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Evaluating Structured I/O Methods for Parallel File
Systems

Avery Ching, Alok Choudhary, Wei-keng Liao, Robert Ross, William Gropp

Abstract— Modern data-intensive structured datasets con-
stantly undergo manipulation and migration through parallel
scientific applications. Directly supporting these time consuming
operations is an important step in providing high-performance
I/O solutions for modern large-scale applications. High-level
interfaces such as HDF5 and Parallel netCDF provide convenient
APIs for accessing structured datasets, and the MPI-IO interface
also supports efficient access to structured data. Parallel file
systems do not traditionally support such structured access from
these higher level interfaces.

In this work we present two contributions. First, we demon-
strate an implementation of structured data access support in
the context of the Parallel Virtual File System (PVFS). We call
this support “datatype I/O” because of its similarity to MPI
datatypes. This support is built by using a reusable datatype-
processing component from the MPICH2 MPI implementation.

The second contribution of this work is a comparison of I/O
characteristics when using modern high-performance noncon-
tiguous I/O methods. We use our I/O characteristics comparison
to assess the performance of all the noncontiguous I/O methods
using three test applications. We also point to further optimiza-
tions that could be leveraged for even more efficient operation.

Index Terms— datatype, evaluation, noncontiguous, parallel
I/O, PVFS, high performance, MPI-IO, I/O.

I. I NTRODUCTION

SCIENTIFIC applications have begun to rely heavily on
high-level I/O APIs such as HDF5 [1] and parallel

netCDF [2] for their storage needs. These APIs allow sci-
entists to describe their data in meaningful terms to them, as
structured, typed data, and to store and retrieve this data in a
manner that is portable across all the platforms they might find
useful. Because scientists have richer languages with which to
describe their data, I/O for an application as a whole can be
described in terms of the datatypes and organizations that the
scientists are really using, rather than in terms of independent
reads or writes of bytes on many processors.

These APIs also allow I/O experts to embed the knowledge
of how to efficiently access storage resources in a library that
many applications can use. The result is a big win for both
groups. Implementors of high-level I/O libraries in turn use
MPI-IO as their interface to storage resources. This lower-level
interface maps higher-level accesses to file system operations
and provides a collection of key optimizations. MPI-IO also
understands structured data access, enabling high-level I/O
API programmers to describe noncontiguous accesses as single
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units, just as the scientist did, and to interface to underlying
resources through a portable API.

Today’s parallel file systems do not, for the most part,
support structured or even noncontiguous accesses. Instead
they support the POSIX interface, allowing for only con-
tiguous regions to be accessed and modified. This approach
severely limits the ability of the MPI-IO layer to succinctly
and efficiently perform the accesses that have been described
by these higher layers.

A significant step in the direction of efficient structured
data access is thelist I/O interface [3], implemented in the
Parallel Virtual File System (PVFS) and supported under
MPI-IO [4], [5]. This new interface, when well supported
by the parallel file system, allows structured accesses to be
described and serves as a solid building block for an MPI-IO
implementation. This interface is general, easy to understand,
and could be implemented for most file systems. Emerging file
systems will likely have such an interface. However, because
it does not retain any information on the regularity of access,
such as stride information, the access pattern representation
of structured accesses can be very large. Building, transmit-
ting, and processing this representation can significantly limit
performance when accesses consist of many small regions [6].

In this work we investigate the next logical step in efficient
support for structured data access. The approach,datatype I/O,
provides a mechanism for mapping MPI datatypes (passed
to MPI-IO routines) into a type representation understood
by the file system. The new representation maintains the
concise descriptions possible with MPI type constructors such
as MPI Type vector. This representation is passed over
the network to I/O servers, which may process this directly,
avoiding the overhead of building lists of I/O regions at the
MPI-IO layer, passing these lists over the network as part of
the file system request, or processing these lists during I/O.

In addition to introducing this new noncontiguous I/O
method, we also present an analytic comparison of the various
noncontiguous I/O methods. From these comparisons, we can
infer which noncontiguous I/O operations favor particular
noncontiguous I/O methods. We describe how to determine the
performance characteristics of the various noncontiguous I/O
methods for several major I/O characteristic parameters. These
I/O characteristics are then used for each benchmark to help
understand the performance comparison between differing
noncontiguous I/O methods.

