
Computer Architecture

EECS 361
Lecture 5: The Design Process & ALU Design
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Quick Review of Last Lecture
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MIPS ISA Design Objectives and Implications

361  design.3

°Support general OS and C-
style language needs

°Support general and 
embedded applications

°Use dynamic workload 
characteristics from general 
purpose program traces 
and SPECint to guide 
design decisions

°Implement processsor core 
with a relatively small 
number of gates

°Emphasize performance 
via fast clock

Traditional data 
types, common 
operations, typical 
addressing modes

RISC-style: 
Register-Register / 
Load-Store



MIPS jump, branch, compare instructions
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° Instruction Example Meaning

° branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

° branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100
Not equal test; PC relative 

° set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp. 

° set less than imm.slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

° set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natural numbers

° set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; natural numbers

° jump j 10000 go to 10000
Jump to target address

° jump register jr $31 go to $31
For switch, procedure return

° jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure call



Example: MIPS Instruction Formats and Addressing Modes

• All instructions 32 bits wide

op
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6            5        5           5            11
Register (direct) rs rt rd

register

immedop rs rtImmediate

Base+index immedop rs rt

register +

Memory

PC-relative immedop rs rt

PC +

Memory



MIPS Instruction Formats
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MIPS Operation Overview
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° Arithmetic logical

° Add,  AddU,  AddI, ADDIU, Sub, SubU

° And,  AndI, Or,  OrI

° SLT, SLTI, SLTU, SLTIU

° SLL, SRL

° Memory Access

° LW, LB, LBU

° SW, SB



Branch & Pipelines

Time
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execute

Branch

Delay Slot

Branch Target

ifetch execute

ifetch execute

ifetch execute
LL: slt r1, r3, r5

li r3, #7

sub r4, r4, 1

bz r4, LL

addi r5, r3, 1

ifetch execute

By the end of Branch instruction, the CPU knows whether or not 
the branch will take place.  

However, it will have fetched the next instruction by then, 
regardless of whether or not a branch will be taken.

Why not execute it?
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The next Destination
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Begin ALU design using MIPS ISA.  



Outline of Today’s Lecture

° An Overview of the Design Process

° Illustration using ALU design

° Refinements
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The Design Process

"To Design Is To Represent"
Design activity yields description/representation of an object

-- Traditional craftsman does not distinguish between the 
conceptualization and the artifact

-- Separation comes about because of complexity

-- The concept is captured in one or more representation languages

-- This process IS design

Design Begins With Requirements

-- Functional Capabilities: what it will do

-- Performance Characteristics:  Speed, Power, Area, Cost, . . .
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Design Process

Design Finishes As Assembly

-- Design understood in terms of
components and how they have
been assembled

-- Top Down decomposition of
complex functions (behaviors)
into more primitive functions

-- bottom-up composition of primitive
building blocks into more complex assemblies

CPU

Datapath Control

ALU Regs Shifter

Nand
Gate

Design is a "creative process,"  not a simple method
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Design Refinement
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Informal System Requirement

Initial Specification

Intermediate Specification

Final Architectural Description

Intermediate Specification of Implementation

Final Internal Specification

Physical Implementation

refinement
increasing level of detail



Design as Search 

Problem A

Strategy 1 Strategy 2

SubProb 1 SubProb2 SubProb3

BB1 BB2 BB3 BBn

Design involves educated guesses and verification

-- Given the goals, how should these be prioritized?

-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
the best solution?

Feasible  (good) choices vs. Optimal choices
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Problem: Design a “fast” ALU for the MIPS ISA

° Requirements?

° Must support the Arithmetic / Logic operations

° Tradeoffs of cost and speed based on  frequency of occurrence, 
hardware budget
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MIPS ALU requirements
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° Add,  AddU,  Sub,   SubU, AddI, AddIU
• => 2’s complement adder/sub with overflow detection

° And,  Or, AndI, OrI, Xor, Xori, Nor
• => Logical AND, logical OR, XOR, nor

° SLTI, SLTIU (set less than)
• => 2’s complement adder with inverter, check sign bit of result



MIPS arithmetic instruction format

R-type:
31 25 20 15 5 0

op Rs Rt Rd funct

I-Type: op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx
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Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

00 50

00 51

SLT 00 52

SLTU 00 53

° Signed arith generate overflow, no carry



Design Trick: divide & conquer

° Break the problem into simpler problems, solve them and glue together 
the solution

