
Computer Architecture

EECS 361
Lecture 5: The Design Process & ALU Design

361 design.1

Quick Review of Last Lecture

361 design.2

MIPS ISA Design Objectives and Implications

361 design.3

°Support general OS and C-
style language needs

°Support general and
embedded applications

°Use dynamic workload
characteristics from general
purpose program traces
and SPECint to guide
design decisions

°Implement processsor core
with a relatively small
number of gates

°Emphasize performance
via fast clock

Traditional data
types, common
operations, typical
addressing modes

RISC-style:
Register-Register /
Load-Store

MIPS jump, branch, compare instructions

361 design.4

° Instruction Example Meaning

° branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

° branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100
Not equal test; PC relative

° set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

° set less than imm.slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

° set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natural numbers

° set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; natural numbers

° jump j 10000 go to 10000
Jump to target address

° jump register jr $31 go to $31
For switch, procedure return

° jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure call

Example: MIPS Instruction Formats and Addressing Modes

• All instructions 32 bits wide

op

361 design.5

6 5 5 5 11
Register (direct) rs rt rd

register

immedop rs rtImmediate

Base+index immedop rs rt

register +

Memory

PC-relative immedop rs rt

PC +

Memory

MIPS Instruction Formats

361 design.6

MIPS Operation Overview

361 design.7

° Arithmetic logical

° Add, AddU, AddI, ADDIU, Sub, SubU

° And, AndI, Or, OrI

° SLT, SLTI, SLTU, SLTIU

° SLL, SRL

° Memory Access

° LW, LB, LBU

° SW, SB

Branch & Pipelines

Time

361 design.8

execute

Branch

Delay Slot

Branch Target

ifetch execute

ifetch execute

ifetch execute
LL: slt r1, r3, r5

li r3, #7

sub r4, r4, 1

bz r4, LL

addi r5, r3, 1

ifetch execute

By the end of Branch instruction, the CPU knows whether or not
the branch will take place.

However, it will have fetched the next instruction by then,
regardless of whether or not a branch will be taken.

Why not execute it?

361 design.9

The next Destination

34-bit ALU

LO register
(16x2 bits)

Lo
ad

H
I

C
le

ar
H

I

Lo
ad

LO

Multiplicand
Register

ShiftAll

LoadMp

Extra
2 bits

3232

LO[1:0]

Result[HI] Result[LO]

32 32

Prev
LO

[1]

Booth
E

ncoder ENC[0]

ENC[2]

"L
O

[0
]"

Control
Logic

Input
Multiplier

32

Sub/Add

2

34

34

32

Input
Multiplicand

32=>34
signEx

34

34x2 MUX

32=>34
signEx

<<1 34

ENC[1]

Multi x2/x1

2

2HI register
(16x2 bits)

2

01

34 Arithmetic

Single/multicycle
Datapaths

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

Pipelining

Memory Systems

I/O

µProc
60%/yr
.
(2X/1.
5yr)

DRAM
9%/yr.
(2X/10
yrs)1

10

100

1000

1 9 8 01 9 8 11 9 8 31 9 8 41 9 8 51 9 8 61 9 8 71 9 8 81 9 8 91 9 9 01 9 9 11 9 9 21 9 9 31 9 9 41 9 9 51 9 9 61 9 9 71 9 9 81 9 9 92 0 0 0

DRAM

CPU

1 9 8 2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Begin ALU design using MIPS ISA.

Outline of Today’s Lecture

° An Overview of the Design Process

° Illustration using ALU design

° Refinements

361 design.10

The Design Process

"To Design Is To Represent"
Design activity yields description/representation of an object

-- Traditional craftsman does not distinguish between the
conceptualization and the artifact

-- Separation comes about because of complexity

-- The concept is captured in one or more representation languages

-- This process IS design

Design Begins With Requirements

-- Functional Capabilities: what it will do

-- Performance Characteristics: Speed, Power, Area, Cost, . . .

