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Abstract

Parallel scientific applications store and retrieve very
large, structured datasets. Directly supporting these
structured accesses is an important step in provid-
ing high-performance I/O solutions for these applica-
tions. High-level interfaces such as HDF5 and Parallel
netCDF provide convenient APIs for accessing struc-
tured datasets, and the MPI-IO interface also supports ef-
ficient access to structured data. However, parallel file
systems do not traditionally support such access.

In this work we present an implementation of structured
data access support in the context of the Parallel Virtual
File System (PVFS). We call this support “datatype I/O”
because of its similarity to MPI datatypes. This support is
built by using a reusable datatype-processing component
from the MPICH2 MPI implementation. We describe how
this component is leveraged to efficiently process structured
data representations resulting from MPI-IO operations. We
quantitatively assess the solution using three test applica-
tions. We also point to further optimizations in the process-
ing path that could be leveraged for even more efficient op-
eration.

1. Introduction

Scientific applications have begun to rely heav-
ily on high-level I/O APIs such as HDF5 [7] and parallel
netCDF [9] for their storage needs. These APIs allow sci-
entists to describe their data in terms that are meaningful
to them, as structured, typed data, and to store and re-
trieve this data in a manner that is portable across all
the platforms they might find useful. Because scien-
tists have a richer language with which to describe their
data, I/O for an application as a whole can be described
in terms of the datatypes and organizations that the sci-
entist is really using, rather than posing I/O operations in

terms of independent reads or writes of bytes on many pro-
cessors.

These APIs also allow I/O experts to embed the knowl-
edge of how to efficiently access storage resources in a li-
brary that many applications can use. The result is a big
win for both groups. Implementors of high-level I/O li-
braries in turn use MPI-IO as their interface to storage re-
sources. This lower-level interface maps higher-level ac-
cesses to file system operations and provides a collection of
key optimizations. MPI-IO also understands structured data
access, providing high-level I/O API programmers the abil-
ity to describe noncontiguous accesses as single units, just
as the scientist did, and to interface to underlying resources
through a portable API.

Today’s parallel file systems do not, for the most part,
support structured or even noncontiguous accesses. Instead
they support the POSIX interface, allowing for only con-
tiguous regions to be accessed and modified. This approach
severely limits the ability of the MPI-IO layer to succinctly
and efficiently perform the accesses that have been de-
scribed by these higher layers.

A significant step in the direction of efficient structured
data access is thelist I/O interface [15], implemented in the
Parallel Virtual File System (PVFS) and supported under
MPI-IO [4, 3]. This new interface, when well supported by
the parallel file system, allows structured accesses to be de-
scribed and serves as a solid building block for an MPI-
IO implementation. However, because it does not retain any
information on the regularity of access, such as stride in-
formation, the representation of structured accesses can be
very large. Building, transmitting, and processing this repre-
sentation can significantly limit performance when accesses
consist of many small regions [17].

In this work we investigate the next step in efficient sup-
port for structured data access. The approach,datatype I/O,
provides a mechanism for mapping MPI datatypes (passed
to MPI-IO routines) into a type representation understood
by the file system. This new representation maintains the
concise descriptions possible with MPI type constructors
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Figure 1. Example POSIX I/O call. Using tra-
ditional POSIX interfaces for this access pat-
tern cost five I/O calls, one per contiguous re-
gion.

such asMPI Type vector. This representation is passed
over the network to I/O servers, which may process this di-
rectly, avoiding the overhead of building lists of I/O regions
at the MPI-IO layer, passing these lists over the network as
part of the file system request, or processing these lists dur-
ing I/O.

In Section 2 we explain the existing approaches for
performing noncontiguous access, including list I/O. In
Section 3 we describe our prototype implementation of
datatype I/O, the component on which it is built, how
datatype I/O is integrated into the parallel file system, and
some limitations of the implementation. In Section 4 we ex-
amine the performance of our prototype using three bench-
marks: a tile reading application, a 3D block decomposition
I/O kernel, and a simulation of the FLASH I/O checkpoint
process. In Section 5 we discuss related efforts and future
directions for this work.

