
EECS 361 
Midterm Solutions 

 
-1 point for any incorrect calculation. 

 
Q1) System Performance (20 points) 
 
The base system spends 82% of the time computing and 18% of the time waiting for the 
disk.  Integer instructions (40% of executed instructions) have a CPI of 1, floating-point 
instructions (30%) have a CPI of 5, and other instructions (30%) have a CPI of 2. 
 
i. a)  The processor is replaced with one that reduces computation time by 35%. (5 points) 
 
       Speedup = 1 / ((1 - 0.82) + 0.82 * 0.65) = 1.40 
 
   b)  The disk is replaced with one that reduces disk wait time by 85%. (5 points) 
 
       Speedup = 1 / ((1 - 0.18) + 0.18 * 0.15) = 1.18 
 
   c)  The floating-point CPI is changed to 3. (5 points) 
 
       Average CPI (old) = 0.40 * 1 + 0.30 * 5 + 0.30 * 2 = 2.5 
       Average CPI (enhanced) = 0.40 * 1 + 0.30 * 3 + 0.30 * 2 = 1.9 
 
       Speedup (computation) = 2.5 / 1.9 = 1.316 
 
       Speedup = 1 / ((1 - 0.82) + 0.82 / 1.316) = 1.245 
 
ii.    Part a results in the best speedup (1 point) 
 
iii.   If the disk was infinitely fast: (4 points) 
   speedup = 1 / (1 - 0.18) = 1.22 <= still slower than part a 
 
       If the floating-point computation was infinitely fast: 
   Average CPI (old) = 2.5 (from part i)  
   Average CPI (enhanced) = 0.40 * 1 + 0.30 * 0 + 0.30 * 2 = 1 
    
   Speedup (computation) = 2.5 / 1 = 2.5 
    
   Speedup = 1 / ((1 - 0.82) + 0.82 / 2.5) = 1.969 <= better speedup than part a 
 
       If the floating-point computation was close to infinitely fast (CPI = 1): 
   Average CPI (old) = 2.5 (from part i)  
   Average CPI (enhanced) = 0.40 * 1 + 0.30 * 1 + 0.30 * 2 = 1.3 
    
   Speedup (computation) = 2.5 / 1.3 = 1.923 



    
   Speedup = 1 / ((1 - 0.82) + 0.82 / 1.923) = 1 / 0.6064 = 1.649 <= better speedup 
than part a 
 
       If the floating-point computation was close to just faster (CPI = 2): 
   Average CPI (old) = 2.5 (from part i)  
   Average CPI (enhanced) = 0.40 * 1 + 0.30 * 2 + 0.30 * 2 = 1.6 
    
   Speedup (computation) = 2.5 / 1.6 = 1.5625 
    
   Speedup = 1 / ((1 - 0.82) + 0.82 / 1.5625) = 1 / 0.7048 = 1.4188 <= better 
speedup than part a 
 
Wrong formula = 0 points.  
 
Some people chose to combine the speedups for some reason.  So the answer would be  
 
1 / ((0.82*.65) + (0.18*.15)) =1 / (0.533 + 0.027) = 1 / 0.56 = 1.7857 
 
Only 2 points for correct answer with not enough little work. 
 
Q2) MIPS ISA (35 points) 
 
1 point for trying on any of them for anything related. 
 
i. In MIPS, why is the offset of a branch instruction from the PC of the next 
instruction instead of the PC of the current instruction? (8 points) 
 
The PC of the next instruction can be computed in the first stage of the pipeline.  By 
making the result of the branch be at this value + offset, only one more arithmetic 
operation is necessary in the event of a branch.  If the branch target was the PC + offset 
instead of PC + 4 + offset, the current value of the PC would have to be subtracted by 4 
before computing the branch target (or of course both PC + 4 and PC would have to be 
stored). 
 
Since PC + 4 is computed anyway, 4 points. 
Must explain that all we have is PC + 4 for full credit. 
 
ii. Why are the offsets for branch instructions and displacements for load and store 
instructions in the MIPS ISA limited to 16-bits? (8 points) 
 
The opcode and two register addresses use up 16 bits of the instruction.  To support 
offsets greater than 16 bits, longer fixed-length instructions or variable-lengthed 
instructions would be required. 
 



4 points for saying the 16 bits is enough to jump.  2 points for saying to keep instructions 
small. 
 
iii. Why is the branch offset shifted left by 2 bits while the displacement for loads 
and stores are not shifted? (9 points) 
  
4 points for branch offset. 
 
Because instructions are four bytes long, their addresses always have their two least-
significant bits = 0, which is what the shift accomplishes.   
 
5 points for explaining load and stores.   
 
