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TodayToday’’s Lectures Lecture
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Quick Review of Last Week

Classification of Instruction Set Architectures

Instruction Set Architecture Design Decisions
• Operands

Annoucements
• Operations
• Memory Addressing
• Instruction Formats

Instruction Sequencing

Language and Compiler Driven Decisions



Summary of Lecture 2
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Two Notions of Two Notions of ““PerformancePerformance””
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Which has higher performance?
Execution time (response time, latency, …)

• Time to do a task

Throughput (bandwidth, …)
• Tasks per unit of time

Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput 
(pmph)

286,700

178,200



DefinitionsDefinitions
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Performance is typically in units-per-second
• bigger is better

If we are primarily concerned with response time
• performance =   1               

execution_time

" X is n times faster than Y"  means

n
ePerformanc
ePerformanc

imeExecutionT
imeExecutionT

y

x

x

y
==



Organizational TradeOrganizational Trade--offsoffs

Compiler

Programming 
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI is a useful design measure relating the 
Instruction Set Architecture with the 
Implementation of that architecture, and the 
program measured

3-6EECS 361



Principal Design Metrics: CPI and Cycle TimePrincipal Design Metrics: CPI and Cycle Time

Seconds
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Cycle
Seconds
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Amdahl's Amdahl's ““LawLaw””:  Make the Common Case Fast:  Make the Common Case Fast

Speedup  due to enhancement E:

ExTime w/o E            Performance w/ E

Speedup(E) =   -------------------- =      ---------------------

ExTime w/  E              Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E)  = ((1-F) + F/S) X ExTime(without E) 

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E) 

Performance improvement 
is limited by how much the 
improved feature is used 
Invest resources where 
time is spent.
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Classification of Instruction Set 
Architectures
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Instruction Set DesignInstruction Set Design

instruction set

software

hardware

Multiple Implementations:  8086 Pentium 4

ISAs evolve:  MIPS-I, MIPS-II, MIPS-II, MIPS-IV, 
MIPS,MDMX, MIPS-32, MIPS-64
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Typical Processor Execution CycleTypical Processor Execution Cycle
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Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in register or storage for later use

Determine successor instruction



Instruction and Data Memory: Unified or SeparateInstruction and Data Memory: Unified or Separate
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CPU
Memory

I/O

Computer
Program
(Instructions)ADD

SUBTRACT
AND
OR
COMPARE
.
.
.

01010
01110
10011
10001
11010
.
.
.

Programmer's View

Computer's View

Harvard Architecture
--- Data & Instructions in

separate memories

--- Has advantages in certain
high performance
implementations

--- Can optimize each memory

Princeton (Von Neumann) Architecture
--- Data and Instructions mixed in same

unified memory

--- Program as data

--- Storage utilization

--- Single memory interface



Basic Addressing ClassesBasic Addressing Classes

Declining cost of registers
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Stack ArchitecturesStack Architectures
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Accumulator ArchitecturesAccumulator Architectures
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RegisterRegister--Set ArchitecturesSet Architectures
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RegisterRegister--toto--Register:  LoadRegister:  Load--Store ArchitecturesStore Architectures
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RegisterRegister--toto--Memory ArchitecturesMemory Architectures
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MemoryMemory--toto--Memory ArchitecturesMemory Architectures
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Instruction Set Architecture Design 
Decisions

3-20EECS 361



Basic Issues in Instruction Set DesignBasic Issues in Instruction Set Design
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What data types are supported.  What size.

What operations (and how many) should be provided
• LD/ST/INC/BRN sufficient to encode any computation, or just Sub and Branch!
• But not useful because programs too long!

How (and how many) operands are specified

Most operations are dyadic (eg,  A <- B + C)
• Some are monadic  (eg, A <- ~B)

Location of operands and result
• where other than memory?
• how many explicit operands?
• how are memory operands located?
• which can or cannot be in memory?
• How are they addressed

How to encode these into consistent instruction formats
• Instructions should be multiples of basic data/address widths
• Encoding

Typical instruction set:

•32 bit word
•basic operand addresses are 32 bits 
long
•basic operands, like integers, are 32 
bits long
•in general case, instruction could 
reference 3 operands (A := B + C)

Typical challenge:

•encode operations in a small number 
of bits

Driven by static measurement and dynamic 
tracing of selected benchmarks and workloads.