2. Current Noncontiguous I/O Approaches

Noncontiguous data is simply data that resides in dif-
ferent areas, with gaps between them. Noncontiguous I/O
refers to an I/O operation in which data in memory, in file,
or in both is noncontiguous. Several approaches have been
implemented for supporting noncontiguous I/O access. The
first, and most naive, is the approach we callPOSIX I/O.

2.1. POSIX I/O

Most parallel file systems implement the POSIX I/O in-
terface [8]. This interface provides the capability to per-
form contiguous data access only. To support noncontigu-
ous access with POSIX I/O, one must break the noncon-
tiguous I/O into a sequence of contiguous I/O operations.
This approach to noncontiguous I/O access requires signif-
icant overhead in the number of I/O requests that must be
processed by the underlying file system. As shown in Fig-
ure 1, even simple noncontiguous access patterns can re-
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Figure 2. Example data sieving I/O call. By
first reading a large contiguous file region
into a buffer, data movement is subsequently
performed between memory and the buffer.

sult in numerous contiguous I/O operations. Because oper-
ations in parallel file systems often require data movement
over a network, latency for I/O operations can be high. For
this reason performing many small I/O operations to ser-
vice a noncontiguous access is very inefficient. Fortunately
for users of these file systems, two important optimizations
have been devised for more efficiently performing noncon-
tiguous I/O using only POSIX I/O calls: data sieving and
two-phase I/O.

2.2. Data Sieving I/O

To address the problem of excessive overhead resulting
from using POSIX I/O for contiguous I/O access,data siev-
ing reduces the number of I/O operations [13]. When using
data sieving, a large region encompassing all the data in the
file is accessed with a minimum number of POSIX I/O op-
erations. For read operations, a large contiguous data region
containing desired data is first read into a temporary buffer,
and the desired data is then extracted into the user’s buffer.
For write operations, a read-modify-write sequence is per-
formed. A large contiguous region is read into a temporary
buffer, new data is placed into the appropriate positions in
this buffer, and the buffer is then written back to storage. In
order to ensure consistency during concurrent operations, a
lock must be held on the region to be modified during the
read-modify-write process.

This approach is efficient when the desired noncontigu-
ous regions exhibit good spatial locality (i.e., are close to-
gether). When data is more dispersed, however, data siev-
ing accesses a great deal of additional data in order to per-
form the operation and, at some point, becomes less effec-
tive than simply using a sequence of POSIX I/O calls.
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Figure 3. Example collective I/O call. Inter-
leaved file access patterns can be effectively
accessed in larger file I/O operations with the
two-phase I/O method.

2.3. Two-Phase I/O

When used to their fullest, interfaces such as MPI-IO
give a great deal of information about how the application as
a whole is accessing storage. One example of this is the col-
lective I/O calls that are part of the MPI-IO API. By making
collective I/O calls, applications tell the MPI-IO library not
only that each process is performing I/O but also that these
I/O operations are part of a larger whole. This information
provides additional opportunities for optimization over ap-
plication processes performing independent operations.

The two-phase I/O optimization, developed by Thakur
et al., is one example of a collective I/O optimization [12].
The two-phase method builds on POSIX I/O operations and
data sieving. The two-phase method identifies a subset of
the processes that will actually perform I/O; these processes
are known asaggregators. Each aggregator is responsible
for I/O to a specific portion of the file; the implementation
in ROMIO calculates these regions dynamically based on
the size and location of the accesses in the collective opera-
tion.

Read operations using the two-phase method are per-
formed as shown in Figure 3. First, aggregators read a con-
tiguous region containing desired data from storage and put
this data in a temporary buffer. Next, data is redistributed
from these temporary buffers to the final destination pro-

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��File

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���Memory

List I/O Example

Figure 4. Example list I/O call. Only a single
I/O request is necessary to handle this non-
contiguous access because of more descrip-
tive I/O requests.

cesses. Write operations are performed in a similar man-
ner. First, data is gathered from all processes into tempo-
rary buffers on aggregators. Next, this data is written back
to storage using POSIX I/O operations. An approach simi-
lar to data sieving is used to optimize this write back to stor-
age in the case where there are still gaps in the data. Alter-
natively, other noncontiguous access methods, such those
described in upcoming sections, can be leveraged for fur-
ther optimization.

