
Scalable Approaches for Supporting MPI-IO Atomicity

Peter M. Aarestad, Avery Ching, George K. Thiruvathukal∗, and Alok N. Choudhary
Electrical Engineering and Computer Science Department

Northwestern University
{aarestad, aching, gkt, choudhar}@ece.northwestern.edu

Abstract

Scalable atomic and parallel access to noncontiguous
regions of a file is essential to exploit high performance
I/O as required by large-scale applications. Parallel I/O
frameworks such as MPI I/O conceptually allow I/O to be
defined on regions of a file using derived datatypes. Access
to regions of a file can be automatically computed on a per-
processor basis using the datatype, resulting in a list of (off-
set, length) pairs. We describe three approaches for imple-
menting lock serving (whole file, region locking, and byte-
range locking) and compare the various approaches using
three noncontiguous I/O benchmarks. We present the de-
tails of the lock server architecture and describe the imple-
mentation of a fully-functional prototype that makes use of
a lightweight message passing library and red/black trees.

1 Introduction

When application designers need to implement real-
time visualization of data, coherent checkpoint schemes
and many other producer-consumer problems, while han-
dling concurrent access to a file by parallel processes, effi-
cient atomic I/O access is required. Atomic I/O can be en-
forced programmatically (e. g.,MPI Barrier() can en-
force that only a single process accesses a file at a time),
but this approach requires much more work on the behalf of
the application designer and does not provide an easy and
efficient way to enforce atomic I/O operations.

Large-scale data intensive parallel applications often use
MPI-IO natively or through the use of higher level libraries
such as pNetCDF [11] and HDF5 [8]. MPI-IO speci-
fies anatomic mode, which can be set through the use of
MPI File set atomicity(). When atomic mode is
enabled, MPI-IO will guarantee sequential consistency.

∗George K. Thiruvathukal is with Loyola University Chicago in the
Computer Science department, and has a courtesy appointment at North-
western University.

One of the most common ways to enforce sequential
consistency is through the use of locks; several examples
of implmentations that use locking are mentioned in Sec-
tion 5. While file locking and byte-range locking are popu-
lar strategies, many scientific applications access data using
noncontiguous I/O access patterns [3, 5]. Often file locking
and byte-range locking force serialized I/O access to pro-
cesses that may not have overlapping writes and therefore
should be able to work in parallel.

We improve I/O concurrency for simultaneous noncon-
tiguous I/O operations by introducinglist locking. In order
to test the various locking strategies on an equal platform,
we have developed a general byte-range lock server with
communication code that can be built directly into the I/O
code to provide exclusive I/O access transparently. Our ex-
periments showed that list locking beat the other methods
by over a factor of 8 in some cases and nearly reached ideal
performance (non-atomic I/O access).

Section 2 presents an overview of the three different
locking approaches in detail. Section 3 describes the soft-
ware architecture of the lock server and the API exposed
to the application developer. Section 4 describes selected
I/O benchmarks that we used to test the performance im-
plications of using fine-grained byte-range I/O locking as
opposed to the more coarse-grained locking methods of
whole-file locking and byte-range locking. Section 5 pro-
vides a brief summary of related work. Section 6 presents
conclusions and significance of our work and a summary of
future research directions.

2 Locking Approaches

We begin by describing the locking mechanisms we used
in our tests. When trying to enforce atomic I/O operations,
the most common strategies employed are file locking and
byte-range locking. We discuss each method in detail. Then
we then describe our new method,list locking. Figure 1
gives a visual summary of the three methods.

Locking Approaches

File

(a) Whole-File Lock

Byte-Region Lock

File Datatype

(b)

(c) ListLock

Figure 1. Three different locking approaches
to be tested. The shaded region of the file
shows the byte ranges used by a particular
datatype; (a) shows the extent of a whole-
file lock; (b) shows the extent of a byte-range
lock, and (c) shows the extent of a list lock.

2.1 File Locking

The easiest way to guarantee exclusive access to an I/O
access pattern is to lock an entire file. The first process to
request a lock gets, in essence, a lock on the file from its
start to its end, no matter how large it grows. Subsequent
processes that wish to access the file must wait for the first
process to release its exclusive lock, and are then granted
exclusive access to the file on a first-come, first-serve basis.

This is obviously the least efficient method of locking a
file. Suppose process 1 requests a lock on a file, but only
needs to access the first 10 bytes of the file. A second pro-
cess also wants access to the file, but needs access to a com-
pletely different part of the file, for example, bytes 100-200.
These two processes could theoretically perform their I/O
in parallel, writing their own regions without affecting the
other process; however, as long as the first process holds
the lock on the file, the second process cannot get any work
done. It must wait until the lock is released, acquire the
lock itself, and then do the required work. Thus,n atomic
I/O operations to the same file would requiren sequential
operations to complete. The synchronization and serializa-
tion overhead of file locking makes it an unattractive option
for multiple processes to atomically access the same file.