361 design.11

Design Process

Design Finishes As Assembly

-- Design understood in terms of
components and how they have
been assembled

-- Top Down decomposition of
complex functions (behaviors)
into more primitive functions

-- bottom-up composition of primitive
building blocks into more complex assemblies

CPU

Datapath Control

ALU Regs Shifter

Nand
Gate

Design is a "creative process," not a simple method

361 design.12

Design Refinement

361 design.13

Informal System Requirement

Initial Specification

Intermediate Specification

Final Architectural Description

Intermediate Specification of Implementation

Final Internal Specification

Physical Implementation

refinement
increasing level of detail

Design as Search

Problem A

Strategy 1 Strategy 2

SubProb 1 SubProb2 SubProb3

BB1 BB2 BB3 BBn

Design involves educated guesses and verification

-- Given the goals, how should these be prioritized?

-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
the best solution?

Feasible (good) choices vs. Optimal choices
361 design.14

Problem: Design a “fast” ALU for the MIPS ISA

° Requirements?

° Must support the Arithmetic / Logic operations

° Tradeoffs of cost and speed based on frequency of occurrence,
hardware budget

361 design.15

MIPS ALU requirements

361 design.16

° Add, AddU, Sub, SubU, AddI, AddIU
• => 2’s complement adder/sub with overflow detection

° And, Or, AndI, OrI, Xor, Xori, Nor
• => Logical AND, logical OR, XOR, nor

° SLTI, SLTIU (set less than)
• => 2’s complement adder with inverter, check sign bit of result

MIPS arithmetic instruction format

R-type:
31 25 20 15 5 0

op Rs Rt Rd funct

I-Type: op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx

361 design.17

Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

00 50

00 51

SLT 00 52

SLTU 00 53

° Signed arith generate overflow, no carry

Design Trick: divide & conquer

° Break the problem into simpler problems, solve them and glue together
the solution

° Example: assume the immediates have been taken care of before the
ALU

• 10 operations (4 bits) 00 add

01 addU

02 sub

03 subU

04 and

05 or

06 xor

07 nor

12 slt

13 sltU

361 design.18

Refined Requirements

(1) Functional Specification
inputs: 2 x 32-bit operands A, B, 4-bit mode (sort of control)
outputs: 32-bit result S, 1-bit carry, 1 bit overflow
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram (CAD-TOOL symbol, VHDL entity)

ALUALU
A B

m
ovf

S

32 32

32

4
c

361 design.19

Behavioral Representation: VHDL

Entity ALU is
generic (c_delay: integer := 20 ns;

S_delay: integer := 20 ns);

port (signal A, B: in vlbit_vector (0 to 31);
signal m: in vlbit_vector (0 to 3);
signal S: out vlbit_vector (0 to 31);
signal c: out vlbit;
signal ovf: out vlbit)

end ALU;

. . .

S <= A + B;

361 design.20

Design Decisions

° Simple bit-slice
• big combinational problem
• many little combinational problems
• partition into 2-step problem

° Bit slice with carry look-ahead

° . . .

ALU

bit slice

7-to-2 C/L 7 3-to-2 C/L

PLD Gates muxCL0 CL6

361 design.21

Refined Diagram: bit-slice ALU

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0
m

cinco
s0

ALU0

a31 b31
m

cinco
s31

361 design.22

7-to-2 Combinational Logic

° start turning the crank . . .

Function Inputs Outputs K-Map

M0 M1 M2 M3 A B Cin S Cout

add 0 0 0 0 0 0 0 0 00

127

361 design.23

A One Bit ALU

° This 1-bit ALU will perform AND, OR, and ADD

A

B

1-bit
Full

Adder

CarryOut

CarryIn

M
ux Result

361 design.24

A One-bit Full Adder

1-bit
Full

Adder

CarryOut

CarryIn

A

B
C° This is also called a (3, 2) adder

° Half Adder: No CarryIn nor CarryOut

° Truth Table:

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11
361 design.25

Logic Equation for CarryOut

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

° CarryOut = (!A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarryIn)
| (A & B & CarryIn)

° CarryOut = B & CarryIn | A & CarryIn | A & B

361 design.26

Logic Equation for Sum

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

° Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)
| (A & B & CarryIn)

361 design.27

Logic Equation for Sum (continue)

° Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)
| (A & B & CarryIn)

° Sum = A XOR B XOR CarryIn

° Truth Table for XOR:

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

361 design.28

Logic Diagrams for CarryOut and Sum

° CarryOut = B & CarryIn | A & CarryIn | A & B

° Sum = A XOR B XOR CarryIn

CarryIn

CarryOut

A

B

A
B

CarryIn

Sum

361 design.29

Seven plus a MUX ?