Two-phase I/O has a distinct advantage over data sieving
alone in that it is significantly more likely to see dense re-
gions of desired data because of combining the regions of
many processes. Hence, the reads and writes in two-phase
I/O are more efficient than data sieving in many cases. How-
ever, two-phase I/O also relies on the MPI implementation
providing high-performance data movement. If the MPI im-
plementation is not significantly faster than the aggregate
I/O bandwidth in the system, the overhead of the additional
data movement in two-phase I/O is likely to prevent it from
outperforming the direct access optimizations (data sieving
I/O, list I/O, and datatype I/O).

2.4. List I/O

The list I/O interface is an enhanced parallel file system
interface designed to support noncontiguous accesses [15].
List I/O provides an interface capable of describing accesses
that are noncontiguous in both memory and file (see proto-
types in Figure 5). With this interface an MPI-IO imple-
mentation canflatten the memory and file datatypes (con-
vert them into lists of contiguous regions) and then describe
an MPI-IO operation with a single list I/O call. Given an ef-
ficient implementation in the parallel file system, this inter-
face can significantly boost performance. In previous works
we discussed the implementation of list I/O in PVFS and



support for list I/O under the ROMIO MPI-IO implementa-
tion [4, 3].

The major drawbacks of list I/O are the creation and pro-
cessing of these large lists and the transmission of these lists
from client to server inside the parallel file system layer.
Additionally, given that we want to bound the size of I/O
requests within the file system, only a fixed number of re-
gions can be described in one request. Thus, while list I/O
does significantly reduce the number of I/O operations (in
our implementation by a factor of 64), a linear relationship
still exists between the number of noncontiguous regions
and the number of I/O operations (within the file system
layer). Hence, while list I/O is an important addition to the
optimizations available under MPI-IO, it does not replace
two-phase or data sieving, but rather augments them.

3. Datatype I/O

Datatype I/O is an effort to address the deficiencies seen
in the list I/O interface when faced with accesses that are
made up of many small regions, particularly ones that ex-
hibit some degree of regularity. Datatype I/O borrows from
the datatype concept that has proven invaluable for both
message passing and I/O in MPI applications. The construc-
tors used in MPI datatypes allow for concise descriptions of
the regular, noncontiguous data patterns seen in many sci-
entific applications, such as extracting a row from a two-
dimensional dataset.

The datatype I/O interface, shown in Figure 6, replaces
the lists of I/O regions seen in the list I/O interface with
an address, count, and datatype for memory and a displace-
ment, datatype, and offset into the datatype for file. These
correspond directly to the address, count, datatype, and off-
set into the file view passed into an MPI-IO call and the dis-
placement and file view datatype previously defined for the
file. The datatype I/O interface is not meant to be used by
application programmers; it is an interface specifically for
use by I/O library developers. Helper routines are used to
convert MPI datatypes into the format used by the datatype
I/O functions. A full-featured implementation of datatype
I/O would

� maintain a concise datatype representation locally and
avoid datatype flattening,

� use this concise datatype representation when describ-
ing accesses, and

� service accesses using a system that processes this rep-
resentation.

Our prototype implementation of datatype I/O was writ-
ten as an extension to the Parallel Virtual File System. The
ROMIO MPI-IO implementation was likewise modified to
use datatype I/O calls for PVFS file system operations.

We emphasize while we present this work in the context
of MPI-IO and MPI datatypes, nothing precludes our using
the same approach to directly describe datatypes from other
APIs, such as HDF5 hyperslabs.

3.1. The Parallel Virtual File System and ROMIO
MPI-IO Implementations

The Parallel Virtual File System is a parallel file system
for commodity Linux clusters [1]. It provides both a cluster-
wide consistent name space and user-defined file striping.
PVFS is a client-server system consisting of clients, a meta-
data server, and I/O servers. Clients retrieve a list of the I/O
servers that contain the file data from the metadata server at
file open time. Subsequent reading or writing is processed
directly by the I/O servers without manager interaction.

