
1

361  hazards.1

EECS 361
Computer Architecture

Lecture 13: Designing a Pipeline Processor

361  hazards.2

Review: A Pipelined Datapath

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

PC

Data
Mem

WA
Di

RA Do

IU
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk

Ifetch Reg/Dec Exec Mem Wr



2

361  hazards.3

Review: Pipeline Control “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec
• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
• Control signals for Mem (MemWr Branch) are used 2 cycles later
• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

Wr

361  hazards.4

Review: Pipeline Summary

° Pipeline Processor:
• Natural enhancement of the multiple clock cycle processor
• Each functional unit can only be used once per instruction
• If a instruction is going to use a functional unit:

- it must use it at  the same stage as all other instructions
• Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction
that is currently in that stage



3

361  hazards.5

Outline of Today’s Lecture

° Recap  and Introduction

° Introduction to Hazards

° Forwarding

° 1 cycle Load Delay

° 1 cycle Branch Delay

° What makes pipelining hard

° Summary

361  hazards.6

Its not that easy for computers

° Limits to pipelining: Hazards prevent next instruction from executing
during its designated clock cycle
• structural hazards: HW cannot support this combination of

instructions
• data hazards: instruction depends on result of prior instruction

still in the pipeline
• control hazards: pipelining of branches & other instructions that

change the PC

° Common solution is to stall the pipeline until the hazard is resolved,
inserting one or more “bubbles” in the pipeline



4

361  hazards.7

Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

361  hazards.8

Option 1: Stall to resolve Memory Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3(stall)

Instr 4

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

bubble

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg



5

361  hazards.9

Option 2: Duplicate to Resolve Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

• Separate Instruction Cache (Im) & Data Cache (Dm)

361  hazards.10

Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11



6

361  hazards.11

Data Hazard on r1:   (Figure 6.30, page 397, P&H)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

• Dependencies backwards in time are hazards

361  hazards.12

sub r4, r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Option1: HW Stalls to Resolve Data Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3
IF ID/RF EX MEM WBA

L
UIm Reg Dm Reg

• Dependencies backwards in time are hazards

A
L

UIm Reg Dm

Im bubble bubble bubble

A
L

UReg Dm Reg

A
L

UIm Reg

Im Reg



7

361  hazards.13

But recall use of “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec
• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
• Control signals for Mem (MemWr Branch) are used 2 cycles later
• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

Wr

361  hazards.14

Option 1: How HW really stalls pipeline

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

• HW doesn’t change PC => keeps fetching same instruction
   & sets control signals  to benign values (0)

stall

stall

stall

A
L

UIm Reg Dm

bubble bubble bubble bubbleIm

bubble bubble bubble bubbleIm

bubble bubble bubble bubbleIm



8

361  hazards.15

Option 2: SW inserts indepdendent instructions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

IF ID/RF E
X

MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

• Worst case inserts NOP instructions

nop

nop

nop

A
L

UIm Reg Dm

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

361  hazards.16

Questions and Administrative Matters



9

361  hazards.17

Option 3 Insight: Data is available! )

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF E
X

MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

• Pipeline registers already contain needed data

361  hazards.18

HW Change for “Forwarding” (Bypassing):)

• Increase multiplexors to add paths from pipeline registers
• Assumes register read during write gets new value
  (otherwise more results to be forwarded)



10

361  hazards.19

From Last Lecture: The Delay Load Phenomenon

° Although Load is fetched during Cycle 1:
• The data is NOT written into the Reg  File until the end of Cycle 5
• We cannot read this value from the Reg File until Cycle 6
• 3-instruction delay  before the load  take effect

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrI0: Load

Ifetch Reg/Dec Exec Mem WrPlus 1

Ifetch Reg/Dec Exec Mem WrPlus 2

Ifetch Reg/Dec Exec Mem WrPlus 3

Ifetch Reg/Dec Exec Mem WrPlus 4

361  hazards.20

Forwarding reduces Data Hazard to 1 cycle:   

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg



11

361  hazards.21

Option1: HW Stalls to Resolve Data Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

• “Interlock”: checks for hazard & stalls

stall bubble bubble bubble bubbleIm

and r6,r1,r7

or   r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

361  hazards.22

Option 2: SW inserts independent instructions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WB

• Worst case inserts NOP instructions
• MIPS I solution: No HW checking

nop

and r6,r1,r7

or   r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg



12

361  hazards.23

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f
in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

361  hazards.24

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f
in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra
SUB Rd,Re,Rf
SW d,Rd



13

361  hazards.25

Compiler Avoiding Load Stalls:

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

361  hazards.26

From Last Lecture: The Delay Branch Phenomenon

° Although Beq is fetched during Cycle 4:
• Target address is NOT written into the PC until the end of Cycle 7
• Branch’s target is NOT fetched until Cycle 8
• 3-instruction delay  before the branch take effect

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

12: Beq
(target is 1000)

20: R-type

Clk

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br



14

361  hazards.27

Control Hazard on Branches: 3 stage stall

361  hazards.28

Branch Stall Impact

° If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

° 2 part solution:
• Determine branch taken or not sooner, AND
• Compute taken branch address earlier

° MIPS branch tests = 0 or ° 0

°  Solution Option 1:
• Move Zero test to ID/RF stage
• Adder to calculate new PC in ID/RF stage
• 1 clock cycle penalty for branch vs. 3



15

361  hazards.29

Option 1: move HW forward to reduce branch delay

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.