Data needs to be byte-addressable, so displacements are not shifted. 
 
Q3) Pipelining (25 points) 
 
i. In a typical 5 or 6 stage pipeline, the CPI might be in the range of 1.0 to 1.5.  
Does this mean that most instructions have a latency of 1 or 2 cycles? (8 points) 
 
No; in a pipeline, an instruction may be completed every cycle or two due to parallelism 
and overlap, but the instruction latency is still bound by the length of the pipeline.  
Throughput and latency are different. 
 
Correct answer without explanation is 3 points.  Incorrect explanation and correct answer 
is 0 points. 
 
ii. Why do conditional branches impact the performance of a pipelined 
implementation? (8 points) 
 
Conditional branches present a control hazard that can stall instruction fetch and thus 
create bubbles in the pipeline. 
 
iii. 3 solutions to reduce impact of branches in a pipeline: (9 points) 
 
- Delayed branches execution: change the semantics of the branch to always execute the 
instruction immediately following the branch regardless of branch outcome, and have the 
compiler insert a non-dependent instruction in this branch delay slot. 
 
- Any kind of static or dynamic branch prediction: Continue executing instruction from 
the not-taken path of the branch and squash instructions if the branch is taken. 
      
- Move up the branch resolution point: resolve branches in the ID stage rather than in the 
MEM or WB stages, for example using SET instructions following by simple branch 
instructions. 
 



-Use redundant hardware to calculate both paths until the branch is resolved 
 
1 point for data forwarding but not full credit since it’s a general solution and assumed 
for pipelined. 
 
Q4) Single-Cycle Datapath & Control (10 points) 
 

 

 
Note: The key to this problem is to realize that sw addi is just like sw except that the 
value “rs + immediate” computed in the ALU needs to be stored in the rt register. 
 
Anything wrong is -2 points.  Not specifying the don’t care is -1 point. 
 
Q5) Caches (20 points) 
 
1 point per part (tag, index, block offset, and byte offset).  For fully associative, 2 points 
on index. 
 



i) (16 points) 
 
direct mapped: Since there are 4 words per block and 256K words in the cache, 
there are 256K/4 = 64K blocks in the cache. Thus, log(64K) = 16 bits of the address 
are needed to specify the cache block. The remaining bits are used for the tag. The 
partition would be: 
 
bits 0-1: byte offset (2) 
2-3: word offset (2) 
4-19: cache block index (16) 
20-31: tag (12) 
 
2-way set associative: Since there two blocks per set, and 64K blocks in the cache 
(see above), there must be 32K sets. Thus, the number of bits required to specify a 
set is log(32K) = 15. The remaining bits are used for the tag, as follows: 
 
bits 0-1: byte offset (2) 
2-3: word offset (2) 
4-18: set index (15) 
19-31: tag (13) 
 
4-way set associative: Since there four blocks per set, and 64K blocks in the cache 
(see above), there must be 16K sets. Thus, the number of bits required to specify a 
set is log(32K) = 14. The remaining bits are used for the tag, as follows: 
 
bits 0-1: byte offset (2) 
2-3: word offset (2) 
4-17: set index (14) 
18-31: tag (14) 
 
fully associative: Since a block can be placed anywhere in the cache, all the 
remaining bits (other than the word and byte offsets) must be used as the tag. 
Hence, 
 
bits 0-1: byte offset (2) 
2-3: word offset (2) 
4-31: tag (28) 
 
ii. Cache misses can be characterized as one of the following: compulsory misses, 
capacity misses, and conflict misses. Describe how each of these kinds of misses can be 
addressed in the hardware. (4 points) 
 
Compulsory misses, i.e. cache misses that occur the first time a datum or instruction is 
accessed, can be often reduced by increasing the size of the cache block. Since increasing 
the size of the cache block causes more neighboring locations to be cached when a cache 
miss occurs, it increases the likelyhood that a datum that has not yet been accessed will 



be in the cache later on when it is accessed. (i.e. better data locality).  Writing that 
increasing the size of the cache is too general, unless a good explanation is given. 
 
UPDATE:  Since the lecture slides and book refer to the compulsory miss as the first 
miss to a block (not a first miss to a location), explaining that nothing can be done is also 
an acceptable answer. 
 
Capacity misses, i.e. cache misses that occur because the cache isn’t large enough to hold 
all the blocks that a program is currently accessing, can be reduced by increasing the size 
of the cache. 
 
Conflict misses, i.e. cache misses that occur because two or more blocks currently in use 
map to the same location in the cache, can be reduced by increasing the associativity of 
the cache.  The greater the associativity, the larger the set size. In this way, two blocks 
that map to the same set can be accommodated within the set.  Larger number of indexes 
works too. 
 