The approach that PVFS uses for processing requests is
detailed in [10]. In short, PVFS builds a data structure called
a job on each client and server for every client/server pair
involved in an I/O operation. This structure points to a list
of accesses, which are contiguous regions in memory (on
a client) or in file (on a server) that must be moved across
the network. This is essentially the flattened representation
of the datatype being used to move data. While this is not
ideal from a processing overhead standpoint, we will retain
this representation in this testing; it would be very time con-
suming to reimplement this component of PVFS.

ROMIO is the MPI-IO implementation developed at Ar-
gonne National Laboratory [14]. It builds on the MPI-1
message-passing operations and supports many underlying
file systems through the use of an abstract interface for I/O
(ADIO). ADIO allows the use of file system specific opti-
mizations such as the list I/O and datatype I/O interfaces
described here. Additionally, ROMIO implements the data
sieving and two-phase optimizations described in Sections
2.2 and 2.3. It also implements a datatype flattening sys-
tem that is used to support list I/O for PVFS.

3.2. Datatype I/O Implementation in PVFS and
ROMIO

Our datatype I/O prototype builds on the datatype pro-
cessing component in MPICH2 [11]. Three key character-
istics of this implementation make it ideal for reuse in this
role:

� Simplified type representation (over MPI datatypes)

� Support for partial processing of datatypes

� Separation of type parsing from action to perform on
data

Types are described by combining a concise set of descrip-
tors calleddataloops. Dataloops can be of five types: con-
tig, vector, blockindexed, indexed, and struct [6]. These five



int listio_read(int fd, int mem_list_count, void *mem_offsets[],
int mem_lengths[], int file_list_count, int file_offsets[],
int file_lengths[])

int listio_write(int fd, int mem_list_count, void *mem_offsets[],
int mem_lengths[], int file_list_count, int file_offsets[],
int file_lengths[])

Figure 5. List I/O prototypes

int dtype_read(int fd, void *mem_addr, int mem_dtype_count, dtype *mem_dtype,
int file_dtype_disp, int offset_into_dtype, dtype *file_dtype)

int dtype_write(int fd, void *mem_addr, int mem_dtype_count, dtype *mem_dtype,
int file_dtype_disp, int offset_into_dtype, dtype *file_dtype)

Figure 6. Datatype I/O prototypes
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Figure 7. Example datatype I/O call. Since
file datatype are broken into file offset-length
pairs at the I/O servers, the number of I/O re-
quests is dramatically reduced for regular ac-
cess patterns.

types capture the maximum amount of regularity possible,
keeping the representation concise. At the same time these
are sufficient to describe the entire range of MPI datatypes.
Simplifying the set of descriptors aids greatly in implement-
ing support for fast datatype processing because it reduces
the number of cases that the processing code must handle.
The type’s extent is retained in this representation (a gen-
eral concept) while the MPI-specific LB and UB values are
eliminated. This simplification has the added benefit of al-
lowing resized type processing with no additional overhead
in our representation. We use dataloops as the native repre-
sentation of types in our PVFS implementation.

The MPICH2 datatype component provides the func-
tions necessary to process dataloop representations. We pro-
vide functions to convert MPI datatypes into dataloops and
functions that are called during processing to create the
offset-length pairs we need to build the PVFS job and access
structures. Additionally we provide functionality for ship-
ping dataloops as part of I/O requests. In our prototype, MPI
datatypes are converted to dataloops by a recursive process
built by using the functionsMPI Type get envelope
andMPI Type get contents. By utilizing these MPI
functions, we can ensure the portability of our datatype I/O
method across different MPI implementations. The result-
ing dataloop representation is passed into the datatype I/O
calls and from there sent to the relevant I/O servers. The dat-
aloops are converted into the job and access structures on
servers and clients side to create the traditional PVFS job
and access structures. Figure 7 outlines this process. PVFS-
specific functions for creating these offset-length pairs are
passed to the dataloop processing component. These func-
tions are written to efficiently convert contiguous, vector,
and indexed dataloops into offset-length pairs, and they in-
clude optimizations to coalesce adjacent regions. The par-



tial processing capabilities of the datatype processing com-
ponent are used to limit the overhead of storing the interme-
diate offset-length pairs that are created through dataloop
processing.