In Section II we explain the existing approaches for per-
forming noncontiguous access, including list I/O. In Section III
we describe our prototype implementation of datatype I/O,
the component on which it is built, how datatype I/O is
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Fig. 1. Example POSIX I/O call. Using traditional POSIX interfaces for this
access pattern costs five I/O calls, one per contiguous region.

integrated into the parallel file system, and some limitations
of the prototype implementation. In Section IV we present
an in-depth analysis of the I/O characteristics of the various
noncontiguous I/O methods. In Section V we examine the
performance of our prototype using three benchmarks: a tile
reading application, a three-dimensional block decomposition
I/O kernel, and a simulation of the FLASH I/O checkpoint
process. We use the I/O characteristics analysis to aid in
understanding the results. In Section VI we discuss related
efforts and future directions for this work.

II. CURRENT NONCONTIGUOUSI/O APPROACHES

Noncontiguous data is simply data that resides in different
areas, with gaps between them. Noncontiguous I/O refers to
an I/O operation in which data in memory, in file, or in both
is noncontiguous. Several approaches have been implemented
for supporting noncontiguous I/O access. The first, and most
naive, is the approach we callPOSIX I/O.

A. POSIX I/O

Most parallel file systems implement the POSIX I/O in-
terface [7]. This interface provides the capability to perform
contiguous data access only. To support noncontiguous access
with POSIX I/O, one must break the noncontiguous I/O into
a sequence of contiguous I/O operations. This approach to
noncontiguous I/O access requires significant overhead in
the number of I/O requests that must be processed by the
underlying file system. As shown in Figure 1, even simple
noncontiguous access patterns can result in numerous con-
tiguous I/O operations. Because operations in parallel file
systems often require data movement over a network, latency
for I/O operations can be high. For this reason performing
many small I/O operations to service a noncontiguous access is
very inefficient. Fortunately for users of these file systems, two
important optimizations have been devised for more efficiently
performing noncontiguous I/O using only POSIX I/O calls:
data sieving I/O and two-phase I/O.

B. Data Sieving I/O

The data sieving method reduces the number of I/O opera-
tions while simultaneously increasing I/O operation sizes [8].
Increasing the size of an I/O operation allows the hard drive
to provide higher I/O bandwidth. When data sieving is used,
a large region encompassing all the data in the file is accessed
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Fig. 2. Example data sieving I/O call. By first reading a large contiguous
file region into a buffer, data movement is subsequently performed between
memory and the buffer.

with a minimum number of POSIX I/O operations. For read
operations, a large contiguous data region containing desired
data is first read into a temporary buffer, and the desired data is
then extracted into the user’s buffer as shown in Figure 2. For
write operations, a read-modify-write sequence is performed.
A large contiguous region is read into a temporary buffer, new
data is placed into the appropriate positions in this buffer,
and the buffer is then written back to storage. In order to
ensure consistency during concurrent operations, a lock must
be held on the region to be modified during the read-modify-
write process. Depending on the file locking implementation,
the locking overhead can be mild or serious. File locking
implementations will serialize I/O access if the noncontiguous
data requested by multiple processors is either interleaved or
overlapping.

This approach is efficient when the desired noncontiguous
regions exhibit good spatial locality (i.e., are close together).
When data is more dispersed; however, data sieving accesses a
great deal of additional data in order to perform the operation
and, at some point, becomes less effective than simply using
a sequence of POSIX I/O calls.

C. Two-Phase I/O

When used to their fullest, interfaces such as MPI-IO give a
great deal of information about how the application as a whole
is accessing storage. One example of this is the collective I/O
calls that are part of the MPI-IO API. By making collective I/O
calls, applications tell the MPI-IO library not only that each
process is performing I/O but also that these I/O operations
are part of a larger whole. This information provides additional
opportunities for optimization over application processes per-
forming independent operations.

Two-phase I/O, developed by Thakur et al., is one example
of a collective I/O optimization [9]. The two-phase method
builds on POSIX I/O and data sieving I/O. The two-phase
method identifies a subset of the processes that will actually
perform I/O; these processes are known asaggregators. Each
aggregator is responsible for I/O to a specific portion of the
file; the implementation in ROMIO calculates these regions
dynamically based on the size and location of the accesses in
the collective operation.
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Fig. 3. Example two-phase I/O call. Interleaved file access patterns can
be effectively accessed in larger file I/O operations with the two-phase I/O
method.

Read operations using the two-phase method are performed
as shown in Figure 3. First, aggregators read a contiguous
region containing desired data from storage and put this data
in a temporary buffer. Next, data is redistributed from these
temporary buffers to the final destination processes. Write
operations are performed in a similar manner. First, data is
gathered from all processes into temporary buffers on aggre-
gators. Next, this data is written back to storage using POSIX
I/O operations. An approach similar to data sieving is used
to optimize this write back to storage in the case where there
are still gaps in the data. Alternatively, other noncontiguous
access methods, such those described in upcoming sections,
can be leveraged for further optimization.