° Design trick 2: take pieces you know (or can imagine) and try to put
them together

° Design trick 3: solve part of the problem and extend

361 design.30

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select

A 4-bit ALU

° 1-bit ALU 4-bit ALU

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result
CarryIn2

A2

B2
1-bit
ALU

Result2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

361 design.31

How About Subtraction?

° Keep in mind the followings:
• (A - B) is the that as: A + (-B)
• 2’s Complement: Take the inverse of every bit and add 1

° Bit-wise inverse of B is !B:
• A + !B + 1 = A + (!B + 1) = A + (-B) = A - B

“A
L

U
”

4

4

4

A

!B

Result

Zero

CarryIn

CarryOut

4
B

4

0

1

2x1 M
ux

Sel

Subtract

361 design.32

Additional operations

° A - B = A + (– B)
• form two complement by invert and add one

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select
invert

Set-less-than? – left as an exercise
361 design.33

Revised Diagram

° LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cinco
s0

ALU0

a31 b31

cinco
s31

C/L to
produce
select,
comp,
c-in

?

361 design.34

Overflow

Decimal
0

-1
-2
-3
-4
-5
-6
-7
-8

361 design.35

Decimal
0
1
2
3
4
5
6
7

Binary
0000
0001
0010
0011
0100
0101
0110
0111

2’s Complement
0000
1111
1110
1101
1100
1011
1010
1001
1000

° Examples: 7 + 3 = 10 but ...

° - 4 - 5 = - 9 but ...

0 1 1 1

0 0 1 1+

1 0 1 0

1 110

1 1 0 0

1 0 1 1+

0 1 1 1

1

7 – 4
3 – 5

7– 6

Overflow Detection

361 design.36

° Overflow: the result is too large (or too small) to represent properly
• Example: - 8 < = 4-bit binary number <= 7

° When adding operands with different signs, overflow cannot occur!

° Overflow occurs when adding:
• 2 positive numbers and the sum is negative
• 2 negative numbers and the sum is positive

° On your own: Prove you can detect overflow by:
• Carry into MSB ° Carry out of MSB

0 1 1 1

0 0 1 1+

1 0 1 0

1 1

1 1 0 0

1 0 1 1+

0 1 1 1

1 010

7 –4
– 53

– 6 7

Overflow Detection Logic

° Carry into MSB ° Carry out of MSB
• For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

361 design.37

Zero Detection Logic

° Zero Detection Logic is just a one BIG NOR gate
• Any non-zero input to the NOR gate will cause its output to be zero

CarryIn0

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1
CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2
CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3
CarryIn3

CarryOut3

Zero

361 design.38

More Revised Diagram

° LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cinco
s0

ALU0

a31 b31

cinco
s31

C/L to
produce
select,
comp,
c-in

signed-arith
and cin xor co

361 design.39

But What about Performance?

° Critical Path of n-bit Rippled-carry adder is n*CP

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Design Trick: throw hardware at it
361 design.40

The Disadvantage of Ripple Carry

° The adder we just built is called a “Ripple Carry Adder”
• The carry bit may have to propagate from LSB to MSB
• Worst case delay for a N-bit adder: 2N-gate delay

361 design.41

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CarryOut2

CarryIn0

CarryIn

CarryOut

A

B

Carry Look Ahead (Design trick: peek)

A B C-out
0 0 0 “kill”
0 1 C-in “propagate”
1 0 C-in “propagate”
1 1 1 “generate”

A0

B1

S
G
P

P = A and B
G = A xor B

A

B

S
G
P

A

B

S
G
P

A

B

S
G
P

Cin

C1 =G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2

G

C4 = . . .

