits

Driven by static measurement and dynamic
tracing of selected benchmarks and workloads.

Operands

3-22EECS 361

Comparing Number of InstructionsComparing Number of Instructions

Code sequence for (C = A + B) for four classes of instruction
sets:

Register
(load-store)

3-23EECS 361

Register
(register-memory)

Load R1,A
Add R1,B
Store C, R1

Stack Accumulator

Push A Load A Load R1,A
Push B Add B Load R2,B
Add Store C Add R3,R1,R2
Pop C Store C,R3

Cycle
Seconds

nInstructio
CyclesnsInstructio

ePerformanc
imeExecutionT ××==

1

Examples of Register UsageExamples of Register Usage

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

Examples

0 3 SPARC, MIPS, Precision Architecture, Power PC

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has 3-operand formats)

3 3 VAX (also has 2-operand formats)

3-24EECS 361

General Purpose Registers DominateGeneral Purpose Registers Dominate

3-25EECS 361

1975-2002 all machines use general purpose registers

Advantages of registers
• Registers are faster than memory
• Registers compiler technology has evolved to efficiently generate code

for register files
- E.g., (A*B) – (C*D) – (E*F) can do multiplies in any order

vs. stack
• Registers can hold variables

- Memory traffic is reduced, so program is sped up
(since registers are faster than memory)

• Code density improves (since register named with fewer
bits than memory location)

• Registers imply operand locality

Operand Size UsageOperand Size Usage

3-26EECS 361

Frequency of reference by size

0% 20% 40% 60% 80%

Byte

Halfword

Word

Doubleword

0%

0%

31%

69%

7%

19%

74%

0%

Int Avg.

FP Avg.

• Support for these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

AnnouncementsAnnouncements

Next lecture
• MIPS Instruction Set

3-27EECS 361

Operations

3-28EECS 361

3-29EECS 361

Typical Operations (little change since 1960)Typical Operations (little change since 1960)

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

Top 10 80x86 InstructionsTop 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency

3-30EECS 361

Memory Addressing

3-31EECS 361

Memory AddressingMemory Addressing

3-32EECS 361

Since 1980, almost every machine uses addresses to level
of 8-bits (byte)

Two questions for design of ISA:
• Since could read a 32-but word as four loads of bytes

from sequential byte address of as one load word from
a single byte address, how do byte addresses map onto
words?

• Can a word be placed on any byte boundary?

7 0
1019
1018
1017
1016
1015
1014
1013
1012
1011
1010 31 24 23 16 15 8 7 0
1009
1008
1007
1006
1005
1004
1003
1002
1001
1000

Mapping Word Data into a Byte Addressable Memory: Mapping Word Data into a Byte Addressable Memory:
EndianessEndianess

Little Endian: address of least significant byte = word
address (xx00 = Little End of word)

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Big Endian

Little Endian

Big Endian: address of most significant byte = word
address (xx00 = Big End of word)

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

3-33EECS 361

Mapping Word Data into a Byte Addressable Memory: Mapping Word Data into a Byte Addressable Memory:
AlignmentAlignment

0 1 2 3

Aligned

Not
Aligned

Alignment: require that objects fall on address that is multiple
of their size.

3-34EECS 361

Addressing ModesAddressing Modes

3-35EECS 361

Common Memory Addressing ModesCommon Memory Addressing Modes

3-36EECS 361

Measured on the VAX-11

Register operations account for 51% of all references

~75% - displacement and immediate

~85% - displacement, immediate and register indirect

Displacement Address SizeDisplacement Address Size

Average of 5 SPECint92 and 5 SPECfp92 programs

~1% of addresses > 16-bits

12 ~ 16 bits of displacement cover most usage (+ and -)

3-37EECS 361

Frequency of Frequency of Immediates Immediates (Instruction Literals)(Instruction Literals)

~25% of all loads and ALU operations use immediates

15~20% of all instructions use immediates

3-38EECS 361

Size of Size of ImmediatesImmediates

50% to 60% fit within 8 bits

75% to 80% fit within 16 bits

3-39EECS 361

Addressing SummaryAddressing Summary

Data Addressing modes that are important:
• Displacement, Immediate, Register Indirect

