
Power and Performance in I/O for Scientific Applications

K. Coloma A. Choudhary A. Ching W.K. Liao
Center for Ultrascale Computing and Information Security

Northwestern University
{kcoloma, choudhar, aching, wkliao}@ece.northwestern.edu

S. W. Son M. Kandemir
CSE Department

Pennsylvania State University
{sson, kandemir}@cse.psu.edu

L. Ward
Scalable Computing Systems Department

Sandia National Laboratories
lee@sandia.gov

Abstract

The I/O patterns of large scale scientific applica-
tions can often be characterized as small, non-contiguous,
and regular. From a performance and power perspec-
tive, this is perhaps the worse kind of I/O for a disk. Two ap-
proaches to mitigating the mechanical limitations of disks
are write-back caches and software-directed power man-
agement. Previous distributed caches are plagued by syn-
chronization and scalability issues. The Direct Access
Cache: DAChe system is a user-level distributed cached
that addresses both these problems. Past work on manag-
ing disk power during run time were effective, one should
be able to improve on those results by adopting a proac-
tive scheme.

1. Introduction

Both transparent client-side caching and software-
directed disk power management have an affect on I/O per-
formance and power. While power consumption is not the
primary concern of write-back caching, write-back caching
nevertheless aggregates man smaller writes into larger
ones improving both performance and power. The pri-
mary issue with client-side caching in large-scale systems
is scalably enforcing coherency. Coherency is of particu-
lar concern in scientific applications, since many processes
may be accessing a single file. Because of this, the more re-
laxed semantics of filesystems like NFS cannot be tolerated
because of the counter-intuitive results they might pro-

duce. DAChe uses remote memory access and a scalable
lock manager to maintain coherency and address applica-
tions that must use independent I/O.

Software-directed power managment is, of course, more
concerned with power, but extra performance is a wel-
comed side-effect. Prior research and present practices in-
clude spinning up and spinning down hard drives based on
load at run time. One traditional way is to consider only two
speeds (TPM), while another, Dynamic RPM (DRPM) con-
siders several incremental speeds. A more proactive way of
efficiently managing disk power consumption is to analyze
code and insert explicit disk speed calls.

In section 2 we describe the potential benefits and chal-
lenges of file caching in large scale systems. Then in sec-
tion 3, we describe its architecture and some initial perfor-
mance results. Following in section 4, we discuss compiler
directed disk power management, before moving on to our
conlcuding remarks in section 5.

2. Client-side Caching Issues

The core of the cache coherency problem is ensuring
globally accessible data is up-to-date when used. Two pro-
cesses,p0andp1, may read and cache some shared piece of
data. Subsequently,p0 may write to the data. When thep1
rereads the data, it will read directly from cache and not the
new data written byp0. This general issue arises at many
levels of the memory hierarchy, and is attacked from differ-
ent angles depending sprecific features at each level.

In the context of I/O, caching can mask the latency of ac-
cessing a local or even remote disk by allowing for quicker

reads and writes. Another optimization made possible by
client-side caching is write-behind in which small write data
is buffered in the cache while computation continues. The
aggregated writes to one page are finally written to disk, can
reduce the number of I/O calls.

In a parallel environment, there are often many more
clients than there are I/O servers. Client-side caching can
not only provide cached data quicker, but it also reduces the
load on and contention for I/O server resources. Parallel en-
vironments are similar to distributed ones in that there are
multiple clients accessing a single file system. In a parallel
environment however, many processes often work on a sin-
gle problem and concurrently access an output or input file.
Allowing a single client at a time to access and cache a file
is unreasonable. Either a multiple client-side caches must
be carefully maintained, or there should be know caching
at all. Maintaining a client-side cache in a parallel environ-
ment is far more challenging than doing it in a distributed
one.

Whenever considering client-side caching, it is neces-
sary to also consider what kind of semantics to follow. The
strict nature of POSIX consistency semantics make them ill-
suited for parallel and distributed computing environments.
Rigid enforcement of POSIX consistency in these environ-
ments is usually at the expense of performance by either
disallowing efficient caching or centralizing cache manage-
ment. MPI semantics are, by default, slightly more relaxed.
After write completion, data must be visible to all processes
in the same communicator. Unless atomic mode is explicitly
set, concurrent access to conflicting parts of a file are unde-
fined. The tricky thing is that in atomic mode, an atomic
access may be noncontiguous. If not for the last bit about
atomic noncontiguous accesses, a POSIX compliant filesys-
tem could provide all that MPI requires semantically.