2.2 Byte-range Locking

Byte-range locking, as seen in Figure 1 (b), changes the
granularity of the lock from a file to a range of bytes. When
processes lock a single range of bytes instead of an entire
file, more concurrent I/O access is possible. Basically, the
lock client calculates the beginning and ending bytes of the
file access pattern and requests a lock covering the entirety

of the access pattern from beginning to end. When other
processes make lock requests that do not overlap, they can
proceed concurrently.

While byte-range locking generally allows more concur-
rent access than file locking, if I/O access patterns of mul-
tiple processes are interleaved, serialized I/O will result. A
simple example of unnecessarily serialized I/O is two pro-
cesses each writing 10 bytes and then skipping 10 bytes
n times. Process 0 starts at byte 0 and process 1 starts at
byte 10. While the writes should be able to occur concur-
rently, the writes will be serialized since the computed bytes
ranges used for the byte-range locking strategy are overlap-
ping. This is the same amount of serialization as if we had
employed the file locking strategy.

2.3 List Locking

In order to provide the most concurrency possible, we
introducelist locking. List locking is a method for lock-
ing only the file regions which we are using for I/O. The
file locking and byte-range locking methods actually pro-
vide exclusive access to regions of file that are required for
I/O and some regions of file that are not. Since we can de-
scribe a locking access pattern identical to the I/O access
pattern, list locking can provide the highest level of con-
currency possible for atomic I/O operations. For example,
many scientific applications use multi-dimensional arrays
as data structures. Most such applications use the nested
MPI Type vector() calls to describe strided access to
data. By examining the datatype, we can determine only
those byte ranges affected by the datatype, and request locks
on only those byte ranges. Using this method, we can pro-
vide better I/O concurrency to handle the cases where the
entire range of two datatypes overlap, but the individual el-
ements in the datatype do not overlap. If each process is
granted locks only on those exact byte ranges it is affect-
ing, then other processes can be granted locks on file access
patterns that do not overlap those byte ranges.

List locking introduces two complications that were not
present before. The first issue we must consider is the actual
computation of the byte ranges. This is a decidedly non-
trivial issue—MPI derived datatypes can be nested, result-
ing in highly complex access patterns. The other complica-
tion that will arise is the increase in communication that will
be required to describe the byte ranges to be locked. While
a file lock request would simply require the name of the file
to be locked to be transmitted, and a byte range lock would
require the file name and the minimum and maximum off-
set of the datatype, list locks may require tens, hundreds, or
perhaps thousands of offset-length pairs to be transmitted
from the client to the server. This must be done efficiently to
allow lock requests to be transmitted and processed quickly
and to reduce the overhead of requesting locks to a mini-

mum.

3 The List Lock Server

Our lock server uses a two-tiered server system as illus-
trated in Figure 2 There are two actual server applications
deployed in our lock server: the client proxy and the server
proper. The actual server stores all the state on locks cur-
rently held by various clients; the client proxy does not store
any state, and acts essentially as a local proxy to the remote
lock server. The current implementation of our lock server
does not require this two-tiered approach, but as we will ex-
plain in Section 6, the client proxy will eventually be able
to store information on the age of locks, and will communi-
cate directly with its application clients if the server chooses
to remove locks that have been in existence for too long.
Our focus, though, was on performance initially, and so we
made the decision to leave this feature as future work.

MPI Clent Machine (may be multiple)

User MPI process issues
MPI_Write() or MPI_Read()

ADIO Library issues
WriteStrided()

Lock Server Proxy (local to MPI machines)

Lock Server Proxy

Lock Server (may be remote)

Lock Server

Figure 2. Lock server architecture.

3.1 Software Architecture

The client proxy and server are both written in Java us-
ing the Java Development Kit from Sun Microsystems. The
use of Java in high-performance computing tasks is consid-
ered controversial [9] when it comes to performance; how-
ever, our results show that a lightweight server written in
Java such as ours can still produce good results. (As an
aside, the lock server focuses on networking and data struc-
tures, both of which are known to work efficiently in Java
unlike floating point, which is known to run slowly as de-
scribed in the preceding reference.) The locks themselves
are stored as a simple byte range associated with a par-
ticular file. Determining the ideal method for storage of
the locks on the server side proved to be difficult, due to
the computational complexities of searching through exist-
ing locks in order to add new ones and remove old ones.
We settled on using a red-black binary search tree [7] to