Displacement size should be 12 to 16 bits

Immediate size should be 8 to 16 bits

3-40EECS 361

Instruction Formats

3-41EECS 361

Instruction FormatInstruction Format

3-42EECS 361

Specify
• Operation / Data Type
• Operands

Stack and Accumulator architectures have implied operand addressing

If have many memory operands per instruction and/or many
addressing modes:

• Need one address specifier per operand

If have load-store machine with 1 address per instruction and one or
two addressing modes:

• Can encode addressing mode in the opcode

EncodingEncoding

…
…

3-43EECS 361

Variable:

Fixed:

Hybrid:

If code size is most important, use variable length instructions

If performance is most important, use fixed length instructions

Recent embedded machines (ARM, MIPS) added optional mode to execute subset of 16-
bit wide instructions (Thumb, MIPS16); per procedure decide performance or density

Some architectures actually exploring on-the-fly decompression for more density.

Operation SummaryOperation Summary

Support these simple instructions, since they
will dominate the number of instructions executed:

load,
store,
add,
subtract,
move register-register,
and,
shift,
compare equal, compare not equal,
branch,
jump,
call,
return;

3-44EECS 361

Example: MIPS Instruction Formats and Addressing ModesExample: MIPS Instruction Formats and Addressing Modes

• All instructions 32 bits wide

op

3-45EECS 361

Register (direct) rs rt rd

register

immedop rs rtImmediate

Base+index immedop rs rt

register +

Memory

PC-relative immedop rs rt

PC +

Memory

Instruction Set Design MetricsInstruction Set Design Metrics

Static Metrics
• How many bytes does the program occupy in memory?

Dynamic Metrics
• How many instructions are executed?
• How many bytes does the processor fetch to execute the

program?
• How many clocks are required per instruction?
• How "lean" a clock is practical? CPI

Instruction Count Cycle Time

Cycle
Seconds

nInstructio
CyclesnsInstructio

ePerformanc
imeExecutionT ××==

1

3-46EECS 361

Instruction Sequencing

3-47EECS 361

Instruction SequencingInstruction Sequencing

3-48EECS 361

The next instruction to be executed is typically implied
• Instructions execute sequentially
• Instruction sequencing increments a Program Counter

Sequencing flow is disrupted conditionally and unconditionally
• The ability of computers to test results and conditionally instructions is

one of the reasons computers have become so useful

Instruction 1

Instruction 2

Instruction 3

Instruction 1

Instruction 2

Conditional Branch

Instruction 4 Branch instructions are ~20% of all
instructions executed

Dynamic FrequencyDynamic Frequency

3-49EECS 361

Condition TestingCondition Testing

3-50EECS 361

° Condition Codes
Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or test
instructions.
ex: add r1, r2, r3

bz label

° Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label

Condition CodesCondition Codes
Setting CC as side effect can reduce the # of instructions

X: .
.
.

SUB r0, #1, r0
BRP X

X: .
.
.

SUB r0, #1, r0
CMP r0, #0
BRP X

vs.

But also has disadvantages:

--- not all instructions set the condition codes
which do and which do not often confusing!
e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
that tests it

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

3-51EECS 361

BranchesBranches
--- Conditional control transfers

Four basic conditions:
N -- negative
Z -- zero

V -- overflow
C -- carry

Sixteen combinations of the basic four conditions:
Always
Never
Not Equal
Equal
Greater
Less or Equal
Greater or Equal
Less
Greater Unsigned
Less or Equal Unsigned
Carry Clear
Carry Set
Positive
Negative
Overflow Clear
Overflow Set

Unconditional
NOP
~Z
Z
~[Z + (N + V)]
Z + (N + V)
~(N + V)
N + V
~(C + Z)
C + Z
~C
C
~N
N
~V
V

3-52EECS 361

Conditional Branch DistanceConditional Branch Distance

PC-relative (+-)

25% of integer branches are 2 to 4 instructions

At least 8 bits suggested (± 128 instructions)

3-53EECS 361

Language and Compiler Driven
Facilities

3-54EECS 361

Calls: Why Are Stacks So Great?Calls: Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
(e.g., VAX)

Sometimes stacks are implemented via software convention
(e.g., MIPS)

3-55EECS 361

Memory StacksMemory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

0 Little

3-56EECS 361

a
b
c

inf. BigNext
Empty?