This is only a partial implementation of the datatype I/O
approach, in that a complete approach would avoid the cre-
ation of lists of regions on server and client. However, we
will show that even without this final capability our proto-
type exhibits clear performance benefits over the other ap-
proaches.

Because the MPI datatypes are converted at every MPI
I/O operation into dataloops, we expect there to be slightly
higher overhead in the local portion of servicing these op-
erations in comparison to list I/O. On the other hand, be-
cause we are concisely describing these types, we expect
to see significantly less time spent moving the I/O descrip-
tion across the network.

4. Performance Evaluation

To evaluate the performance of the datatype I/O op-
timization against the other noncontiguous I/O methods,
we ran a series of noncontiguous MPI-IO tests including
a three-dimensional block access test, a tile reader bench-
mark, and the FLASH I/O simulation. For each test we pro-
vide a table summarizing the I/O characteristics of the test
for each of the tested access methods.

4.1. Benchmark Configuration

Our results were gathered on Chiba City at Argonne Na-
tional Laboratory [2]. Chiba City has 256 nodes available
with dual Pentium III processors, 512 MBytes of RAM,
a single 9 GByte Quantum Atlas IV SCSI drive, and a
100 Mbits/sec Intel EtherExpress Pro fast-ethernet card op-
erating in full-duplex mode. Each node is using RedHat
7.3 with kernel 2.4.21-rc1 compiled for SMP use. Our
PVFS server configuration for all test cases included 16 I/O
servers (one also doubled as a metadata server). PVFS files
were created with a 64 KByte strip size (1 MByte stripes
across all servers). In the tile reader tests we allocate one
process per node because so few nodes are involved. In the
other two cases we allocate two processes per node. Our
prototype was built using the ROMIO version 1.2.4 and
PVFS version 1.5.5. All data sieving and collective oper-
ations were conducted with a 4 Mbyte buffer size. Our re-
sults are the average of three test runs.

All read benchmarks are conducted with POSIX I/O,
data sieving I/O, two-phase collective I/O, list I/O, and
datatype I/O. ROMIO can support write operations with
data sieving I/O only if file locking is supported by the un-
derlying file system. Since PVFS does not support file lock-
ing, we cannot perform data sieving writes on PVFS. We
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Figure 8. Tile reader access pattern and per-
formance

note, however, that for file systems that do allow file lock-
ing, data sieving performance for writes will have worse
performance than data sieving reads for the same access
pattern, for two reasons. Data sieving writes perform the
same data movement from file system into the data siev-
ing buffer at the client and then data movement from data
sieving buffer to memory buffer, but they also have to write
this data back, thereby doubling the network data trans-
fer of a data sieving read. Also, locking the modified re-
gions can cause serialization of I/O requests for overlap-
ping requests, another serious overhead. On the other hand,
the MPI-IO consistency semantics do allow us to perform a
read-modify-write during collective I/O. Thus, an approach
similar to data sieving is used in the two-phase write case.

4.2. Tile Reader Benchmark

Often the amount of detail in scientific application visu-
alization exceeds the display capabilities of a single desktop
monitor. In these cases an array of displays, usually LCDs
or projectors, is used to create a more high-resolution dis-
play than would otherwise be available. Because of the high



Desired Data Data Accessed # of I/O Ops Resent Data
per Client per Client per Client per Client

POSIX I/O 2.25 MB 2.25 MB 768 —
Data Sieving I/O 2.25 MB 5.56 MB 2 —
Two-Phase I/O 2.25 MB 1.70 MB 1 1.50 MB
List I/O 2.25 MB 2.25 MB 12 —
Datatype I/O 2.25 MB 2.25 MB 1 —

Table 1. I/O Characteristics of the tile reader benchmark

density of these displays, the I/O rates necessary to display
data are very high. Typically an array of PCs is used to pro-
vide inputs to the individual devices, ortiles, that make up
the display. The tile reader benchmark is a tool for measur-
ing the rate at which an I/O system can serve data to such a
system.