Cache coherency provides fairly intuitive results. With
sequential consistency so hard to provide at the library or
file system level, this onus is better left to the application
developer who is much more well equiped to handle order-
ing issues than any library could possibly be.

3. DAChe

DAChe uses one-sided communication, and can be archi-
tecturally divided into 3 primary subsystems: cache meta-
data, locking, and cache management. Figure 1 illustrates
the basic interactions between these subsystems. Its mod-
ular implementation makes it quite easy to port and ex-
periment with given that some basic RMA requirements
are met. One over-arching theme always under consider-
ation during the design of DAChe is to keep all aspects
of cache management as decentralized as possible. A sec-
ondary theme is minimization communication where pos-

8

Client
Process

Client
Process

Client
Process

� � � �� � � �� � � �� � � � � � � �� � � �

� � � �
� � � �
� � � �
� � � �

� � � �� � � �� � � �� � � �
Cache Data

Metadata

Passive State

Cache Data
Metadata

Passive State

Cache Data
Metadata

Passive State

page0
page3
page6

page1
page4

page8

page2
page5

page7

file
page ids 0 1 2 3 4 5 6 7

Figure 1. DAChe architecture with passive
metadata and cache servers on each client.
Metadata is striped across clients, but a file
page can be cached on any client.

sible. The main tenet of DAChe is that only a single copy
of any file page can reside on at most one process. This
single-copy rule ensures cache coherency and removes the
task of maintaining state for replicated data. Another way to
think of it is that there is never more than one usable copy
of any given file page. The use of RMA keeps I/O opera-
tions in DAChe passive, but requires thatdache open and
dache close be collective in order to set things up and
break things down safely. Afterdache open completes,
all communication is one-sided unless it is with a mutex
server described in more detail in the Mutual Exclusion 3.3
subsection.

3.1. Remote Memory Access

Remote Memory Access (RMA) interfaces provide what
can be thought of as shared-memory emulation for a dis-
tributed memory environment. RMA in its truest form al-
lows for the movement of data to or from a remote pro-
cess without its active participation. The primary functions
of any RMA interface mirrors shared-memory should con-
sist of a get, put, and some sort of atomic test & set or swap.
DAChe uses RMA to remotely access cache metadata and
cached data.

DAChe currently uses Portals [1] for RMA. While porta-
bility is definitely a con, the Portals implementation is fairly
mature and exists on specific large-scale platforms of inter-
est. At the time of development, MPI-2’s one-sided commu-
nication was not yet ready in MPICH2.

3.2. Cache Metadata

Cache metadata maintains basic state for each page in
the file. Most importantly, this metadata provides the where-
abouts of any given file page. File page refers to the logical
partitioning of the entire file into blocks of a size match-
ing the page size of the cache. If a page is cached on any

process the metadata reflects the caching process as well
as an index location into that process’s cache. cache meta-
data is remotely accessible through RMA and distributed
across the application nodes in a deterministic fashion; in
this case a basic striping algorithm. By striping the meta-
data array, or table as it will be called, across nodes deter-
ministically, not only is a potential bottleneck avoided, but
there is also no communication required to find the meta-
data associated with any file page.

Creating metadata for each logical file page brings up the
issue of metadata allocation. The allocation process requires
explicit coordination amongst the application processes,
and this is only available at the collectivedache open and
dache close functions. Ideally, one would want the size
of the metadata table to be directly related to the size of
the file. What this basically entails is some level of coop-
eration among processes for growing or shrinking the table
size during run time. Since the write operations are inde-
pendent, however, there is no opportunity to coordinate all
the processes in order to modify the size of the table. With-
out this coordination, the last resort would be the ability to
remotely allocate globally accessible memory. Needless to
say, remote memory allocation brings its own set of chal-
lenges.

Given the distributed and passive nature of cache meta-
data, one crucial element is enforcing mutually exclusive
access to it.

3.3. Mutual Exclusion

The purpose of the mutual exclusion subsystem is to en-
sure safe access to read and modify cache metadata. Ide-
ally, mutual exclusion is directly supported in the RMA in-
terface. With proper RMA support for mutual exclusion, the
locking subsystem can be also distributed across the appli-
cation nodes as passive remote accessible state.