Two-phase I/O has a distinct advantage over data sieving
alone in that it is far more likely to see dense regions of desired
data because of combining the regions of many processes.
Hence, the reads and writes in two-phase I/O are more efficient
than data sieving in many cases. However, two-phase I/O also
relies on the MPI implementation providing high-performance
data movement. If the interprocess communication is not
significantly faster than the aggregate I/O bandwidth in the
system, the overhead of the additional data movement in two-
phase I/O is likely to prevent it from outperforming the direct
access optimizations (data sieving I/O, list I/O, and datatype
I/O).

D. List I/O

List I/O [3] is an enhanced parallel file system interface
designed to support accesses that are noncontiguous in both
memory and file (see prototypes in Figure 5). With this inter-
face an MPI-IO implementation canflatten the memory and
file datatypes (convert them into lists of contiguous regions)
and then describe an MPI-IO operation with a single list I/O
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Fig. 4. Example list I/O call. Only a single I/O request is necessary to handle
this noncontiguous access because of more descriptive I/O requests.

call as shown in Figure 4. Given an efficient implementation
in the parallel file system, this interface can significantly boost
performance. In previous works we discussed the implemen-
tation of list I/O in PVFS and support for list I/O [4] under
the ROMIO MPI-IO implementation [5]. Since the list I/O
method is general enough for simple noncontiguous I/O, there
is a good possibility it will be adopted by current and future
file systems.

The major drawbacks of list I/O are the creation and
processing of these large lists and the transmission of these
lists from client to server inside the parallel file system
layer. Additionally, given that we want to bound the size of
I/O requests within the file system, only a fixed number of
regions can be described in one request. Thus, while list I/O
does significantly reduce the number of I/O operations versus
POSIX I/O (in our implementation by a factor of 64), a linear
relationship still exists between the number of noncontiguous
file regions and the number of I/O operations (within the file
system layer). Hence, while list I/O is an important addition to
the optimizations available under MPI-IO, it does not replace
two-phase or data sieving; rather, it augments them.

III. D ATATYPE I/O

Datatype I/O is an effort to address the deficiencies seen in
the list I/O interface when faced with accesses that are made
up of many small regions, particularly ones that exhibit some
degree of regularity. Datatype I/O borrows from the datatype
concept that has proven invaluable for both message passing
and I/O in MPI applications. The constructors used in MPI
datatypes allow for concise descriptions of the regular, non-
contiguous data patterns seen in many scientific applications,
such as extracting a row from a two-dimensional dataset.

The datatype I/O interface, shown in Figure 6, replaces
the lists of I/O regions seen in the list I/O interface with an
address, count, and datatype for memory and a displacement,
datatype, and offset into the datatype for file. These correspond
directly to the address, count, datatype, and offset into the file
view passed into an MPI-IO call and the displacement and file
view datatype previously defined for the file. The datatype I/O
interface is not meant to be used by application programmers;
it is an interface specifically for use by I/O library developers.
Helper routines are used to convert MPI datatypes into the
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int listio_read(int fd, int mem_list_count, void *mem_offsets[],
int mem_lengths[], int file_list_count, int file_offsets[],
int file_lengths[])

int listio_write(int fd, int mem_list_count, void *mem_offsets[],
int mem_lengths[], int file_list_count, int file_offsets[],
int file_lengths[])

Fig. 5. List I/O prototypes

int dtype_read(int fd, void *mem_addr, int mem_dtype_count, dtype *mem_dtype,
int file_dtype_disp, int offset_into_dtype, dtype *file_dtype)

int dtype_write(int fd, void *mem_addr, int mem_dtype_count, dtype *mem_dtype,
int file_dtype_disp, int offset_into_dtype, dtype *file_dtype)

Fig. 6. Datatype I/O prototypes

format used by the datatype I/O functions. A full-featured
implementation of datatype I/O would

• maintain a concise datatype representation locally and
avoid datatype flattening,

• use this concise datatype representation when describing
accesses, and

• service accesses using a system that processes this rep-
resentation directly.

Our prototype implementation of datatype I/O was written as
an extension to the Parallel Virtual File System. The ROMIO
MPI-IO implementation was likewise modified to use datatype
I/O calls for PVFS file system operations.

We emphasize that while we present this work in the context
of MPI-IO and MPI datatypes, nothing precludes our using the
same approach to directly describe datatypes from other APIs,
such as HDF5 hyperslabs; in fact, because HDF5 uses MPI-IO
it can benefit from this improvement without code changes.

A. The Parallel Virtual File System and ROMIO MPI-IO
Implementations

The Parallel Virtual File System is a parallel file system for
commodity Linux clusters [10]. It provides both a clusterwide
consistent name space and user-defined file striping. PVFS is
a client-server system consisting of clients, a metadata server,
and I/O servers. Clients retrieve a list of the I/O servers that
contain the file data from the metadata server at file open time.
Subsequent reading or writing is processed directly by the I/O
servers without manager interaction.

