
Computer Architecture
EECS 361

Lecture 7: ALU Design : Division

361 div.1

Outline of Today’s Lecture

° Introduction to Today’s Lecture

° Divide

° Questions and Administrative Matters

° Introduction to Single cycle processor design

361 div.2

Divide: Paper & Pencil

1001 Quotient

Divisor 1000 1001010 Dividend
–1000

10
101
1010
–1000

10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient
bit on each step

Binary => 1 * divisor or 0 * divisor

Dividend = Quotient x Divisor + Remainder
=> | Dividend | = | Quotient | + | Divisor |

3 versions of divide, successive refinement

361 div.3

DIVIDE HARDWARE Version 1

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits

361 div.4

Divide Algorithm Version 1

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new least significant bit to 0.

°Takes n+1 steps for n-bit Quotient & Rem.

Remainder Quotient Divisor
0000 0111 0000 0010 0000

Test
Remainder

Remainder < 0Remainder >= 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

3. Shift the Divisor register right1 bit.

Done

Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

No: < n+1 repetitions

361 div.5

Observations on Divide Version 1

361 div.6

° 1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
=> 1/2 of divisor is wasted

° Instead of shifting divisor to right,
shift remainder to left?

° 1st step cannot produce a 1 in quotient bit
(otherwise too big)
=> switch order to shift first and then subtract,
can save 1 iteration

DIVIDE HARDWARE Version 2

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU
Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left

361 div.7

Divide Algorithm Version 2
Remainder Quotient Divisor
0000 0111 0000 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Quotient register to the left,
setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder >= 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done

Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder

361 div.8

Observations on Divide Version 2

361 div.9

° Eliminate Quotient register by combining with Remainder as shifted left
• Start by shifting the Remainder left as before.
• Thereafter loop contains only two steps because the shifting of the

Remainder register shifts both the remainder in the left half and the
quotient in the right half

• The consequence of combining the two registers together and the
new order of the operations in the loop is that the remainder will
shifted left one time too many.

• Thus the final correction step must shift back only the remainder in
the left half of the register

DIVIDE HARDWARE Version 3

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Left“HI” “LO”

361 div.10

Divide Algorithm Version 3
Remainder Divisor
0000 0111 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Remainder register to the
left, setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder � 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Remainder register
to the left setting
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.
Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder

361 div.11

Observations on Divide Version 3

361 div.12

° Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit
register to shift left or shift right

° Hi and Lo registers in MIPS combine to act as 64-bit register for multiply
and divide

° Signed Divides: Simplest is to remember signs, make positive, and
complement quotient and remainder if necessary

• Note: Dividend and Remainder must have same sign

• Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

° Possible for quotient to be too large: if divide 64-bit interger by 1,
quotient is 64 bits (“called saturation”)

Summary

° Bits have no inherent meaning: operations determine whether they are
really ASCII characters, integers, floating point numbers

° Divide can use same hardware as multiply: Hi & Lo registers in MIPS

361 div.13

The Big Picture: Where are We Now?

361 div.14

° The Five Classic Components of a Computer

° Next Topic: Design a Single Cycle Processor

Control

Datapath

Memory

Processor
Input

Output

inst. set design technology

machine
design Arithmetic

The Big Picture: The Performance Perspective
° Performance of a machine is determined by:

• Instruction count
• Clock cycle time
• Clock cycles per instruction

° Processor design (datapath and control) will
determine:

• Clock cycle time
• Clock cycles per instruction

° Next Class:
• Single cycle processor:

- Advantage: One clock cycle per instruction
- Disadvantage: long cycle time

CPI

Inst. Count Cycle Time

361 div.15

How to Design a Processor: step-by-step

361 div.16

° 1. Analyze instruction set => datapath requirements
• the meaning of each instruction is given by the register transfers
• datapath must include storage element for ISA registers

- possibly more
• datapath must support each register transfer

° 2. Select set of datapath components and establish clocking
methodology

° 3. Assemble datapath meeting the requirements

° 4. Analyze implementation of each instruction to determine setting of
control points that effects the register transfer.

° 5. Assemble the control logic

The MIPS Instruction Formats

361 div.17

° All MIPS instructions are 32 bits long. The three instruction formats:

• R-type

• I-type

• J-type

° The different fields are:
• op: operation of the instruction
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount
• funct: selects the variant of the operation in the “op” field
• address / immediate: address offset or immediate value
• target address: target address of the jump instruction

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op target address
02631

6 bits 26 bits

	Computer ArchitectureEECS 361Lecture 7: ALU Design : Division
	Outline of Today’s Lecture
	Divide: Paper & Pencil
	DIVIDE HARDWARE Version 1
	Divide Algorithm Version 1
	Observations on Divide Version 1
	DIVIDE HARDWARE Version 2
	Divide Algorithm Version 2
	Observations on Divide Version 2
	DIVIDE HARDWARE Version 3
	Divide Algorithm Version 3
	Observations on Divide Version 3
	Summary
	The Big Picture: Where are We Now?
	The Big Picture: The Performance Perspective
	How to Design a Processor: step-by-step
	The MIPS Instruction Formats