P

361 design.42

Plumbing as Carry Lookahead Analogy

p0

c0
g0

c1

p0

c0
g0

p1
g1

c2

p0

c0
g0

p1
g1

p2
g2

p3
g3

c4361 design.43

The Idea Behind Carry Lookahead (Continue)

361 design.44

° Using the two new terms we just defined:
• Generate Carry at Bit i gi = Ai & Bi
• Propagate Carry via Bit i pi = Ai or Bi

° We can rewrite:
• Cin1 = g0 | (p0 & Cin0)
• Cin2 = g1 | (p1 & g0) | (p1 & p0 & Cin0)
• Cin3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & Cin0)

° Carry going into bit 3 is 1 if
• We generate a carry at bit 2 (g2)
• Or we generate a carry at bit 1 (g1) and

bit 2 allows it to propagate (p2 & g1)
• Or we generate a carry at bit 0 (g0) and

bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)
• Or we have a carry input at bit 0 (Cin0) and

bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

The Idea Behind Carry Lookahead

Cin0

A0B0

1-bit
ALUC

out0

A1B1

1-bit
ALU

C
in1

C
out1

Cin2

° Recall: CarryOut = (B & CarryIn) | (A & CarryIn) | (A & B)
• Cin2 = Cout1 = (B1 & Cin1) | (A1 & Cin1) | (A1 & B1)
• Cin1 = Cout0 = (B0 & Cin0) | (A0 & Cin0) | (A0 & B0)

° Substituting Cin1 into Cin2:
• Cin2 = (A1 & A0 & B0) | (A1 & A0 & Cin0) | (A1 & B0 & Cin0) |

(B1 & A0 & B0) | (B1 & A0 & Cin0) | (B1 & A0 & Cin0) | (A1 & B1)

° Now define two new terms:
• Generate Carry at Bit i gi = Ai & Bi
• Propagate Carry via Bit i pi = Ai or Bi
• READ and LEARN Details

C
in2

361 design.45

Cascaded Carry Look-ahead (16-bit): Abstraction

C
L
A

4-bit
Adder

4-bit
Adder

4-bit
Adder

C1 =G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2
G
P

G0
P0

C4 = . . .

C0

361 design.46

2nd level Carry, Propagate as Plumbing

p0
g0

p1
g1

p2
g2

p3
g3

G0

p1

p2

p3

P0

361 design.47

A Partial Carry Lookahead Adder

361 design.48

° It is very expensive to build a “full” carry lookahead adder
• Just imagine the length of the equation for Cin31

° Common practices:
• Connects several N-bit Lookahead Adders to form a big adder
• Example: connects four 8-bit carry lookahead adders to form

a 32-bit partial carry lookahead adder

8-bit Carry
Lookahead

Adder

C0

8

88

Result[7:0]

B[7:0]A[7:0]

8-bit Carry
Lookahead

Adder

C8

8

88

Result[15:8]

B[15:8]A[15:8]

8-bit Carry
Lookahead

Adder

C16

8

88

Result[23:16]

B[23:16]A[23:16]

8-bit Carry
Lookahead

Adder

C24

8

88

Result[31:24]

B[31:24]A[31:24]

Design Trick: Guess

n-bit adder n-bit adder
CP(2n) = 2*CP(n)

CP(2n) = CP(n) + CP(mux)

361 design.49

n-bit adder n-bit addern-bit adder 1 0

Cout Carry-select adder

Carry Select

° Consider building a 8-bit ALU
• Simple: connects two 4-bit ALUs in series

Result[3:0]A
L

U

4

4

4

A[3:0] CarryIn

B[3:0]

A
L

U

4

4

4

A[7:4]

Result[7:4]

CarryOut

B[7:4]

361 design.50

Carry Select (Continue)

° Consider building a 8-bit ALU
• Expensive but faster: uses three 4-bit ALUs

Result[3:0]A
L

U
4

4

4

A[3:0] CarryIn

B[3:0]