The approach that PVFS uses for processing requests is
detailed in [11]. In short, PVFS builds a data structure called
a job on each client and server for every client/server pair
involved in an I/O operation. This structure points to a list
of accesses, which are contiguous regions in memory (on a
client) or in file (on a server) that must be moved across
the network. This is essentially the flattened representation
of the datatype being used to move data. While this is not
ideal from a processing overhead standpoint, we will retain
this representation in our tests; it would be time consuming to
reimplement this core component of PVFS.

ROMIO is the MPI-IO implementation developed at Ar-
gonne National Laboratory [12]. It builds on the MPI-1

message-passing operations and supports many underlying
file systems through the use of an abstract interface for
I/O (ADIO). ADIO allows the use of file system specific
optimizations such as the list I/O and datatype I/O interfaces
described here. Additionally, ROMIO implements the data
sieving and two-phase optimizations described in Sections II-
B and II-C. It also implements a datatype flattening system
that is used to support list I/O for PVFS.

B. Datatype I/O Implementation in PVFS and ROMIO

Our datatype I/O prototype builds on the datatype process-
ing component in MPICH2 [13]. Three key characteristics of
this implementation make it ideal for reuse in this role:

• Simplified type representation (over MPI datatypes)
• Support for partial processing of datatypes
• Separation of type parsing from action to perform on data

Types are described by combining a concise set of descriptors
called dataloops. Dataloops can be of five types: contig,
vector, blockindexed, indexed, and struct [14]. These five
types capture the maximum amount of regularity possible,
keeping the representation concise. At the same time these
are sufficient to describe the entire range of MPI datatypes.
Simplifying the set of descriptors aids greatly in implementing
support for fast datatype processing because it reduces the
number of cases that the processing code must handle. The
type extent is retained in this representation (a general concept)
while the MPI-specific LB and UB values are eliminated. This
simplification has the added benefit of allowing resized type
processing with no additional overhead in our representation.
We use dataloops as the native representation of types in our
PVFS implementation.

The MPICH2 datatype component provides the functions
necessary to process dataloop representations [13]. We pro-
vide functions to convert MPI datatypes into dataloops and
functions that are called during processing to create the offset-
length pairs we need to build the PVFS job and access
structures. Additionally we provide functionality for shipping
dataloops as part of I/O requests. In our prototype, MPI
datatypes are converted to dataloops by a recursive process
built by using the functionsMPI Type get envelope and
MPI Type get contents. By using these MPI functions,
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Fig. 7. Example tile reader file access pattern conversion. (A) shows how we convert a struct datatype into an indexed dataloop for performance optimization.
This conversion eliminates the need for the MPILB and MPI UB dataloops, making the dataloop representation smaller. (B) is an example of loop fusion
in which we can merge datatypes into a single dataloop. The contig and named dataloops can be sufficiently described by the vector dataloop above them,
eliminating the need for them.
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we can ensure the portability of our datatype I/O method
across different MPI implementations.

An optimization our conversion process employs is the
reduction of the size of the access pattern representation. By
using loop fusion as well as a struct-to-indexed datatype con-
version, we can reduce the amount of data transferred over the
network. Loop fusion is the conversion of excessively created
dataloops into more concise dataloops, reducing the size of
the overall dataloop structure while maintaining the desired
access pattern. The struct-to-indexed datatype conversion we
employ converts a struct dataloop (which may have multiple
underlying dataloops) into an indexed dataloop, which has
only one underlying dataloop), generally resulting in a smaller
access pattern representation. Both of these optimizations
are visualized in an example file access pattern conversion
from the tile reader test in Section V-B in Figure 7. The
resulting dataloop representation is passed into the datatype
I/O calls and from there sent to the relevant I/O servers. The
dataloops are converted into the job and access structures on
servers and clients side to create the traditional PVFS job and
access structures. Figure 8 outlines this process. PVFS-specific
functions for creating these offset-length pairs are passed to the
dataloop processing component. These functions are written to
efficiently convert contiguous, vector, and indexed dataloops
into offset-length pairs, and they include optimizations to
coalesce adjacent regions. The partial processing capabilities
of the datatype processing component are used to limit the
overhead of storing the intermediate offset-length pairs that
are created through dataloop processing.

This is only a partial implementation of the datatype I/O
approach; a complete approach would avoid creating of lists
of regions on server and client. However, we will show that
even without this final capability, our prototype exhibits clear
performance benefits over the other approaches.