MPI-2 explicitly provides theMPI Win Lock and cor-
responding unlock functions. Since the current test platform
for DAChe is a threadless environment, however, this rules
out the use of the MPICH2 RMA interface. MPICH2 is fo-
cused on portability, and threads are more commonly avail-
able than hardware supported one-sided communication. At
the same time, the atomic swap operation in the Portals li-
brary has yet to be implemented.

In the absence of an RMA solution to mutual exclusion,
several processes from the allocated user processes are si-
phoned off from the main group to act as mutex servers.
They are spun off duringdache open and returned during
dache close. During this time, the mutex servers cannot
execute any user application code. So while passive RMA
mutual exclusion is preferred, DAChe can still be evaluated
using dedicated mutex servers. Later, these mutex servers
will become passive elements on the application processes.

Since mutex responsibilities will eventually be moved
to the client, the mutex servers are intentionally kept quite
simple. Lock responsibility for each file page is spread
across the mutex servers in the same way cache metadata
is spread across application processes. The mutex servers
service locks in the order they come, queueing requests to
the same cache metadata. Polling and simple queueing are
both implementable when the mutex servers become pas-
sive state on remote processes. A process must block until
its lock request is fulfilled by the mutex server.

Typically, cache metadata is not “held” for extended pe-
riods of time. It is locked only briefly for modification. It is
not held for the duration of access to the actual cached data.
Minimizing the time that the metadata is locked, should re-
duce the amount of simultaneous lock requests to the same
metadata. The exception to short lock times is when a par-
ticular file page is being brought into the cache or a cache
page is being evicted. In either case, the cache metadata
must be locked for entire I/O phase in order to prevent early
or late cache accesses, respectively.

3.4. Cache Management

Pages cached on one process are globally accessible to
any other process through RMA. Although access to meta-
data is carefully mediated, remote access to cache data is
basically a free-for-all. Since any file page can be cached
in at most one cache, all accesses to that page are coher-
ent.

Cache management and eviction is handled locally with
one exception to be discussed a little further along. What
data to cache is determined by the local procces’s I/O ac-
cesses. If a process accesses a file page that is not yet cached
on any of the other processes, it caches it itself and updates
the corresponding cache metadata to reflect this change.
Should a process run out of cache space locally, it must
evict a page based on some local policy such as a least re-
cently used (LRU) policy. Remember that during eviction, a
page’s metadata cannot be accessed at all. Another precau-
tion alluded to earlier is that processes accessing a remotely
cached page must “pin” the page in cache so the page can-
not be evicted while being accessed. This pin is a semaphore
contained in the cache metadata along with location infor-
mation. While a page is pinned, the process on which the
cache page resides cannot evict the page, and must either
wait until the page is “un-pinned” or try to evict a differ-
ent page. New data is not written to disk until it is either
evicted or written out atdache close.

3.5. Initial Performance Evaluation

A preliminary analysis of DAChe is done using a syn-
thetic I/O access pattern that should, by design, benefit from

...

� �� �
� �� �� � �� � �

� �� �

� �� �
� �� � � �� �

� �� �

� � �� � �
	 		 	

� �� �

� �� �
 � �� �

� �� �

� �� �
� �� � � �� �

� �� �

� �� �
� �� � � �� �

� �� �

i=0, j=0

i=1, j=0

i=2, j=0

i=3, j=0

i=0, j=1

i=0, j=2

Figure 2. Several iterations of the sliding win-
dow I/O pattern for 4 processes.

cached data. It is roughly based on the regular noncontigu-
ous access patterns often found in scientific applications and
is meant to test the performance of DAChe. The benefits a
real application may derive from DAChe are also clearly of
interest. The basic labeling convention is as follows:

• dache-n where n is the number of mutex servers

• Nio is the number of clients actually caching data
(non-mutex servers)

• 50:50 refers to an equal mix of clients and mutex
servers

The sliding window application uses a repetitive I/O ac-
cess pattern, and the underlying caching library uses the
lock service to gain exclusive access to cache page meta-
data. 2 describes the access pattern of the synthetic bench-
mark. Each process accesses a contiguous chunk of data. In
each subsequent iteration, processes circular shift theirac-
cesses until all chunks are read before sliding to the next
set of four chunks. Since there is one lock per page, and the
benchmark accesses are page-aligned, the number of meta
data locks is tied directly to the number I/O operations. The
cyclic access pattern makes the total amount of I/O done in-
crease along a power function rather than linearly.