C4

4

X[7:4]A
L

U

4

4

A[7:4]

0

B[7:4]

C0

4

Y[7:4]A
L

U

4

4

A[7:4]
1

B[7:4]

C1

2 to 1 M
U

X

Sel
0

1

Result[7:4]

4

2 to 1 MUX0 1 Sel
C4

CarryOut

361 design.51

Carry Skip Adder: reduce worst case delay

4-bit Ripple Adder

A0B

S
P0P1P2P3

4-bit Ripple Adder

A4B

S
P0P1P2P3

361 design.52

Just speed up the slowest case for each block

Exercise: optimal design uses variable block sizes

Additional MIPS ALU requirements

° Mult, MultU, Div, DivU (next lecture)
=> Need 32-bit multiply and divide, signed and unsigned

° Sll, Srl, Sra (next lecture)
=> Need left shift, right shift, right shift arithmetic by 0 to 31 bits

° Nor (leave as exercise to reader)
=> logical NOR or use 2 steps: (A OR B) XOR 1111....1111

361 design.53

Elements of the Design Process

361 design.54

° Divide and Conquer (e.g., ALU)
• Formulate a solution in terms of simpler components.
• Design each of the components (subproblems)

° Generate and Test (e.g., ALU)
• Given a collection of building blocks, look for ways of putting

them together that meets requirement

° Successive Refinement (e.g., carry lookahead)
• Solve "most" of the problem (i.e., ignore some constraints or

special cases), examine and correct shortcomings.

° Formulate High-Level Alternatives (e.g., carry select)
• Articulate many strategies to "keep in mind" while pursuing any

one approach.

° Work on the Things you Know How to Do
• The unknown will become “obvious” as you make progress.

Summary of the Design Process

Hierarchical Design to manage complexity

Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

Block Diagrams

Decomposition into Bit Slices

Truth Tables, K-Maps

Circuit Diagrams

Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

Gate Count

[Package Count]

Logic Levels

Fan-in/Fan-out
Power

top
down bottom

up

Area
Delay

mux design
meets at TT

Cost Design timePin Out

361 design.55

	Computer ArchitectureEECS 361Lecture 5: The Design Process & ALU Design
	Quick Review of Last Lecture
	MIPS ISA Design Objectives and Implications
	MIPS jump, branch, compare instructions
	Example: MIPS Instruction Formats and Addressing Modes
	MIPS Instruction Formats
	MIPS Operation Overview
	Branch & Pipelines
	The next Destination
	Outline of Today’s Lecture
	The Design Process
	Design Process
	Design Refinement
	Design as Search
	Problem: Design a “fast” ALU for the MIPS ISA
	MIPS ALU requirements
	MIPS arithmetic instruction format
	Design Trick: divide & conquer
	Refined Requirements
	Behavioral Representation: VHDL
	Design Decisions
	Refined Diagram: bit-slice ALU
	7-to-2 Combinational Logic
	A One Bit ALU
	A One-bit Full Adder
	Logic Equation for CarryOut
	Logic Equation for Sum
	Logic Equation for Sum (continue)
	Logic Diagrams for CarryOut and Sum
	Seven plus a MUX ?
	A 4-bit ALU
	How About Subtraction?
	Additional operations
	Revised Diagram
	Overflow
	Overflow Detection
	Overflow Detection Logic
	Zero Detection Logic
	More Revised Diagram
	But What about Performance?
	The Disadvantage of Ripple Carry
	Carry Look Ahead (Design trick: peek)
	Plumbing as Carry Lookahead Analogy
	The Idea Behind Carry Lookahead (Continue)
	The Idea Behind Carry Lookahead
	Cascaded Carry Look-ahead (16-bit): Abstraction
	2nd level Carry, Propagate as Plumbing
	A Partial Carry Lookahead Adder
	Design Trick: Guess
	Carry Select
	Carry Select (Continue)
	Carry Skip Adder: reduce worst case delay
	Additional MIPS ALU requirements
	Elements of the Design Process
	Summary of the Design Process