Because the MPI datatypes are converted into dataloops at
every MPI I/O operation, we expect there to be slightly higher
overhead in the local portion of servicing these operations in
comparison with list I/O. On the other hand, because we are
concisely describing these types, we expect to see significantly
less time spent moving the I/O description across the network.
Future optimizations could cache these dataloop representa-
tions on clients and servers to ameliorate this overhead.

IV. N ONCONTIGUOUSI/O COMPARISON

The noncontiguous I/O methods described in the previous
section have several important performance characteristics
that will be discussed in this section. We will focus on the
characteristics that have the greatest performance impact. In
Table I we show how the major I/O characteristics compare.

We used the following variables to define this comparison:
n = number of bytes,file ext = the extent of the noncontiguous
file regions (from first byte of the first file region to the last
byte of the last file region) for a single client,agg file ext =
the extent of the noncontiguous file regions (from first byte of
the first file region to the last byte of the last file region) for
the aggregate I/O access pattern,ds buffer = the size of the
data sieving I/O buffer,tp buffer = the size of the two-phase

offset−length pairs
datatype into file
Convert PVFS file

PVFS file datatype
Send I/O Request with

to PVFS Datatypes
Convert MPI Datatypes

Memory File

oldtype = MPI_CHAR
newtype = type_vec
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blocklength = 2
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MPI_Type_vector
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File Datatype = type_vec
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Data Exchange
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File Lengths

File Offsets 0

2 2 2

3 6

Fig. 8. Example datatype I/O call. Since file datatype are broken into
file offset-length pairs at the I/O servers, the number of I/O requests is
dramatically reduced for regular access patterns.

I/O buffer, fr count = number of file regions,fr per access =
the maximum number of file regions a list I/O operation can
support before breaking up into multiple list I/O operations.
# of I/O aggs = the number of I/O aggregatorsap depend =
access pattern dependent, andfr size = the size of a file regions
(we assume same size file regions for simplicity).

We note that in the performance characteristics of the data
sieving I/O and the two-phase I/O there a small approximation
is made with respect to the filing of the intermediary buffer.
The data sieving I/O buffer is the client’s memory region used
to do the initial access of data from the I/O system. The
two-phase I/O buffer is the memory of the I/O aggregators
that access data from the I/O system. Any holes between
noncontiguous file regions that are past the last file region
in the buffer can be ignored when refilling the buffer in the
next iteration. The frequency of this hole being removed from
being accessed decreases as the buffer is larger. Therefore, to
simplify our calculations, we are essentially approximating an
infinitely large intermediary buffer.

A. Desired Data per Client

Each client needs a certain amount of data before it can
return completion of its I/O operation. The desired data per
client is this final data size. The desired data per client will
be the same for each of the noncontiguous I/O methods for a
given I/O access pattern.

B. Data Accessed per Client

The client must acquire data from the I/O storage system
in order to service its request. For POSIX I/O, list I/O, and
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Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

POSIX I/O n n ≥fr count — ≤fr size
Data Sieving I/O n file ext � file ext

ds buffer
� — ≤ds buffer

Two-Phase I/O n agg file ext
# of I/O aggs

� agg file ext
# of I/O aggs ∗ tp buffer

� ap depend ≤tp buffer

List I/O n n � fr count
fr per access

� — fr size
Datatype I/O n n 1 — fr size

TABLE I

I/O CHARACTERISTICSCOMPARISON

datatype I/O, the data accessed per client is equal to the desired
data per client. For data sieving I/O, the data accessed per
client is the sum of the desired data per client and the holes
between the file regions. For two-phase I/O, the data accessed
per client is the amount of data that is actually exchanged
between I/O aggregators (all compute nodes in our tests) and
the I/O servers; it does not include the cost of the data that
is resent between I/O aggregators and compute nodes. The
implementation of two-phase I/O leads to the actual amount
of data accessed per client being based onagg file ext divided
by the number of I/O aggregators.

C. I/O Operations per Client

For POSIX I/O, the number of I/O operations per client
depends on the number of noncontiguous file regions. For
every file region, POSIX I/O requires at least one I/O opera-
tion. A mismatch between memory regions and file regions
can cause multiple contiguous I/O operations to service a
single file region. Therefore, in POSIX I/O, the number of I/O
operations per client is greater than or equal to the number of
file regions in the access pattern. For data sieving I/O, the
number of I/O operations is approximately the ceiling of the
file ext divided by size of the data sieving buffer. For two-
phase I/O, the number of I/O operations per I/O aggregator
is equal to the ceiling of the data accessed per client divided
by the size of the two-phase buffer. For list I/O, because the
implementation of list I/O limits the number of file offset-
length pairs that can be passed with a single I/O operation,
the number of I/O operations per client is equal to the total
number of file regions divided by the number of file offset-
length pairs allowed per I/O operation. For datatype I/O, the
number of I/O operations is always one per MPI-IO operation
because the datatype I/O request includes a derived datatype
that can correspond to any MPI-IO datatype.

