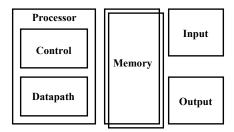

EECS 361 Computer Architecture Lecture 16: Memory Systems

memory

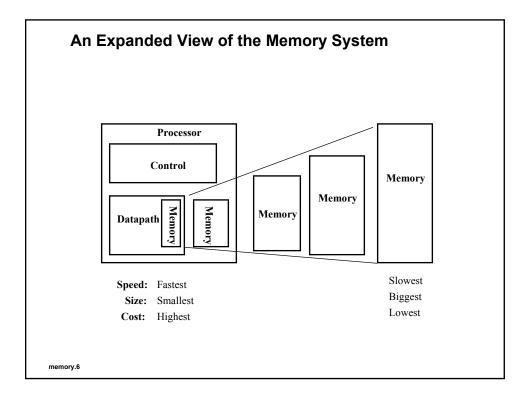
- ° In the Simple Pipeline Processor if a Beq is fetched during Cycle 1:
 - Target address is NOT written into the PC until the end of Cycle 4
 - Branch's target is NOT fetched until Cycle 5
 - · 3-instruction delay before the branch take effect
- ° This Branch Hazard can be reduced to 1 instruction if in Beq's Reg/Dec:
 - Calculate the target address
 - Compare the registers using some "quick compare" logic

Recap: Solution to Load Hazard

- ° In the Simple Pipeline Processor if a Load is fetched during Cycle 1:
 - The data is NOT written into the Reg File until the end of Cycle 5
 - · We cannot read this value from the Reg File until Cycle 6
 - 3-instruction delay before the load take effect
- ° This Data Hazard can be reduced to 1 instruction if we:
 - · Forward the data from the pipeline register to the next instruction


memory.3

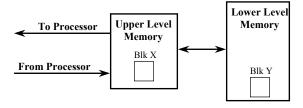
Outline of Today's Lecture


- ° Recap and Introduction
- ° Memory System: the BIG Picture?
- ° Questions and Administrative Matters
- Memory Technology: SRAM
- ° Memory Technology: DRAM
- ° A Real Life Example: SPARCstation 20's Memory System
- ° Summary

The Big Picture: Where are We Now?

° The Five Classic Components of a Computer

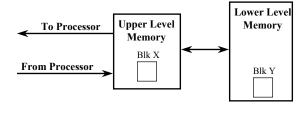
° Today's Topic: Memory System


The Principle of Locality

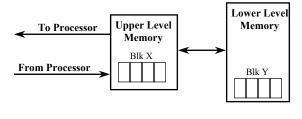
- ° The Principle of Locality:
 - Program access a relatively small portion of the address space at any instant of time.
- ° Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.

memory.

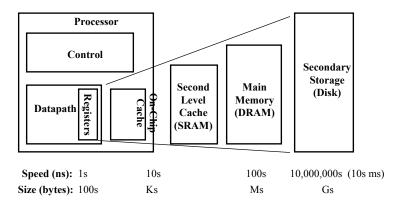
Memory Hierarchy: Principles of Operation


- ° At any given time, data is copied between only 2 adjacent levels:
 - · Upper Level: the one closer to the processor
 - Smaller, faster, and uses more expensive technology
 - · Lower Level: the one further away from the processor
 - Bigger, slower, and uses less expensive technology
- ° Block:
 - The minimum unit of information that can either be present or not present in the two level hierarchy

Memory Hierarchy: Terminology


- ° Hit: data appears in some block in the upper level (example: Block X)
 - · Hit Rate: the fraction of memory access found in the upper level
 - Hit Time: Time to access the upper level which consists of RAM access time + Time to determine hit/miss
- ° Miss: data needs to be retrieve from a block in the lower level (Block Y)
 - Miss Rate = 1 (Hit Rate)
 - Miss Penalty: Time to replace a block in the upper level +
 Time to deliver the block the processor
- * Hit Time << Miss Penalty</p>

memory.9


Memory Hierarchy: How Does it Work?

- Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Keep more recently accessed data items closer to the processor
- Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.
 - Move blocks consists of contiguous words to the upper levels

Memory Hierarchy of a Modern Computer System

- ° By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - Provide access at the speed offered by the fastest technology.

memory.11

Memory Hierarchy Technology

- ° Random Access:
 - · "Random" is good: access time is the same for all locations
 - DRAM: Dynamic Random Access Memory
 - High density, low power, cheap, slow
 - Dynamic: need to be "refreshed" regularly
 - · SRAM: Static Random Access Memory
 - Low density, high power, expensive, fast
 - Static: content will last "forever"
- ° "Non-so-random" Access Technology:
 - · Access time varies from location to location and from time to time
 - · Examples: Disk, tape drive, CDROM

Random Access Memory (RAM) Technology

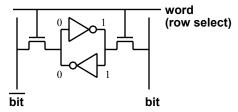
- ° Why do computer designers need to know about RAM technology?
 - · Processor performance is usually limited by memory bandwidth
 - As IC densities increase, lots of memory will fit on processor chip
 - Tailor on-chip memory to specific needs
 - Instruction cache
 - Data cache
 - Write buffer
- ° What makes RAM different from a bunch of flip-flops?
 - Density: RAM is much more denser

memory.13

Technology Trends

Capacity Speed

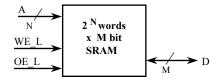
Logic: 2x in 3 years 2x in 3 years

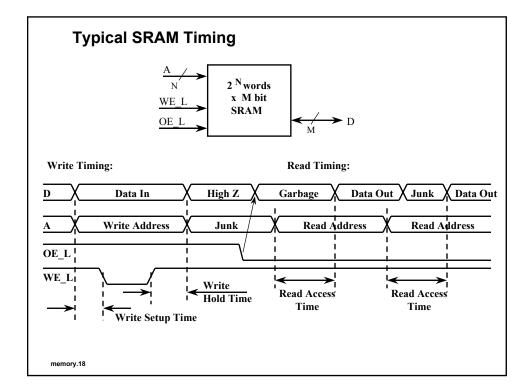

DRAM: 4x in 3 years 1.4x in 10 years

Disk: 2x in 3 years 1.4x in 10 years

DRAM		
Year	Size	Cycle Time
1980	64 Kb	250 ns
1983	256 Kb	220 ns
1986	1 Mb	190 ns
1989	4 Mb	165 ns
1992	16 Mb	145 ns
1995	64 Mb	120 ns

Static RAM Cell


6-Transistor SRAM Cell

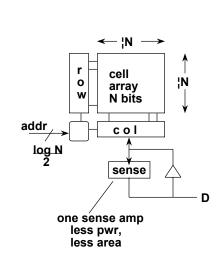

- ° Write:
 - 1. Drive bit lines
 - 2.. Select row
- ° Read:
 - 1. Precharge bit and bit' to Vdd
 - 2.. Select row
 - 3. Cell pulls one line low
 - 4. Sense amp on column detects difference

Logic Diagram of a Typical SRAM

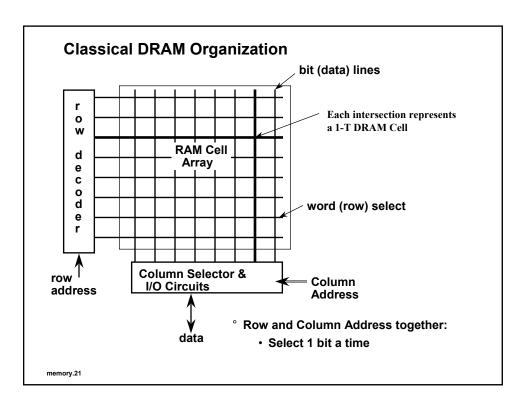
- ° Write Enable is usually active low (WE_L)
- ° Din and Dout are combined:
 - · A new control signal, output enable (OE_L) is needed
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
 - Both WE_L and OE_L are asserted:
 - Result is unknown. Don't do that!!!