Operands
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Comparing Number of InstructionsComparing Number of Instructions

Code sequence for (C = A + B) for four classes of instruction 
sets:

Register 
(load-store)
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Register 
(register-memory)

Load  R1,A
Add   R1,B
Store C, R1

Stack Accumulator

Push A Load  A Load  R1,A
Push B Add   B Load  R2,B
Add Store C Add   R3,R1,R2
Pop  C Store C,R3

Cycle
Seconds

nInstructio
CyclesnsInstructio

ePerformanc
imeExecutionT ××==

1



Examples of Register UsageExamples of Register Usage

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

Examples

0 3 SPARC, MIPS, Precision Architecture, Power PC

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has 3-operand formats)

3 3 VAX (also has 2-operand formats)
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General Purpose Registers DominateGeneral Purpose Registers Dominate
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1975-2002 all machines use general purpose registers

Advantages of registers
• Registers are faster than memory
• Registers compiler technology has evolved to efficiently generate code 

for register files
- E.g., (A*B) – (C*D) – (E*F) can do multiplies in any order 

vs. stack
• Registers can hold variables

- Memory traffic is reduced, so program is sped up 
(since registers are faster than memory)

• Code density improves (since register named with fewer 
bits than memory location)

• Registers imply operand locality



Operand Size UsageOperand Size Usage

3-26EECS 361

Frequency of reference by size   

0% 20% 40% 60% 80%

Byte

Halfword

Word

Doubleword

0%

0%

31%

69%

7%

19%

74%

0%

Int Avg.

FP Avg.

• Support for these data sizes and types: 
8-bit, 16-bit, 32-bit integers and 
32-bit and 64-bit IEEE 754 floating point numbers



AnnouncementsAnnouncements

Next lecture
• MIPS Instruction Set
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Operations
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Typical Operations (little change since 1960)Typical Operations (little change since 1960)

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)



Top 10 80x86 InstructionsTop 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency
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Memory Addressing
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Memory AddressingMemory Addressing
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Since 1980, almost every machine uses addresses to level 
of 8-bits (byte)

Two questions for design of ISA:
• Since could read a 32-but word as four loads of bytes 

from sequential byte address of as one load word from 
a single byte address, how do byte addresses map onto 
words?

• Can a word be placed on any byte boundary?



7        0
1019
1018
1017
1016
1015
1014
1013
1012
1011
1010 31     24 23     16 15      8 7        0
1009
1008
1007
1006
1005
1004
1003
1002
1001
1000

Mapping Word Data into a Byte Addressable Memory: Mapping Word Data into a Byte Addressable Memory: 
EndianessEndianess

Little Endian: address of least significant byte = word 
address (xx00 = Little End of word)

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Big Endian

Little Endian

Big Endian: address of most significant byte = word 
address (xx00 = Big End of word)

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
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Mapping Word Data into a Byte Addressable Memory: Mapping Word Data into a Byte Addressable Memory: 
AlignmentAlignment

0      1      2      3

Aligned

Not
Aligned

Alignment: require that objects fall on address that is multiple
of their size.
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Addressing ModesAddressing Modes
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Common Memory Addressing ModesCommon Memory Addressing Modes
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Measured on the VAX-11

Register operations account for 51% of all references

~75% - displacement and immediate

~85% - displacement, immediate and register indirect



Displacement Address SizeDisplacement Address Size

Average of 5 SPECint92 and 5 SPECfp92 programs

~1% of addresses > 16-bits

12 ~ 16 bits of displacement cover most usage (+ and -)
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Frequency of Frequency of Immediates Immediates (Instruction Literals)(Instruction Literals)

~25% of all loads and ALU operations use immediates

15~20% of all instructions use immediates

3-38EECS 361



Size of Size of ImmediatesImmediates

50% to 60% fit within 8 bits

75% to 80% fit within 16 bits
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Addressing SummaryAddressing Summary

Data Addressing modes that are important:
• Displacement, Immediate, Register Indirect

Displacement size should be 12 to 16 bits

Immediate size should be 8 to 16 bits
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Instruction Formats
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Instruction FormatInstruction Format
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Specify
• Operation / Data Type
• Operands

Stack and Accumulator architectures have implied operand addressing

If have many memory operands per instruction and/or many 
addressing modes:

• Need one address specifier per operand

If have load-store machine with 1 address per instruction and one or 
two addressing modes:

• Can encode addressing mode in the opcode



EncodingEncoding

…
…
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Variable:

Fixed:

Hybrid:

If code size is most important, use variable length instructions

If performance is most important, use fixed length instructions

Recent embedded machines (ARM, MIPS) added optional mode to execute subset of 16-
bit wide instructions (Thumb, MIPS16); per procedure decide performance or density

Some architectures actually exploring on-the-fly decompression for more density.



Operation SummaryOperation Summary

Support these simple instructions, since they 
will dominate the number of instructions executed: 

load, 
store, 
add, 
subtract, 
move register-register, 
and, 
shift,  
compare equal, compare not equal, 
branch, 
jump, 
call, 
return;
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Example: MIPS Instruction Formats and Addressing ModesExample: MIPS Instruction Formats and Addressing Modes

• All instructions 32 bits wide

op
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Register (direct) rs rt rd

register

immedop rs rtImmediate

Base+index immedop rs rt

register +

Memory

PC-relative immedop rs rt

PC +

Memory



Instruction Set Design MetricsInstruction Set Design Metrics

Static Metrics
• How many bytes does the program occupy in memory?