D. Resent Data per Client

Only two-phase I/O actually resends data between clients.
These transfers are generally not so costly as the data accessed
per client because they are from the memory of the I/O
aggregator to the memory of the client; hence it is a memory-
memory network transfer instead of a disk-memory network
transfer. Clients using data sieving I/O access regions of the
data sieving buffer in the same manner, but this is done locally
on the same processor, so we do not include this overhead
in this section. We also do not define a formula for this

variable because it is highly dependent on the access pattern.
For example, if each aggregator is accessing data in its own
aggregator file region, then there no data is resent. If each
aggregator is accessing data in another aggregators file region,
then all the data that is accessed is resent. The amount of resent
data per client is best calculated based on the access pattern.
In Section V, we will determine the resent data size of the I/O
access patterns from each of the benchmarks.

E. File Region Size Accessed

For list I/O and datatype I/O, the file region size is the
same as specified in the access pattern. For POSIX I/O, the
file region size is also the same as specified in the access
pattern except when the memory regions and file regions do
not align. If the regions do not align, the I/O operations can
be for smaller sizes than the access pattern file region. For
data sieving I/O, the file region size is equal to the minimum
of the data sieving buffer size or the extent of the remaining
file regions. For two-phase I/O, the file region size is equal
to the minimum of the two-phase I/O buffer or the extent of
the remaining aggregator region extent. When we use this I/O
characteristic in Section V, for simplicity we fill in the most
commonly used file region size accessed.

V. PERFORMANCEEVALUATION

To evaluate the performance of the datatype I/O optimiza-
tion against the other noncontiguous I/O methods, we ran a
series of noncontiguous MPI-IO tests, including a tile reader
benchmark, a three-dimensional block access test, and the
FLASH I/O simulation. For each test we provide a table
summarizing the I/O characteristics of the access pattern using
the metrics from Section IV for each of the noncontiguous I/O
methods.

A. Benchmark Configuration

Our results were gathered on Chiba City at Argonne Na-
tional Laboratory [15]. Chiba City has 256 nodes available
with dual Pentium III processors, 512 MBytes of RAM, a sin-
gle 9 GByte Quantum Atlas IV SCSI drive, and a 100 Bits/sec
Intel EtherExpress Pro fast-Ethernet card operating in full-
duplex mode. Each node uses RedHat 7.3 with kernel 2.4.21-
rc1 compiled for SMP use. Our PVFS server configuration
for all test cases included 16 I/O servers (one also doubled as
a metadata server). PVFS files were created with a 64 KByte
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strip size (1 MByte stripes across all servers). In the tile reader
tests we allocate one process per node because so few nodes
are involved. In the other two cases we allocate two processes
per node.

Our prototype was built using the ROMIO version 1.2.4
and PVFS version 1.5.5. All data sieving I/O and two-
phase I/O operations were conducted with a 4 Mbyte buffer
size (ROMIO default size). Our results are the average of
three test runs. All write test times include the time for the
MPI File sync() command to complete besides the normal
write I/O time. All read tests are uncached. We added these
constraints to our testing environment to avoid simply testing
network bandwidth. Instead, we want to examine the perfor-
mance of our file system optimizations in conjunction with the
storage system hard drive performance.

All read benchmarks are conducted with POSIX I/O, data
sieving I/O, two-phase I/O, list I/O, and datatype I/O. All write
benchmarks are conducted with POSIX I/O, two-phase I/O, list
I/O, and datatype I/O. ROMIO can support write operations
with data sieving I/O only if file locking is supported by
the underlying file system. Since PVFS does not support file
locking, we cannot perform data sieving writes on PVFS.
We note, however, that for file systems that do allow file
locking, data sieving performance for writes will have worse
performance than data sieving reads for the same access
pattern. Data sieving writes perform the same data movement
from file system into the data sieving buffer at the client
and then data movement from data sieving buffer to memory
buffer, but they also have to write this data back, thereby
doubling the network data transfer of a data sieving read. Also,
locking the modified regions can cause serialization of I/O
requests for overlapping requests, another serious overhead.
On the other hand, the MPI-IO consistency semantics do allow
us to perform a read-modify-write during collective I/O. Thus,
an approach similar to data sieving is used in the two-phase
I/O write case.