1-Transistor Cell

- ° Write:
 - 1. Drive bit line
 - · 2.. Select row
- ° Read:
 - · 1. Precharge bit line to Vdd
 - · 2.. Select row
 - 3. Sense (fancy sense amp)
 - Can detect changes of ~1 million electrons

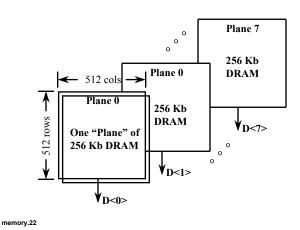

bit

- 4. Write: restore the value
- ° Refresh
 - · 1. Just do a dummy read to every cell.


memory.19

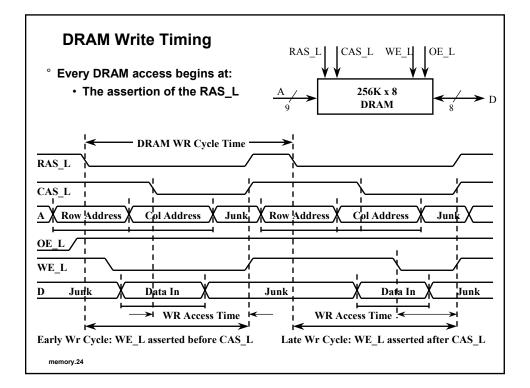
Introduction to DRAM

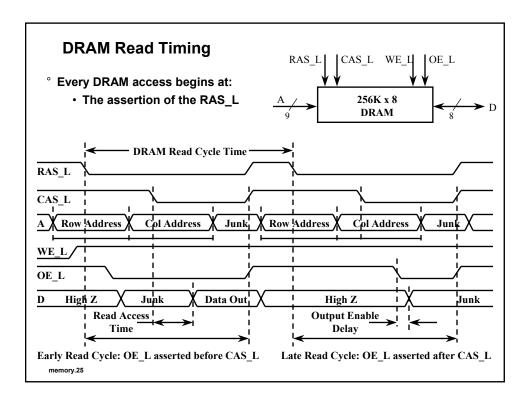
- ° Dynamic RAM (DRAM):
 - · Refresh required
 - · Very high density
 - Low power (.1 .5 W active, .25 - 10 mW standby)
 - · Low cost per bit
 - · Pin sensitive:
 - Output Enable (OE_L)
 - Write Enable (WE_L)
 - Row address strobe (ras)
 - Col address strobe (cas)
 - · Page mode operation



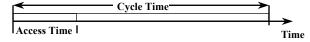
row select

Typical DRAM Organization

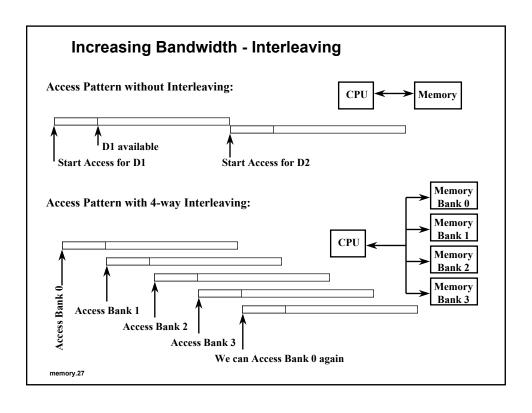

- ° Typical DRAMs: access multiple bits in parallel
 - Example: 2 Mb DRAM = 256K x 8 = 512 rows x 512 cols x 8 bits
 - Row and column addresses are applied to all 8 planes in parallel