store the locks associated with each individual file; refer-
ences to the trees themselves would be stored in a hash
table using the name of the file as the key. This allows
for O(m log y)-time insertion (wherem is the number of
requested locks for a particular file, andn is the num-
ber of existing locks on a particular file) and better than
O(m log y)-time deletion, since we have a direct handle to
each object deleted into the tree, thus the actual deletion
can be done inO(1) time, with rebalancing taking no more
than O(log n) time on average. Unfortunately, although
the Java standard library provides a high-performance hash
table (in particular,java.util.HashMap), it does not
provide a flexible balanced binary search tree suitable
for our needs. Eventually, we settled on a simple red-
black tree implementation used in a popular modern data
structures textbook [6] and provided on their web site at
http://net.datastructures.net. This imple-
mentation proved to be the best of the several that we found
in our search. As shown in Figure 3, the comparison func-
tion used to store the lock objects in the tree compares the
actual interval (range of bytes) represented by the locks; if
the whole interval of a lock (request) lies “to the left” of
another lock (i.e. the interval’s upper bound is strictly less
than the other lock interval’s lower bound), the lock on the
left is strictly less than the one on the right; likewise, a lock
“to the right” of another lock (i.e. its lower bound is strictly
greater than the other lock’s upper bound) is strictly greater
than the lock to the left. If any part of two lock intervals
overlap, they are considered to be “equal”.

Needless to say, interval mathematics is important for list
locking and in high-performance scientific/technical com-
puting. There was a proposal—in which co-author Thiru-
vathukal served as the lead editor—to bring direct support
for the concept to Java [1], which would have made Java one
of the first modern languages to support interval mathemat-
ics. A side effect of our list locking work could be a first
step toward integrating interval mathematics with modern
data structures.

3.2 Client-Server Communication

The application, client proxy and server use a
lightweight communication protocol on top of TCP/IP.
The protocol, and associated Java-based implementation,
was developed as part of the JHPC class library de-
scribed in [4] to demonstrate best practices in high-
performance Java computing; the source code can be found
athttp://www.jhpc.info. In our original design, all
data was transmitted from the sender to the recipient as
key-value pairs, with both the key and value represented as
strings (in particular, instances ofjava.lang.String),
and stored as Message objects on the client and server side.
Java transmits strings in an efficient manner using a mod-

offset=100
length=5

offset=50
length=5

offset=150
length=5

Incoming Lock Request

offset=75
length=5

(null)(null) (null)(null)

Example of a Lock Request Process

Figure 3. Illustration of lock comparison. The
incoming lock request follows the dashed-
arrow pattern to ensure that an overlapping
request is not already in the tree; it is then
added and the tree is rebalanced if neces-
sary.

ified UTF-8 encoding with a 16-bit header denoting the
string’s length; thus, ASCII strings of lengthn are transmit-
ted over the wire inn+2 bytes. In particular, 32- and 64-bit
integers were converted to strings and sent this way. This is
actually more efficient for smaller integers, but since we are
representing the offsets and lengths of the individual locks
as 64-bit integers, the values could potentially become very
large. Also, each value would be associated with a sepa-
rate key, which would lead to massive redundancy in the
information being sent. We thus modified the communica-
tion protocol to allow arrays of integers (both 32- and 64-
bits) to be marshalled in their natural machine representa-
tion, which proved to be much more efficient. For example,
an array of 10 64-bit integers with a 5-character-long key
(such as’array’) could then be sent in7+ (10 ∗ 8) = 87
bytes. If each 64-bit integer needed a separate 5-character-
long key, and each integer was 12 decimal digits long, the
transmission would require10 ∗ (7 + 14) = 210 bytes.

In order to allow applications written in C (using MPI)
to communicate with the client proxy, we developed a C
client to communicate with the existing Java version of the
communication software. Because the standard C library
provides no standard data structures, we used a lightweight
data structures library that is distributed as part of the Apt
Compiler Toolkit [16], which was designed and developed
by one of the authors. We were able to use this library to
implement the data structures necessary to handle Message
objects - of course, C is not an object-oriented language,
but the library was written with object orientation in mind,
making it useful to translate the object-oriented Java code
into functional C code.

3.3 The Lock Server API

The application programmer will ideally be mostly com-
pletely unaware of the existence of a lock server. Ideally, the

application programmer will simply issue an MPI-IO func-
tion call such asMPI write(), and behind the scenes, the
MPI and filesystem implementation will communicate with
the lock server to acquire the locks, issue the actual file I/O
command, and release the locks.