B. Tile Reader Benchmark

Often the amount of detail in scientific application visu-
alization exceeds the display capabilities of a single desktop
monitor. In these cases an array of displays, usually LCDs
or projectors, is used to create a more high-resolution display
than would otherwise be available. Because of the high density
of these displays, the I/O rates necessary to display data are
very high. Typically an array of PCs is used to provide inputs
to the individual devices, ortiles, that make up the display.
The tile reader benchmark is a tool for measuring the rate at
which an I/O system can serve data to such a system.

The tile reader benchmark uses a 3 by 2 array of compute
nodes (shown in Figure 9), each of which displays a fraction
of the entire frame. By accessing only the tile data for its own
display, the compute nodes exhibit a simple noncontiguous file
access pattern. The six compute nodes each render a portion
of the display with 1024 pixel by 768 pixel resolution and
24-bit color. In order to hide the merging of display edges,
there is a 270-pixel horizontal overlap and a 128-pixel vertical
overlap between tiles. Each frame is 10.2 MBytes. This data
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Fig. 9. Tile reader access pattern and performance

is read into a contiguous buffer in memory. Our tests were
conducted with a frame set consisting of 100 frames played
back in sequence.

We can see in Figure 9 that datatype I/O is the clear winner
in terms of performance for this benchmark, 37% faster than
list I/O. The characteristics of the resulting reads using the
optimizations tested are shown in Table II. The datatype I/O
result is due to the combination of a single, concise I/O
operation, no extra file data being transferred, and no data
passing over the network more than once. In contrast, POSIX
I/O requires 768 read operations, data sieving requires more
than twice as much data to be read as is desired, two-phase
I/O requires resending about 88% of the data read, and list I/O
sends a list of 768 offset-length pairs as part of the requests
(9 KBytes of total data in I/O requests from each client).

C. ROMIO Three-Dimensional Block Test

The ROMIO test suite comprises a number of correctness
and performance tests. One of these, the collperf.c test,
measures the I/O bandwidth for both reading and writing
to a file with a file access pattern of a three-dimensional
block-distributed array. The three-dimensional array, shown
graphically in Figure 10, has dimensions 600 x 600 x 600 with
an element size of an integer (4 bytes on our test platform).
Each process reads or writes a single one of these blocks. The
memory datatype is contiguous.

Table III characterizes the resulting I/O patterns using our
tested optimizations, and Figure 11 shows the results of our
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Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

POSIX I/O 2.25 MB 2.25 MB 768 — 3 KB
Data Sieving I/O 2.25 MB 5.56 MB 2 — 4 MB
Two-Phase I/O 2.25 MB 1.70 MB 1 1.50 MB 1.70 MB
List I/O 2.25 MB 2.25 MB 12 — 3 KB
Datatype I/O 2.25 MB 2.25 MB 1 — 3 KB

TABLE II

I/O CHARACTERISTICS OF THE TILE READER BENCHMARK

Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

8 Clients
POSIX I/O 103 MB 103 MB 90,000 — 1200 B
Data Sieving I/O 103 MB 412 MB 103 — 4 MB
Two-Phase I/O 103 MB 103 MB 26 77.2 MB 4 MB
List I/O 103 MB 103 MB 1408 — 1200 B
Datatype I/O 103 MB 103 MB 1 — 1200 B
27 Clients
POSIX I/O 30.5 MB 30.5 MB 40,000 — 800 B
Data Sieving I/O 30.5 MB 274.7 MB 69 — 4 MB
Two-Phase I/O 30.5 MB 30.5 MB 8 27.1 MB 4 MB
List I/O 30.5 MB 30.5 MB 626 — 800 B
Datatype I/O 30.5 MB 30.5 MB 1 — 800 B
64 Clients
POSIX I/O 12.9 MB 12.9 MB 22,500 — 300 B
Data Sieving I/O 12.9 MB 206.0 MB 52 — 4 MB
Two-Phase I/O 12.9 MB 12.9 MB 4 12.1 MB 4 MB
List I/O 12.9 MB 12.9 MB 352 — 300 B
Datatype I/O 12.9 MB 12.9 MB 1 — 300 B

TABLE III

I/O CHARACTERISTICS OF THEROMIO THREE-DIMENSIONAL BLOCK TEST

a) 8 Processes b) 27 Processes c) 64 Processes

Amount of data read by a single process

Fig. 10. Data distribution for three-dimensional block accesses
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Fig. 11. Three-dimensional block read and write performance

tests. Again, datatype I/O is the clear performance winner;
peak performance is more than double that of the next-best
approach. Of note is the unusual drop in performance in
the read case as number of processes increases. We believe
that this is due to the increased overhead of offset-length
list processing on the server side. Because the servers are
the source of data, and clients are operating on a contiguous
region of memory, any delays caused by list processing will
directly impact performance. On the other hand, in the write
case the servers are data sinks. Buffering in the TCP stack

helps hide this inefficiency, although it might appear at larger
numbers of processes. This overhead is not visible in the
list I/O results because the number of I/O operations and the
size of the I/O requests obscures this effect. A full-featured
datatype I/O implementation that operated directly on the
dataloop representation would likely not exhibit this behavior.