It is important to note that since the DAChe system is the
primary subject of evaluation, actual I/O is removed from
DAChe to prevent interference from any specific filesys-
tem. The sliding window access pattern is such that once a
file page is brought into cache, it remains there throughout
the execution and is only remotely accessed. Though actual
I/O would have been performed to bring in the file data, all
subsequent accesses are really accessing cached data, pos-
sibly on remote nodes. Figure 3 illustrates the infeasibility
of running this benchmark with actual I/O and without any
caching. The resulting amount of aggregate I/O would be

Simulated I/O to File System

0

100000

200000

300000

400000

500000

600000

700000

0 16 32 48 64 80 96 112 128 144

DAChe Clients

DAChe Read Ops (32K each)

*nix Reads (64K each)

Figure 3. The number of I/O calls that would
have been made to the filesystem is signifi-
cantly reduced by the presence of DAChe.

from 1 GB to 80 GB. There is little doubt this reduction in
I/O calls would also reduce the power consumption of the
disks. Bandwidth is calculated based on the amount of I/O
the sliding window application thinks it has performed.

Since scalability is the primary goal of the DAChe, it was
tested with various numbers of mutex servers running. In-
tuitively, the heavier the lock system is taxed, the more mu-
tex servers are needed to accomodate the increased load.
This is illustrated clearly in figure 4 where a larger num-
ber of mutex servers allows a larger number of clients with-
out severely hindering performance when fewer than the
maximum clients is used. From a cost efficiency perspec-
tive, one would like to stay on the outside curve using the
minimum number of processes at each point. This client to
mutex server ratio is highly dependent on the properties of
the specific machine. A 50:50 mix where there are an equal
number of clients and mutex servers allows the mutex ser-
vice to scale with the application size. As expected from the
growth rate of I/O amount, this outer bandwidth curve is
roughly an inverse power function. This 50:50 mix is in an-
ticipation of each client doubling as a passive lock server.
The most important point from Figure 4 is the number of
mutex servers determines at which number of clients per-
formance will plateau.

4. Compiler Directed Disk Power
Management

Our overall approach is depicted in Figure 5. A unique
characteristic of our approach is that itexposesthe disk pa-

Aggregate Bandwidths

0

200

400

600

800

1000

1200

0 32 64 96 128 160 192 224 256 288

DAChe Clients

Mtx-2

Mtx-4

Mtx-6

Mtx-8

Mtx-10

Mtx-12

Mtx-50:50

M
B

/s

Figure 4. The number of clients at which
bandwidth knees over is dependent on how
many lock servers there are.

Figure 5. High-level view of our compiler
driven approach to power reduction.

rameters and the disk layout of array data to the compiler.
The goal of doing so is to allow the compiler to determine
(estimate) the disk active and idle times. The parameters
used by the compiler in this approach include the number
of ids of the disks over which each array is striped (i.e., the
stripe factor), the stripe size used, and the id of the disk that
contains the first stripe of data. Using this information and
the data access pattern extracted by analyzing the applica-
tion source code, the compiler determimnes what we refer
to as thedisk access pattern(DAP). Basically, a DAP indi-
cates how the disks in the I/O subsystem are accessed and

Figure 6. An example of application of our ap-
proach.

reveals information that is vital for disk power management:
disk inter-access times, i.e., the gap between the two succes-
sive accesses to a given disk. This information can be used
in two different ways to do proactive power management:
(1) placing a disk into a suitable low-power mode after its
current access is complete, and (2) pre-activating a disk to
eliminate the potential performance penalty due to power
management. Then, based on this information, the applica-
tion code is modified to insert explicit power management
calls. The nature of these calls depends on the underlying
method used (e.g., TPM versus DRPM), and will be ex-
plained shortly. This compiler transformed code can execute
on a system that uses TPM or DRPM disks to do proactive
power management. In the rest of this section, we explain
the three important components of our compiler-driven ap-
proach: the compiler-analysis to identify disk accesses, the
DAP, and the insertion of explicit power management calls
in the code.