The tile reader benchmark uses a 3 by 2 array of compute
nodes (shown in Figure 8) to each display a fraction of the
entire frame. By accessing only the tile data for its own dis-
play, the compute nodes exhibit a simple noncontiguous file
access pattern. The six compute nodes each render a portion
of the display with 1024 pixel by 768 pixel resolution and
24-bit color. In order to hide the merging of display edges,
there is a 270-pixel horizontal overlap and a 128-pixel verti-
cal overlap between tiles. Each frame is 10.2 MBytes. This
data is read into a contiguous buffer in memory. Our tests
were conducted with a frame set consisting of 100 frames
played back in sequence.

We can see in Figure 8 that datatype I/O is the clear win-
ner in terms of performance for this benchmark, 37% faster
than list I/O. The characteristics of the resulting reads using
the optimizations tested are shown in Table 1. The datatype
I/O result is due to the combination of a single, concise I/O
operation and no extra data file data being transferred, and
no data passing over the network more than once. In con-
trast, POSIX I/O requires 768 read operations, data sieving
requires more than twice as much data to be read as is de-
sired, two-phase I/O requires resending about 88% of the
data read, and list I/O sends a list of 768 offset-length pairs
as part of the requests (9 KBytes of total data in I/O re-
quests from each client).

4.3. ROMIO Three-Dimensional Block Test

The ROMIO test suite comprises a number of correct-
ness and performance tests. One of these, the collperf.c
test, measures the I/O bandwidth for both reading and writ-
ing to a file with a file access pattern of a three-dimensional
block-distributed array. The three-dimensional array, shown
graphically in Figure 9, has dimensions 600 x 600 x 600
with an element size of an integer (4 bytes on our test plat-
form). Each process reads or writes a single one of these
blocks. The memory datatype is contiguous.
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Figure 10. 3D block read and write perfor-
mance

Table 2 characterizes the resulting I/O patterns using our
tested optimizations, and Figure 10 shows the results of our
tests. Again, datatype I/O is the clear performance winner;
peak performance is more than double that of the next-best
approach. Of note is the unusual drop in performance in
the read case as number of processes increases. We believe
that this is due to the increased overhead of offset-length
list processing on the server side. Because the servers are
the source of data, and clients are operating on a contigu-



Desired Data Data Accessed # of I/O Ops Resent Data
per Client per Client per Client per Client

8 Clients

POSIX I/O 103 MB 103 MB 90,000 —
Data Sieving I/O 103 MB 412 MB 103 —
Two-Phase I/O 103 MB 103 MB 26 77.2 MB
List I/O 103 MB 103 MB 1408 —
Datatype I/O 103 MB 103 MB 1 —

27 Clients

POSIX I/O 30.5 MB 30.5 MB 40,000 —
Data Sieving I/O 30.5 MB 274.7 MB 69 —
Two-Phase I/O 30.5 MB 30.5 MB 8 27.1 MB
List I/O 30.5 MB 30.5 MB 626 —
Datatype I/O 30.5 MB 30.5 MB 1 —

64 Clients

POSIX I/O 12.9 MB 12.9 MB 22,500 —
Data Sieving I/O 12.9 MB 206.0 MB 52 —
Two-Phase I/O 12.9 MB 12.9 MB 4 12.1 MB
List I/O 12.9 MB 12.9 MB 352 —
Datatype I/O 12.9 MB 12.9 MB 1 —

Table 2. I/O Characteristics of the ROMIO three-dimensional block test

a) 8 Processes b) 27 Processes c) 64 Processes

Amount of data read by a single process

Figure 9. Data distribution for 3D block accesses

ous region of memory, any delays caused by list process-
ing will directly impact performance. On the other hand, in
the write case the servers are data sinks. Buffering in the
TCP stack helps hide this inefficiency, although it might ap-
pear at larger numbers of processes. This overhead is not
visible in the list I/O results because the number of I/O op-
erations and the size of the I/O requests obscures this effect.
A full-featured datatype I/O implementation that operated
directly on the dataloop representation would likely not ex-
hibit this behavior.