D. FLASH I/O Simulation

The FLASH code is an adaptive mesh refinement appli-
cation that solves fully compressible, reactive hydrodynamic
equations; the code was developed mainly for the study
of nuclear flashes on neutron stars and white dwarfs [16].
Because the FLASH code has a very long execution time,
checkpointing is a necessary component of the application.
During checkpointing, blocks of data are reorganized from
the in-memory organization, which includes ghost cells, into a
new in-file organization. The in-file organization is stored by
variable for convenience during post-processing. As a result
the access pattern is noncontiguous in both memory and file.

Figure 12 shows the layout of data in the memory of FLASH
processes. Each process holds 80 blocks. Each block is a three-
dimensional array of data elements surrounded by guard cells.
Each data element consists of 24 variables. When writing data
we reorganize the data so that all values for variable 0 are
stored first, then variable 1, and so on. Since every processor
writes 80 FLASH blocks to file, as we increase the number
of clients, the dataset size increases linearly as well. Every
processor adds 7 MBytes to the file, so the dataset ranges
between 14 MBytes (at 2 clients) to 896 MBytes (at 128
clients).

Table IV provides the I/O characteristics of the test using the
available optimizations. Figure 13 shows the results of these
tests. This is the first test in which the memory datatype is
noncontiguous; thus it is the first time that the overhead of
list processing might affect the clients. We see this in both
the list I/O and datatype I/O cases; both underperform at
small numbers of clients. As the number of clients increases,
the clients are eventually able to feed the servers adequately.
At 96 processes, datatype I/O performance rises to nearly
40 Mbytes/sec, 37% faster than two-phase. This trend con-
tinues at higher numbers of processes. We would expect that
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Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

POSIX I/O 7.50 MB 7.50 MB 983,040 — 8 B
Data Sieving I/O — — — — —
Two-Phase I/O 7.50 MB 7.50 MB 2 7.5 MB * n−1

n
4 MB

List I/O 7.50 MB 7.50 MB 15,360 — 4 KB
Datatype I/O 7.50 MB 7.50 MB 1 — 4 KB

TABLE IV

I/O CHARACTERISTICS OF THEFLASH I/O SIMULATION (N IS THE # OF CLIENTS)
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Fig. 13. FLASH I/O Performance

a datatype I/O system that operated directly on the dataloop
representation would allow clients to more effectively push
data to servers, resulting in improved performance at smaller
numbers of clients. List I/O, because of the size and number
of I/O requests, is not able to overtake two-phase for the tested
numbers of processes. POSIX I/O is nearly unusable in this
benchmark because it has to address 983,040 I/O operations
of 8 bytes each to service this access pattern.

This case shows that two-phase I/O still has a place as an
I/O optimization. Because data is not wasted and I/O accesses
are large, two-phase I/O is able to provide good performance
despite moving the majority of the data over the network twice.

VI. CONCLUSIONS ANDFUTURE WORK

We have described our implementation of a new noncon-
tiguous I/O method: datatype I/O. Our analytic comparison
allowed us to explain the differences in performance that
occur in various I/O access patterns with various I/O methods.
The noncontiguous I/O benchmark suite verified our analytic
comparison.

Datatype I/O provides the opportunity for extremely effi-
cient processing of structured, independent I/O requests. Our
tests show that this approach outperforms both list I/O and data
sieving I/O in virtually all situations. Further, it supplants two-
phase I/O as the preferred optimization in many cases as well.
Datatype I/O in conjunction with the two-phase collective I/O
optimization makes a strong MPI-IO optimization suite. We
note that in almost every case POSIX I/O alone would result

in a nearly unusable system from the performance perspective;
these optimizations are a necessary part of scientific parallel
I/O.

This prototype does not fully exploit the potential of the
datatype I/O approach. We are implementing a more full-
featured version of the approach in our second-generation
parallel file system, PVFS2. This version will remove the
creation of the I/O lists on both client and server, further
widening the performance gap between datatype I/O and
other optimizations. Datatype caching similar to that seen in
some remote memory access implementations [17] could boost
the performance of PVFS datatype I/O by further reducing
I/O request overhead. Further optimization of the approach
can be provided in ROMIO as well. Caching the dataloop
representations of types locally would be one way to improve
datatype I/O. Leveraging datatype I/O underneath two-phase
I/O would boost performance of the collectives further.
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