In order to determine the disk access pattern, we need
two types of information: data access pattern and disk lay-
out of array data. The data access pattern indicates the order
in which the different array elements are accessed, and is ex-
tracted by the compiler by analyzing the source code of the
application. To determine which particular disks are being
accessed, the compiler also needs the layout of array data
(i.e., the file that holds the array elements) on the disk sub-
system. In this context, the disk layout of an array (which is
stored in a file) is specified using a 3-tuple:

(startingdisk, stripefactor, stripesize).

The first element in this 3-tuple indicates the disk from
which the array is started to get striped. The second ele-
ment gives the number of disks used to stripe the data, and
the third element gives the stripe (unit) size. As an exam-
ple, in Figure 6(b), arrayU1 is striped over all four disks
in the figure. Assuming that the stripe size isS and the to-
tal array size is 4S (for illustrative purposes), the disk lay-
out of this array can be expressed as (0, 4,S). Now, let
us consider the other array (U2) in Figure 6(b), assuming

its size and stripe size are 4S and 2S, respectively. Con-
sequently, its disk layout can be expressed as (2, 2, 2S).
To illustrate the process of identifying the disk accesses,
let us consider the code fragment in Figure 6(a). During
the execution of the first loop nest, this code fragment ac-
cesses the array elementsU1[1], U1[2], . . . , U1[2S]
andU2[1], U2[2], . . . ,U2[2S]. Consequently, for ar-
rayU1, we access the first two disks (disk0 and disk1); and
for arrayU2, we access only the third disk (disk2). Note
that, the several current file systems and I/O libraries for
high-performance computing support calls available to con-
vey them the disk layout information when the file is cre-
ated. For example, in PVFS [6], we can change the default
striping parameter by settingbase (the first I/O node to
be used),pcount (stripe factor), andssize (stripe size)
fields of thepvfs filestat structure. Then, the striping
information defined by the user via thispvfs filestat
structure is passed to thepvfs open() call. When creat-
ing a file from within the application, this layout informa-
tion can be made available to the compiler as well, and, as
explained above, the compiler uses this information in con-
junction with the data access pattern it extracts to determine
the disk access pattern. On the other hand, if the file is al-
ready created on the disk subsystem, the layout information
can be passed to the compiler as a command line parame-
ter.

The DAP lists, for each disk, the idle and active times in
a compact form. An entry for a given disk looks like:

< Nest 1, iteration 1, Idle>
< Nest 2, iteration 50, Active>
< Nest 2, iteration 100, Idle>

We see from this example DAP that, the disk in question re-
mains in the idle state (not accessed) until the 50th iteration
of the second nest. It is active (used) between the 50th it-
eration and the 100th iteration of the second nest, follow-
ing which it becomes idle again, and remains so for the rest
of execution. For the example code fragment in Figure 6(a)
and the disk layouts illustrated in Figure 6(b), Figure 6(c)
gives the DAPs for each of the four disks in the system. The
last component of our compiler-driven strategy is responsi-
ble from inserting explicit disk power management calls in
the code. Let us first focus on the TPM based disks. It is im-
portant to note that a DAP is given in terms of loop iter-
ations. In order to determine the appropriate places in the
code to insert explicit power management calls, we need to
interpret the loop iterations in terms of cycles, which can be
achieved as follows. The cycle estimates for the loop itera-
tions are obtained from the actual measurement of the pro-
gram by using a high-quality timer calledgethrtime, which
is available on the UltraSPARC-based systems. Since the
measured execution time is given in nanoseconds scale and

we are given the machine’s clock rate, we can estimate the
number of cycles per each loop iteration.

Once we determine that the estimated disk idleness (in
terms of cycles), if this idleness is larger than thebreakeven
threshold, i.e., the minimum amount of idle time required
to compensate the cost of spinning down in a TPM disk, the
compiler inserts a spin down call in the code. The format of
this call is as follows:

spin down(diski),

wherediski is the disk id. Since a DAP indicates not only
idle times but also active times anticipated in the future, we
can use this information to preactivate disks that have been
spun down by aspin down call. To determine the appro-
priate point in the code to spin up the disk, we take into ac-
count the spin-up time (delay) of the disk. Specifically, the
number of loop iterations before which we need to insert the
spin-up (pre-activation) call can be calculated as:

d = d
Tsu

s + Tm

e (1)