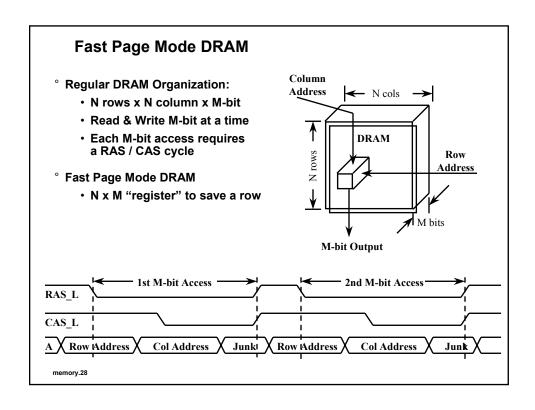


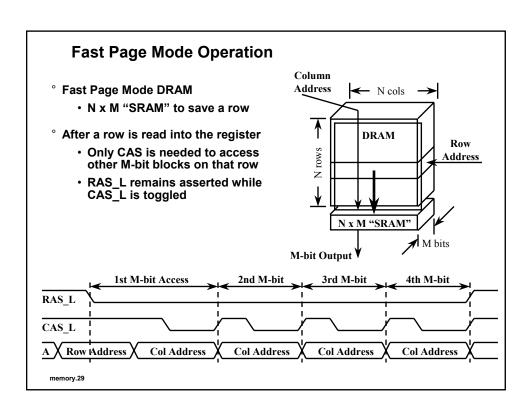
Logic Diagram of a Typical DRAM

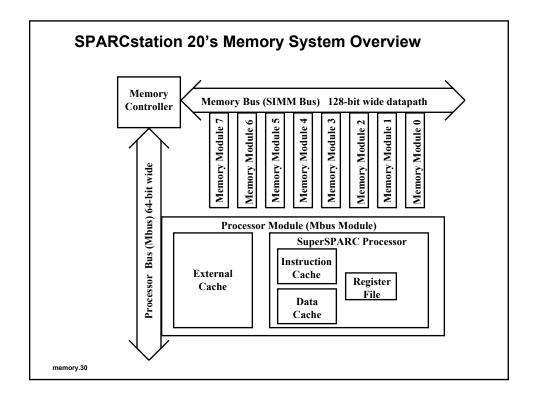


- ° Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low
- ° Din and Dout are combined (D):
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
- ° Row and column addresses share the same pins (A)
 - RAS_L goes low: Pins A are latched in as row address
 - · CAS_L goes low: Pins A are latched in as column address

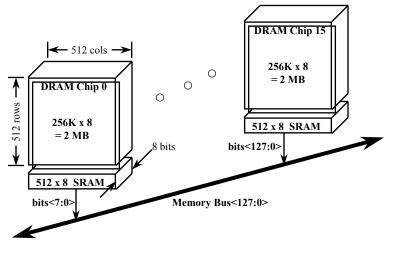


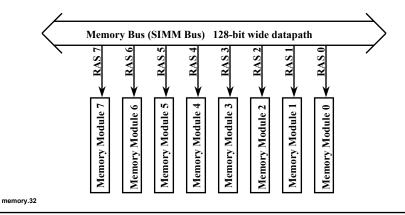






- ° DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time
- ° DRAM (Read/Write) Cycle Time :
 - · How frequent can you initiate an access?
 - · Analogy: A little kid can only ask his father for money on Saturday
- ° DRAM (Read/Write) Access Time:
 - · How quickly will you get what you want once you initiate an access?
 - Analogy: As soon as he asks, his father will give him the money
- ° DRAM Bandwidth Limitation analogy:
 - · What happens if he runs out of money on Wednesday?




- ° Supports a wide range of sizes:
 - Smallest 4 MB: 16 2Mb DRAM chips, 8 KB of Page Mode SRAM
 - Biggest: 64 MB: 32 16Mb chips, 16 KB of Page Mode SRAM

SPARCstation 20's Main Memory

° Biggest Possible Main Memory :

- 8 64MB Modules: 8 x 64 MB DRAM 8 x 16 KB of Page Mode SRAM
- On How do we select 1 out of the 8 memory modules? Remember: every DRAM operation start with the assertion of RAS
 - SS20's Memory Bus has 8 separate RAS lines

Summary:

- ° Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.
- ° By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - · Provide access at the speed offered by the fastest technology.
- ° DRAM is slow but cheap and dense:
 - Good choice for presenting the user with a BIG memory system
- ° SRAM is fast but expensive and not very dense:
 - · Good choice for providing the user FAST access time.

memory.33

Where to get more information?

° To be continued ...