Dynamic Metrics
• How many instructions are executed?
• How many bytes does the processor fetch to execute the 

program?
• How many clocks are required per instruction?
• How "lean" a clock is practical? CPI

Instruction Count Cycle Time

Cycle
Seconds

nInstructio
CyclesnsInstructio

ePerformanc
imeExecutionT ××==

1
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Instruction Sequencing
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Instruction SequencingInstruction Sequencing
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The next instruction to be executed is typically implied
• Instructions execute sequentially
• Instruction sequencing increments a Program Counter

Sequencing flow is disrupted conditionally and unconditionally
• The ability of computers to test results and conditionally instructions is 

one of the reasons computers have become so useful

Instruction 1

Instruction 2

Instruction 3

Instruction 1

Instruction 2

Conditional Branch

Instruction 4 Branch instructions are ~20% of all 
instructions executed



Dynamic FrequencyDynamic Frequency
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Condition TestingCondition Testing
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° Condition Codes
Processor status bits are set as a side-effect of arithmetic 
instructions (possibly on Moves) or explicitly  by compare or test  
instructions.
ex: add r1, r2, r3

bz label

° Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label



Condition CodesCondition Codes
Setting CC as side effect can reduce the # of instructions

X:      .
.
.

SUB  r0, #1, r0
BRP  X

X:      .
.
.

SUB  r0, #1, r0
CMP  r0, #0
BRP  X

vs.

But also has disadvantages:

--- not all instructions set the condition codes
which do and which do not often confusing!
e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
that tests it

ifetch read compute write

ifetch read compute write

New CC computedOld CC read
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BranchesBranches
--- Conditional control transfers

Four basic conditions:
N  -- negative
Z  -- zero

V  -- overflow
C  -- carry

Sixteen combinations of the basic four conditions:
Always
Never
Not Equal
Equal
Greater
Less or Equal
Greater or Equal
Less
Greater Unsigned
Less or Equal Unsigned
Carry Clear
Carry Set
Positive
Negative
Overflow Clear
Overflow Set

Unconditional
NOP
~Z
Z
~[Z + (N + V)]
Z + (N + V)
~(N + V)
N + V
~(C + Z)
C + Z
~C
C
~N
N
~V
V
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Conditional Branch DistanceConditional Branch Distance

PC-relative (+-)

25% of integer branches are 2 to 4  instructions

At least 8 bits suggested  (± 128 instructions)
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Language and Compiler Driven 
Facilities
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Calls: Why Are Stacks So Great?Calls: Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A:  
CALL B

CALL C

C:  
RET

RET

B:  

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
(e.g., VAX)

Sometimes stacks are implemented via software convention 
(e.g., MIPS)
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Memory StacksMemory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

0  Little
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a
b
c

inf.  BigNext
Empty?

Memory
Addresses

grows
up

grows
down

SP
Last
Full?

inf.  Big0  Little
How is empty stack represented?

Little --> Big/Next Empty

POP:      Decrement SP
Read from Mem(SP)

PUSH:    Write to Mem(SP)
Increment SP

Little --> Big/Last Full

POP:      Read from Mem(SP)
Decrement SP

PUSH:    Increment SP
Write to Mem(SP)



CallCall--Return Linkage: Stack FramesReturn Linkage: Stack Frames
High Mem
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FP

ARGS

Callee Save
Registers

Local Variables

Reference args and
local variables at
fixed (positive) offset
from FP

(old FP,  RA)

Grows and shrinks during
expression evaluation

SP
Low Mem

Many variations on stacks possible (up/down, last pushed /next )

Compilers normally keep scalar variables in registers, not memory!



Compilers and Instruction Set ArchitecturesCompilers and Instruction Set Architectures
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Ease of compilation
• Orthogonality:  no special registers, few special cases, all operand 

modes available with any data type or instruction type
• Completeness:  support for a wide range of operations and target

applications
• Regularity:  no overloading for the meanings of instruction fields
• Streamlined:  resource needs easily determined

Register Assignment is critical too
• Easier if lots of registers

Provide at least 16 general purpose registers plus 
separate floating-point registers

Be sure all addressing modes apply to all data 
transfer instructions

Aim for a minimalist instruction set



SummarySummary

3-59EECS 361

Quick Review of Last Week

Classification of Instruction Set Architectures

Instruction Set Architecture Design Decisions
• Operands
• Operations
• Memory Addressing
• Instruction Formats

Instruction Sequencing

Language and Compiler Driven Decisions
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