whered is the pre-activation distance (in terms of loop it-
erations),Tsu is the expected spin-up time,Tm is the over-
head of aspin up call, ands is the number of cycles in the
shortest path through the loop body. Note that,Tsu is typi-
cally much larger thans. We also stripe-mine the loop, be-
cause it is unreasonable to unroll the loop to make explicit
the point at which the spin-up call is to be inserted. The for-
mat of the call that is used to pre-activate (spin up) a disk is
as follows:

spin up(diski),

where as beforediski is the disk id. For our running exam-
ple, Figure 6(d) shows the compiler-modified code with the
spin down andspin up calls. In this transformed code,
the calculated pre-activation distance,d, is assumed toS/2.
Let us assume that, at the beginning of the first loop, disk0
and disk2 are active, and disk1 and disk3 are in the low-
power mode. Since the analyzed DAP indicates that disk1
and disk3 will be accessed afterS iterations, we insert a
spin up call to pre-activate disk1 and disk3 between the
first and the second loop nests in Figure 6(d). After execut-
ing S iterations, we insert aspin down call for disk0 and
disk2 because they are not accessed for the remaining exe-
cution of the code. Note that, if we do not use pre-activation,
the disk is automatically spun up when an access (request)
comes; but, in this case, we incur the associated spin-up de-
lay fully. The purpose of the disk pre-activation is to elimi-
nate this performance penalty.

While our discussion so far has focused on the TPM
disks as the underlying mechanism to save power, the
compiler-driven approach can also be used with DRPM.
The necessary compiler analysis and the DAP con-
struction process in this case are the same as in the

TPM case. The main difference is how the informa-
tion recorded in the DAP is used (by taking into ac-
count the times to change RPM) and in the calls in-
serted in the code. In this case, we employ the following
call:

set RPM(rpm levelj,diski),

wherediski is the disk id, andrpm levelj is the jth

RPM level (i.e., disk speed) available. When executed, this
call brings the disk in question to the speed specified. The
selection of the appropriate disk speed is made as follows.
Since the transition time from one RPM step (level) to an-
other is proportional to the difference between the two RPM
steps involved [4], we need to consider the detected idle
time in order to determine the target RPM step. Conse-
quently, we select an RPM level if and only if it is the slow-
est RPM level whose transition latency can be captured by
the estimated idleness. To evaluate our proposed compiler-
directed proactive approach to disk power management, we
wrote a trace generator and a disk power simulator (see Fig-
ure 5).

4.1. Brief Results

To compare different approaches to disk power manage-
ment, we implemented and performed experimentswith dif-
ferent schemes:

• Base: This is the base version that does not employ
any power management strategy. All the reported disk
energy and performance numbers are given as values
normalized with respect to this version.

• TPM: This is the traditional disk power management
strategy used in studies such as [3] and [2], using two
modes, normal and low-power.

• Ideal TPM (ITPM): This is the ideal version of the
TPM strategy. In this scheme, we assume the exis-
tence of an oracle predictor for detecting idle peri-
ods. Consequently, the spin-up and spin-down activi-
ties are performed in an optimal manner.

• DRPM: This is the dynamic RPM strategy proposed
in [4], which steps the RPM at several different incre-
ments.

• Ideal DRPM (IDRPM): This is the ideal version of the
previous strategy. In this scheme, we assume the exis-
tence of an oracle predictor for detecting idle periods,
as in the ITPM case. Consequently, the disk speed to
be used is determined optimally.

• Compiler-Managed TPM (CMTPM): This corre-
sponds to our compiler-driven approach when it is
used with TPM. The compiler estimates idle pe-
riods by analyzing code and considering disk lay-

Figure 7. An example of application of our ap-
proach.

outs, and then makes spin-down/up decisions based
on this information.

• Compiler-Managed DRPM (CMDRPM): This corre-
sponds to our compiler-driven approach when it is
used with DRPM. The compiler estimates idle peri-
ods by analyzing code and considering disk layouts,
and then selects the best disk speed to be used based
on this information.

It must be emphasized that, the ITPM and IDRPM
schemes are not implementable. The reason that we make
experiments with them is that we want to see how close
our compiler-based schemes come close to the opti-
mal. All necessary code modifications are automated using
the SUIF infrastructure [5].