° Example: assume the immediates have been taken care of before the 
ALU

• 10 operations (4 bits) 00 add

01 addU

02 sub

03 subU

04 and

05 or

06 xor

07 nor

12 slt

13 sltU
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Refined Requirements

(1) Functional Specification
inputs: 2 x 32-bit operands A, B, 4-bit mode (sort of control)
outputs: 32-bit result S, 1-bit carry, 1 bit overflow
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram          (CAD-TOOL symbol, VHDL entity)

ALUALU
A B

m
ovf

S

32 32

32

4
c
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Behavioral Representation: VHDL

Entity ALU is
generic (c_delay: integer := 20 ns;

S_delay: integer := 20 ns);

port ( signal A, B:  in  vlbit_vector (0 to 31);
signal    m:  in  vlbit_vector (0 to 3);
signal    S: out  vlbit_vector (0 to 31);
signal    c: out  vlbit;
signal  ovf: out  vlbit)

end ALU;

. . . 

S <= A + B;
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Design Decisions

° Simple bit-slice
• big combinational problem
• many little combinational problems
• partition into 2-step problem

° Bit slice with carry look-ahead

° . . .

ALU

bit slice

7-to-2 C/L 7 3-to-2 C/L

PLD Gates muxCL0 CL6
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Refined Diagram: bit-slice ALU

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0
m

cinco
s0

ALU0

a31 b31
m

cinco
s31
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7-to-2 Combinational Logic

° start turning the crank . . .

Function Inputs Outputs K-Map

M0 M1 M2 M3 A B Cin S Cout

add 0    0    0    0    0  0  0         0     00

127
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A One Bit ALU

° This 1-bit ALU will perform AND, OR, and ADD

A

B

1-bit
Full

Adder

CarryOut

CarryIn

M
ux Result
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A One-bit Full Adder

1-bit
Full

Adder

CarryOut

CarryIn

A

B
C° This is also called a (3, 2) adder

° Half Adder: No CarryIn nor CarryOut

° Truth Table:

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11
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Logic Equation for CarryOut

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

° CarryOut = (!A & B & CarryIn)  |  (A & !B & CarryIn)  |  (A & B & !CarryIn)
|   (A & B & CarryIn)

° CarryOut = B & CarryIn |  A & CarryIn |  A & B
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Logic Equation for Sum

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

° Sum =  (!A & !B & CarryIn)  |  (!A & B & !CarryIn)  |  (A & !B & !CarryIn)
|   (A & B & CarryIn)
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Logic Equation for Sum (continue)

° Sum =  (!A & !B & CarryIn)  |  (!A & B & !CarryIn)  |  (A & !B & !CarryIn)
|   (A & B & CarryIn)

° Sum = A  XOR  B  XOR  CarryIn

° Truth Table for XOR:

X Y X   XOR   Y

0 0 0
0 1 1
1 0 1
1 1 0
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Logic Diagrams for CarryOut and Sum

° CarryOut = B & CarryIn |  A & CarryIn |  A & B

° Sum = A  XOR  B  XOR  CarryIn

CarryIn

CarryOut

A

B

A
B

CarryIn

Sum
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Seven plus a MUX ?

° Design trick 2: take pieces you know (or can imagine) and try to put 
them together

° Design trick 3: solve part of the problem and extend
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A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select



A 4-bit ALU

° 1-bit ALU 4-bit ALU

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result
CarryIn2

A2

B2
1-bit
ALU

Result2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3
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How About Subtraction?

° Keep in mind the followings:
• (A - B) is the that as: A + (-B)
• 2’s Complement: Take the inverse of every bit and add 1

° Bit-wise inverse of B is !B:
• A + !B + 1 = A + (!B + 1) = A + (-B) = A - B

“A
L

U
”

4

4

4

A

!B

Result

Zero

CarryIn

CarryOut

4
B

4

0

1

2x1 M
ux

Sel

Subtract
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Additional operations

° A - B = A + (– B)
• form two complement by invert and add one

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select
invert

Set-less-than? – left as an exercise
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Revised Diagram

° LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cinco
s0

ALU0

a31 b31

cinco
s31

C/L to
produce
select,
comp,
c-in

?
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Overflow

Decimal
0

-1
-2
-3
-4
-5
-6
-7
-8
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Decimal
0
1
2
3
4
5
6
7

Binary
0000
0001
0010
0011
0100
0101
0110
0111

2’s Complement
0000
1111
1110
1101
1100
1011
1010
1001
1000

° Examples:  7  +  3  =  10   but ...