Memory
Addresses

grows
up

grows
down

SP
Last
Full?

inf. Big0 Little
How is empty stack represented?

Little --> Big/Next Empty

POP: Decrement SP
Read from Mem(SP)

PUSH: Write to Mem(SP)
Increment SP

Little --> Big/Last Full

POP: Read from Mem(SP)
Decrement SP

PUSH: Increment SP
Write to Mem(SP)

CallCall--Return Linkage: Stack FramesReturn Linkage: Stack Frames
High Mem

3-57EECS 361

FP

ARGS

Callee Save
Registers

Local Variables

Reference args and
local variables at
fixed (positive) offset
from FP

(old FP, RA)

Grows and shrinks during
expression evaluation

SP
Low Mem

Many variations on stacks possible (up/down, last pushed /next)

Compilers normally keep scalar variables in registers, not memory!

Compilers and Instruction Set ArchitecturesCompilers and Instruction Set Architectures

3-58EECS 361

Ease of compilation
• Orthogonality: no special registers, few special cases, all operand

modes available with any data type or instruction type
• Completeness: support for a wide range of operations and target

applications
• Regularity: no overloading for the meanings of instruction fields
• Streamlined: resource needs easily determined

Register Assignment is critical too
• Easier if lots of registers

Provide at least 16 general purpose registers plus
separate floating-point registers

Be sure all addressing modes apply to all data
transfer instructions

Aim for a minimalist instruction set

SummarySummary

3-59EECS 361

Quick Review of Last Week

Classification of Instruction Set Architectures

Instruction Set Architecture Design Decisions
• Operands
• Operations
• Memory Addressing
• Instruction Formats

Instruction Sequencing

Language and Compiler Driven Decisions

	EECS 361Computer ArchitectureLecture 3 – Instruction Set Architecture
	Today’s Lecture
	Summary of Lecture 2
	Two Notions of “Performance”
	Definitions
	Organizational Trade-offs
	Principal Design Metrics: CPI and Cycle Time
	Amdahl's “Law”: Make the Common Case Fast
	Classification of Instruction Set Architectures
	Instruction Set Design
	Typical Processor Execution Cycle
	Instruction and Data Memory: Unified or Separate
	Basic Addressing Classes
	Stack Architectures
	Accumulator Architectures
	Register-Set Architectures
	Register-to-Register: Load-Store Architectures
	Register-to-Memory Architectures
	Memory-to-Memory Architectures
	Instruction Set Architecture Design Decisions
	Basic Issues in Instruction Set Design
	Operands
	Comparing Number of Instructions
	Examples of Register Usage
	General Purpose Registers Dominate
	Operand Size Usage
	Announcements
	Operations
	Typical Operations (little change since 1960)
	Top 10 80x86 Instructions
	Memory Addressing
	Memory Addressing
	Mapping Word Data into a Byte Addressable Memory: Endianess
	Mapping Word Data into a Byte Addressable Memory: Alignment
	Addressing Modes
	Common Memory Addressing Modes
	Displacement Address Size
	Frequency of Immediates (Instruction Literals)
	Size of Immediates
	Addressing Summary
	Instruction Formats
	Instruction Format
	Encoding
	Operation Summary
	Example: MIPS Instruction Formats and Addressing Modes
	Instruction Set Design Metrics
	Instruction Sequencing
	Instruction Sequencing
	Dynamic Frequency
	Condition Testing
	Condition Codes
	Branches
	Conditional Branch Distance
	Language and Compiler Driven Facilities
	Calls: Why Are Stacks So Great?
	Memory Stacks
	Call-Return Linkage: Stack Frames
	Compilers and Instruction Set Architectures
	Summary