4.4. FLASH I/O Simulation

The FLASH code is an adaptive mesh refinement ap-
plication that solves fully compressible, reactive hydrody-
namic equations, developed mainly for the study of nu-
clear flashes on neutron stars and white dwarfs [5]. Because
the FLASH code has a very long execution time, check-
pointing is a necessary component of the application. Dur-
ing checkpointing, blocks of data are reorganized from the
in-memory organization, which includes ghost cells, into a
new in-file organization. The in-file organization is stored



Desired Data Data Accessed # of I/O Ops Resent Data
per Client per Client per Client per Client

POSIX I/O 7.50 MB 7.50 MB 983,040 —
Data Sieving I/O — — — —
Two-Phase I/O 7.50 MB 7.50 MB 2 7.5 MB * ���

�

List I/O 7.50 MB 7.50 MB 15,360 —
Datatype I/O 7.50 MB 7.50 MB 1 —

Table 3. I/O Characteristics of the FLASH I/O simulation (n is the # of clients)
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Figure 11. FLASH memory layout

by variable for convenience during post processing. As a re-
sult the access pattern is noncontiguous in both memory and
file.

Figure 11 shows the layout of data in the memory of
FLASH processes. Each process holds 80 blocks. Each
block is a three-dimensional array of data elements sur-
rounded by guard cells. Each data element consists of 24
variables. When writing data we reorganize the data so that
all values for variable 0 are stored first, then variable 1, and
so on. Since every processor writes 80 FLASH blocks to
file, as we increase the number of clients, the dataset size
increases linearly as well. Every processor adds 7 MBytes
to the file, so the dataset ranges between 14 MBytes (at 2
clients) to 896 MBytes (at 128 clients).

Table 3 provides the I/O characteristics of the test us-
ing the available optimizations. Figure 12 shows the re-
sults of these tests. This is the first test in which the mem-
ory datatype is noncontiguous; thus it is the first time that
the overhead of list processing might affect the clients. We
see this in both the list I/O and datatype I/O cases; both
underperform at small numbers of clients. As the number
of clients increases, the clients are eventually able to feed
the servers adequately. At 96 processes datatype I/O per-
formance rises to nearly 40 Mbytes/sec, 37% faster than
two-phase. This trend continues at higher numbers of pro-
cesses. We would expect that a datatype I/O system that op-
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Figure 12. FLASH I/O Performance

erated directly on the dataloop representation would allow
clients to more effectively push data to servers, resulting in
improved performance at smaller numbers of clients. List
I/O, because of the size and number of I/O requests, is not
able to overtake two-phase for the tested numbers of pro-
cesses.

This case shows that two-phase I/O still has a place as
an I/O optimization. Because data is not wasted and I/O ac-



cesses are large, two-phase is able to provide good perfor-
mance despite moving the majority of the data over the net-
work twice.

5. Conclusions and Future Work

Datatype I/O provides the opportunity for extremely ef-
ficient processing of structured, independent I/O requests.
Our tests show that this approach outperforms both list I/O
and data sieving I/O in virtually all situations. Further, it
supplants two-phase I/O as the preferred optimization in
many cases as well. Datatype I/O in conjunction with the
two-phase collective I/O optimization makes a strong MPI-
IO optimization suite. We note that in almost every case
POSIX I/O alone would result in a nearly unusable system
from the performance perspective; these optimizations are a
necessary part of scientific parallel I/O.

This prototype does not fully exploit the potential of the
datatype I/O approach. We are implementing a more full-
featured version of the approach in our second-generation
parallel file system, PVFS2. This version will remove the
creation of the I/O lists on both client and server, further
widening the performance gap between datatype I/O and
other optimizations. Datatype caching similar to that seen
in some remote memory access implementations [16] could
boost the performance of PVFS datatype I/O by further re-
ducing I/O request overhead. Further optimization of the ap-
proach can be provided in ROMIO as well. Caching the dat-
aloop representations of types locally would be one way to
improve datatype I/O. Leveraging datatype I/O underneath
two-phase I/O would boost performance of the collectives
further.
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