° - 4  - 5  =  - 9    but  ...

0 1 1 1

0 0 1 1+

1 0 1 0

1 110

1 1 0 0

1 0 1 1+

0 1 1 1

1

7 – 4
3 – 5

7– 6



Overflow Detection
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° Overflow: the result is too large (or too small) to represent properly
• Example: - 8 < = 4-bit binary number <= 7

° When adding operands with different signs, overflow cannot occur!

° Overflow occurs when adding:
• 2 positive numbers and the sum is negative
• 2 negative numbers and the sum is positive

° On your own: Prove you can detect overflow by:
• Carry into MSB ° Carry out of MSB

0 1 1 1

0 0 1 1+

1 0 1 0

1 1

1 1 0 0

1 0 1 1+

0 1 1 1

1 010

7 –4
– 53

– 6 7



Overflow Detection Logic

° Carry into MSB ° Carry out of MSB
• For a N-bit ALU: Overflow = CarryIn[N - 1]  XOR  CarryOut[N - 1]

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X   XOR   Y

0 0 0
0 1 1
1 0 1
1 1 0
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Zero Detection Logic

° Zero Detection Logic is just a one BIG NOR gate
• Any non-zero input to the NOR gate will cause its output to be zero

CarryIn0

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1
CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2
CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3
CarryIn3

CarryOut3

Zero
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More Revised Diagram

° LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cinco
s0

ALU0

a31 b31

cinco
s31

C/L to
produce
select,
comp,
c-in

signed-arith
and cin xor co
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But What about Performance?

° Critical Path of n-bit Rippled-carry adder is n*CP

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Design Trick: throw hardware at it
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The Disadvantage of Ripple Carry

° The adder we just built is called a “Ripple Carry Adder”
• The carry bit may have to propagate from LSB to MSB
• Worst case delay for a N-bit adder: 2N-gate delay
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A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CarryOut2

CarryIn0

CarryIn

CarryOut

A

B



Carry Look Ahead (Design trick: peek)

A B C-out
0 0 0 “kill”
0 1 C-in “propagate”
1 0 C-in “propagate”
1 1 1 “generate”

A0

B1

S
G
P

P = A and B
G = A xor B

A

B

S
G
P

A

B

S
G
P

A

B

S
G
P

Cin

C1 =G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2

G

C4 = . . .

P
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Plumbing as Carry Lookahead Analogy

p0

c0
g0

c1

p0

c0
g0

p1
g1

c2

p0

c0
g0

p1
g1

p2
g2

p3
g3

c4361  design.43



The Idea Behind Carry Lookahead (Continue)
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° Using the two new terms we just defined:
• Generate Carry at Bit i gi =  Ai  &  Bi
• Propagate Carry via Bit i pi  =  Ai   or  Bi

° We can rewrite:
• Cin1  =  g0  |  (p0 & Cin0)
• Cin2  =  g1  |  (p1 & g0)  |  (p1 & p0 & Cin0)
• Cin3  =  g2  |  (p2 & g1)  |  (p2 & p1 & g0)  |  (p2 & p1 & p0 & Cin0)

° Carry going into bit 3 is 1 if
• We generate a carry at bit 2 (g2)
• Or we generate a carry at bit 1 (g1) and

bit 2 allows it to propagate (p2 & g1)
• Or we generate a carry at bit 0 (g0) and

bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0) 
• Or we have a carry input at bit 0 (Cin0) and

bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)



The Idea Behind Carry Lookahead

Cin0

A0B0

1-bit
ALUC

out0

A1B1

1-bit
ALU

C
in1

C
out1

Cin2

° Recall: CarryOut =  (B & CarryIn)   |   (A & CarryIn)  |  (A & B)
• Cin2  =  Cout1  =  (B1 & Cin1)  |  (A1 & Cin1)  |   (A1 & B1)
• Cin1 =  Cout0  =  (B0 & Cin0)  |  (A0 & Cin0)  |  (A0 & B0)

° Substituting Cin1 into Cin2:
• Cin2 = (A1 & A0  & B0)  |  (A1 & A0 & Cin0)  |  (A1 & B0 & Cin0) |

(B1 & A0 & B0)  |  (B1 & A0 & Cin0)  |  (B1 & A0 & Cin0)  |  (A1 & B1)

° Now define two new terms:
• Generate Carry at Bit i gi =  Ai  &  Bi
• Propagate Carry via Bit i pi  =  Ai   or  Bi
• READ and LEARN Details

C
in2
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Cascaded Carry Look-ahead (16-bit): Abstraction

C
L
A

4-bit
Adder

4-bit
Adder

4-bit
Adder

C1 =G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2
G
P

G0
P0

C4 = . . .