361  hazards.30

Branch Delay now 1 clock cycle

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.



16

361  hazards.31

Option 2: Define Branch as Delayed

° Worst case, SW inserts NOP into branch delay

° Where get instructions to fill branch delay slot?
• Before branch instruction
• From the target address: only valuable when branch
• From fall through: only valuable when don’t branch

° Compiler effectiveness for single branch delay slot:
• Fills about 60% of branch delay slots
• About 80% of instructions executed in branch delay slots useful in

computation
• about 50% (60% x 80%) of slots usefully filled

361  hazards.32

When is pipelining hard?

° Interrupts: 5 instructions executing in 5 stage pipeline
• How to stop the pipeline?
• Restrart?
• Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory 

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation



17

361  hazards.33

When is pipelining hard?

° Complex Addressing Modes and Instructions

° Address modes: Autoincrement causes register change during
instruction execution
• Interrupts?
• Now worry about write hazards since write no longer last stage

- Write After Read (WAR): Write occurs before independent read
- Write After Write (WAW): Writes occur in wrong order, leaving

wrong result in registers
- (Previous data hazard called RAW, for Read After Write)

° Memory-memory Move instructions
• Multiple page faults
• make progress?

361  hazards.34

When is pipelining hard?

° Floating Point: long execution time
° Also, may pipeline FP execution unit so that can initiate new

instructions without waiting full latency
FP Instruction Latency Initiation Rate (MIPS R4000)
Add, Subtract 4 3
Multiply 8 4
Divide 36 35
Square root 112 111
Negate 2 1
Absolute value 2 1
FP compare 3 2
° Divide, Square Root take -10X to -30X longer than Add

• Exceptions?
• Adds WAR and WAW hazards since pipelines are no longer

same length



18

361  hazards.35

Hazard Detection

Suppose instruction i  is about to be issued and a predecessor
instruction j  is in the instruction pipeline.

Rregs ( i  )  = Registers read by instruction i
Wregs ( i  ) = Registers written by instruction i

° A RAW hazard exists on register ρ if ∃ ρ,  ρ ∈ Rregs( i  ) ∩ Wregs(  j  )
– Keep a record of pending writes (for inst's in the pipe) and compare
with operand regs of current instruction.
– When instruction issues, reserve its result register.
– When on operation completes, remove its write reservation.

° A WAW hazard exists on register ρ if ∃ ρ,  ρ ∈ Wregs( i  ) ∩ Wregs(  j  )

° A WAR hazard exists on register ρ if ∃ ρ,  ρ ∈ Wregs( i  ) ∩ Rregs(  j  )

361  hazards.36

Avoiding Data Hazards by Design

Suppose instructions are executed in a pipelined fashion such that
Instructions are initiated in order.

° WAW avoidance:  if writes to a particular resource (e.g., reg) are
performed in the same stage for all instructions,  then no WAW
hazards occur.

proof: writes are in the same time sequence as instructions.

° WAR avoidance: if in all instructions reads of a resource occur at an
earlier stage than writes to that resource occur in any instruction,
then no WAR hazards occur.

proof: A successor instruction must issue later, hence it will perform
writes only after all reads for the current instruction.

 I     R/D   E    W  
 I     R/D   E    W  

 I     R/D   E    W  



19

361  hazards.37

First Generation RISC Pipelines

° All instructions follow same pipeline order (“static schedule”).
° Register write in last stage

– Avoid WAW hazards
° All register reads performed in first stage after issue.

– Avoid WAR hazards
° Memory access in stage 4

– Avoid all memory hazards
° Control hazards resolved by delayed branch (with fast path)
° RAW hazards resolved by bypass, except on load results
which are resolved by fiat (delayed load).

Substantial pipelining with very little cost or complexity.
Machine organization is (slightly) exposed!
Relies very heavily on "hit assumption"of memory accesses in cache

361  hazards.38

Review: Summary of Pipelining Basics

° Speed Up Š Pipeline Depth; if ideal CPI is 1, then:

° Hazards limit performance on computers:
• structural: need more HW resources
• data: need forwarding, compiler scheduling
• control: early evaluation & PC, delayed branch, prediction

° Increasing length of pipe increases impact of hazards since pipelining
helps instruction bandwidth, not latency

° Compilers key to reducing cost of data and control hazards
• load delay slots
• branch delay slots

° Exceptions, Instruction Set, FP makes pipelining harder

° Longer pipelines => Branch prediction, more instruction parallelism?

  

! 

Speedup=
Pipeline depth

1+Pipeline stall cycles per instruction
"

Clock cycle unpipelined
Clock cycle pipelined


