Homework 4 Solutions

Problem 1

Reference	Hit or Miss		
1	Miss		
4	Miss		
8	Miss		
5	Miss		
20	Miss		
17	Miss		
19	Miss		
56	Miss		
9	Miss		
11	Miss		
4	Miss		
43	Miss		
5	5 Hit		
6	Miss		
9	9 Hit		
17 Hit			

Here is the final state of the cache:

Block #	Address	
0		
1	17	
2		
3	19	
4	4	
5	5	
6	6	
7		
8	56	
9	9	
10		
11	43	
12		
13		
14		
15		

Problem 2

Reference	Hit or Miss			
1	Miss			
4	Miss			
8 Miss				
5	Hit			
20	Miss			
17	Miss			
19	Hit			
56	Miss			
9	Miss			
11	Hit			
4	Miss			
43	Miss			
5	Hit			
6	Hit			
9	Miss			
17	Hit			

Here is the final state of the cache:

Block #	Address
0	16
1	4
2	8
3	

Problem 3

AMAT = Hit time + Miss time × Miss penalty. AMAT = $2 \text{ ns} + (20 \times 2 \text{ ns}) \times 0.05 = 4 \text{ ns}.$

Problem 4

AMAT = $(1.2 \text{ x } 2 \text{ ns}) + (20 \times 2 \text{ ns} \times 0.03) = 2.4 \text{ ns} + 1.2 \text{ ns} = 3.6 \text{ ns}.$ Yes, this is a good choice.

Problem 5

Execution time = Clock cycle × IC × (CPI + Cache miss cycles per instruction) Execution time_{original} = Clock cycle × IC × (CPI + Cache miss cycles per instruction) Execution time_{original} = $2 \times IC \times (2 + 1.5 \times 20 \times 0.05) = 7$ IC Execution time_{new} = $2.4 \times IC \times (2 + 1.5 \times 20 \times 0.03) = 6.96$ IC

Hence doubling the cache size to improve miss rate at the expense of stretching the clock cycle results in essentially no net gain.

Problem 6

The largest direct-mapped cache with one-word blocks would be 256 KB in size. The address breakdown is 14 bits for tag, 16 bits for index, 0 bits for block offset, and 2 bits for byte offset. A total of 12 chips will be required — 4 for overhead.

Problem 7

If the block size is four words, we can build a 512-KB cache. The address breakdown is 13 bits for tag, 15 bits for index, 2 bits for block offset, and 2 bits for byte offset. A total of 18 chips will be required — 2 for overhead.

Problem 8

Here are the cycles spent for each cache:

Cache	Miss Penalty	Instruction Miss Cycle per Instruction	Data Miss Cycle per Data Reference	Total Miss Cycles per Instruction
C1	6 + 1 = 7	4% × 7 = 0.28	8% × 7 = 0.56	0.56
C2	6 + 4 = 10	2% × 10 = 0.20	5% × 10 = 0.50	0.45
C3	6 + 4 = 10	2% × 10 = 0.20	4% × 10 = 0.40	0.40

So, C3 spends the least time on misses and C1 spends the most.

Problem 9

Execution time = CPI × Clock cycle × Instruction count Execution time_{C1} = $0.56 \times 2 \text{ ns} \times \text{IC} = 1.12 \times \text{IC} \times 10^{-9}$ Execution time_{C2} = $0.45 \times 2 \text{ ns} \times \text{IC} = 0.9 \times \text{IC} \times 10^{-9}$ Execution time_{C3} = $0.40 \times 2.4 \text{ ns} \times \text{IC} = 0.96 \times \text{IC} \times 10^{-9}$

So C2 is the fastest and C1 is the slowest.