The graph in Figure 7 gives the energy consumption of
our benchmarks under the different schemes described ear-
lier. One can make several observations from these results.
First, the TPM version (ideal or otherwise) does not achieve
any energy savings. Second, while the DRPM version gen-
erates savings (26% on the average), the difference between
it and the ideal DRPM (IDRPM) is very large; the latter
reduces the energy consumption by 51% when averaged
over all benchmarks in our suite. This shows that a reac-
tive strategy is unable to extract the potential benefits from
the DRPM scheme. Our next observation is that the CM-
DRPM scheme brings significant benefits over the DRPM
scheme, and improves the energy consumption of the base
scheme by 46%. In other words, it achieves energy savings
that are very close to those obtained by the IDRPM strat-
egy. These results demonstrate the benefits of the compiler-
directed proactive strategy.

It is to be noted, however, that the energy consump-
tion is just one part of the big picture. In order to have
a fair comparison between the different schemes that tar-
get disk power reduction, we need to consider their perfor-
mances (i.e., execution times/cycles) as well. The bar-chart
in Figure 8 gives the normalized execution times (with re-

Figure 8. An example of application of our ap-
proach.

spect to the base version) for the different schemes evalu-
ated. The reason that the TPM-based schemes do not incur
any performance penalty is because they are not applicable,
given the short disk idle times discussed earlier. When we
look at the DRPM-based schemes, we see that the conven-
tional DRPM incurs a performance penalty of 15.9%, when
averaged over six benchmarks. We also see that the CM-
DRPM scheme incurs almost no performance penalty. The
main reason for this is that this scheme starts to bring the
disk to the desired RPM level before it is actually needed,
and the disk becomes ready when the access takes place.
This is achieved by accurate prediction of disk idle peri-
ods. These results along with those presented in Figure 7
indicate that the compiler-directed disk power management
can be very useful in practice, in terms of both energy con-
sumption and execution time penalty. Specifically, as com-
pared to the reactive DRPM implementation, this scheme
reduces the disk power consumption and eliminates the per-
formance penalty.

5. Conclusions and Future Directions

While preliminary results for DAChe are promising,
there is still much to be investigated. In the current imple-
mentation, the LRU queue is stored locally, and is only af-
fected by local accesses to cache pages. Not only should
the basic eviction performance of DAChe be evaluated,
but further research is planned into how taking remote ac-
cesses into account in the eviction policy may affect overall
cache performance. An extension of that would be migrat-
ing cache pages frequently accessed by a particular process
to that node.

Tighter integration with MPI is also planned. By moving
away from the Portals interface, DAChe will benefit from
the portability of MPICH2.

Early performance results for DAChe suggest it scales
reasonably well. The extremely distributed characteristics

of DAChe get around a number of potential bottlenecks.
While there were no explicit power studies done on the ef-
fects of client-side caching, presumably DAChe can offer
a reduction in the number of disk accesses an application
may make. The two most interesting features of DAChe are
its efficient use of the one-sided communication architec-
ture and its scalable lock manager.

For array-intensive scientific applications, the compiler
can extract a disk access pattern and use it for placing disks
into the most suitable low-power modes. In principle, this
approach can be used with both TPM and DRPM disks.
The compiler-directed proactive approach to disk power-
managements is successful in imporoving the behavior of
the DRPM based scheme. On average, it brings an addi-
tional 18% energy savings over the hardware-based DRPM.

Acknowledgements

This work was supported in Part by NSF Grants
#0444158, #0406340, #0093082, CNS-0406341, CCF-
0444405, Sandia National Laboratory contract 28264, and
DOE award DE-FC02-01ER25485.

References

[1] R. Brightwell, B. Lawry, A. Maccabe, and R. Riesen. Por-
tals 3.0: Protocol building blocks for low overhead communi-
cation.

[2] F. Douglis, P. Krishnan, and B. Bershad. Thwarting the
power-hungry disk. InProceedings of the USENIX Winter
Conference, pages 292–306, 1994.

[3] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk spin-
down policies for mobile computers. InProceedings of the
2nd Symposium on Mobile and Location-Independent Com-
puting, pages 121–137, 1995.

[4] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic speed control for power man-
agement in server class disks. InProceedings of the Interna-
tional Symposium on Computer Architecture, pages 169–179,
June 2003.

[5] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the suif compiler.Com-
puter, 29(12):84–89, 1996.

[6] R. Ross, P. Carns, W. L. III, and R. Latham. Using the parallel
virtual file system. July 2002.