C0
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2nd level Carry, Propagate as Plumbing

p0
g0

p1
g1

p2
g2

p3
g3

G0

p1

p2

p3

P0
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A Partial Carry Lookahead Adder
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° It is very expensive to build a “full” carry lookahead adder
• Just imagine the length of the equation for Cin31

° Common practices:
• Connects several N-bit Lookahead Adders to form a big adder
• Example: connects four 8-bit carry lookahead adders to form

a 32-bit partial carry lookahead adder

8-bit Carry
Lookahead

Adder

C0

8

88

Result[7:0]

B[7:0]A[7:0]

8-bit Carry
Lookahead

Adder

C8

8

88

Result[15:8]

B[15:8]A[15:8]

8-bit Carry
Lookahead

Adder

C16

8

88

Result[23:16]

B[23:16]A[23:16]

8-bit Carry
Lookahead

Adder

C24

8

88

Result[31:24]

B[31:24]A[31:24]



Design Trick: Guess

n-bit adder n-bit adder
CP(2n) = 2*CP(n)

CP(2n) = CP(n) + CP(mux)
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n-bit adder n-bit addern-bit adder 1 0

Cout Carry-select adder



Carry Select 

° Consider building a 8-bit ALU
• Simple: connects two 4-bit ALUs in series

Result[3:0]A
L

U

4

4

4

A[3:0] CarryIn

B[3:0]

A
L

U

4

4

4

A[7:4]

Result[7:4]

CarryOut

B[7:4]
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Carry Select  (Continue)

° Consider building a 8-bit ALU
• Expensive but faster: uses three 4-bit ALUs

Result[3:0]A
L

U
4

4

4

A[3:0] CarryIn

B[3:0]

C4

4

X[7:4]A
L

U

4

4

A[7:4]

0

B[7:4]

C0

4

Y[7:4]A
L

U

4

4

A[7:4]
1

B[7:4]

C1

2 to 1 M
U

X

Sel
0

1

Result[7:4]

4

2 to 1 MUX0 1 Sel
C4

CarryOut
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Carry Skip Adder: reduce worst case delay

4-bit Ripple Adder

A0B

S
P0P1P2P3

4-bit Ripple Adder

A4B

S
P0P1P2P3

361  design.52

Just speed up the slowest case for each block

Exercise: optimal design uses variable block sizes



Additional MIPS ALU requirements

° Mult, MultU, Div, DivU (next lecture)
=> Need 32-bit multiply and divide, signed and unsigned

° Sll, Srl, Sra (next lecture)
=> Need left shift, right shift, right shift arithmetic by 0 to 31 bits

° Nor (leave as exercise to reader)
=> logical NOR or use 2 steps: (A OR B) XOR 1111....1111
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Elements of the Design Process
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° Divide and Conquer (e.g., ALU)
• Formulate  a solution in terms of simpler components.
• Design each of the components (subproblems)

° Generate and Test (e.g., ALU)
• Given a collection of building blocks, look for ways of putting 

them together that meets requirement

° Successive Refinement (e.g., carry lookahead)
• Solve "most" of the problem (i.e., ignore some constraints or 

special cases), examine and correct shortcomings.

° Formulate High-Level Alternatives (e.g., carry select)
• Articulate many strategies to "keep in mind" while pursuing any 

one approach.

° Work on the Things you Know How to Do
• The unknown will become “obvious” as you make progress.



Summary of the Design Process

Hierarchical Design to manage complexity

Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

Block Diagrams

Decomposition into Bit Slices

Truth Tables, K-Maps

Circuit Diagrams

Other Descriptions:  state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

Gate Count

[Package Count]

Logic Levels

Fan-in/Fan-out
Power

top
down bottom 

up

Area
Delay

mux design
meets at TT

Cost Design timePin Out
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