The exposed API leaves the actual computation of locks
to the caller. Once the offsets and lengths of all the indi-
vidual locks are determined by the caller, they are grouped
into arrays and passed to the lock server API which handles
communication with the lock server. The lock acquisition
call is a blocking call, not returning until all requested locks
are granted. Once all the locks are successfully acquired,
a lock ID is returned to the device driver, which can then
assume it has an exclusive lock over the regions of the file
it requested. It can then perform its desired list I/O action,
and when it completes, it instructs the lock server API to
release the locks granted under its lock ID.

3.4 Lock Computation

A separate function,lock datatype(), is called by
MPI-IO implementation internally to compute the locks re-
quired for a particular MPI datatype. The locks are com-
puted by using the internal ADIO Flatten calls. The code
examines the byte-range locks to be locked and coalesces
adjacent requests into one single request in order to reduce
the amount of communication with the lock server. This al-
lows us to compute the byte-range locks required for any
valid MPI data type.

4 Performance Implications

In order to see whether our improvement in I/O concur-
rency would validate the use of the list locking approach,
we ran a series of noncontiguous I/O tests. Section 4.1 dis-
cusses our test machine setup. We used a three-dimensional
block benchmark from the ROMIO testing suite, and a sim-
ulation of the I/O portion of the FLASH code, and a tile
reader benchmark. Each test was run under four different
scenarios: no locking, file locking, byte-range locking and
list locking. We have include the no locking scenario to pro-
vide an upper bound on ideal performance. All results were
averaged from 3 test runs.

4.1 Machine Configuration

We ran all of our tests on the Jazz cluster at Argonne Na-
tional Laboratory [2]. The cluster had the following config-
uration at test time. There are 350 nodes each with a single
2.4 GHz Pentium Xeon processor. 175 of the nodes have
2 GB of RAM each, and the other 175 nodes have 1 GB
RAM each. Further, each node has an 80 GB local scratch
disk, Myrinet 2000 connections, Fast Ethernet connection

among all the nodes, and a 10 TB global working disk with
NFS and PVFS. We conducted our experiments over Fast
Ethernet due to our MPICH software not recognizing the
Myrinet host names. The nodes run Linux kernel 2.4.29-
rc2. MPICH2 version 1.0.2p1 was used in all our testing.
All our tests used the shared PVFS parallel file system.

4.2 ROMIO Three-Dimensional Block
Test

The ROMIO test suite consists of a number of correct-
ness and performance tests. We chose thecoll perf.c
test from this suite to compare our methods of noncontigu-
ous data access. Thecoll perf.c test measures the I/O
bandwidth for both reading and writing to a file with a file
access pattern of a three-dimensional block-distributed ar-
ray. The three-dimensional array has dimensions 100 x 100
x 100 with an element size of an integer (4 bytes). Eight to-
tal tests were performed, with ten runs of each: each of the
four locking scenarios was tested with 8, 27, and 64 pro-
cessors. Table 1 shows the number of locks generated in
each locking scenario and each scenario’s maximum con-
currency (i.e. the maximum number of processors that can
run simultaneously). For the 27-processor list lock test, it
should be noted that 3 of the processors acquire only 4 locks
each instead of 12.

As can be seen in Figure 4, list locking significantly out-
performs all other I/O methods in this test. All I/O ac-
cess is serialized when using file locking. Therefore, when
8 processes are used, 8 I/O operations are performed se-
quentially. When 64 processes are used, 64 I/O operations
are performed sequentially. Whole-file locking results in a
great deal of needless blocking, since the datatypes do not
overlap in this test. Thus, most processors end up wasting
time trying to acquire locks rather than doing I/O. When
we do byte-range locking, we avoid some of the blocking
and are able to receive and use locks immediately more fre-
quently, resulting in a much lower execution time. Finally,
list locking provides us with full concurrency which elimi-
nates all needless blocking; the only effect on performance
is caused by the lock processing overhead.

In the 8-processor test, we see that the bandwidth for list
locking is about 93% of the results that did not use lock-
ing. However, when we move to 27 processors, the rela-
tive performance of our list locking suffers a bit, dropping
a bandwidth to about 62% of the average achieved without
locking. Similarly, in the 64-processor tests, we see that the
performance of list locking drops to about 75% of the av-
erage achieved without locking. The discrepancy is likely
due to the increase in communication when moving from
8 to 64 processors, and the fact that all the processors had
to communicate with a single proxy. Distributing the load
among several proxies and servers may alleviate this clas-

sic bottleneck situation, but even with the single server, our
implementation performed admirably. The fact that the per-
formance of 27 processors was not as good may be due to
the odd number of processors, resulting in less-than-optimal
communication among the processors during computation.

Whole−File Locking
No locking

List lock
Byte−Range Locking

 3

 5

 6

 7

 8

 9

64278

A
ve

ra
ge

 b
an

dw
id

th
 (

M
B

/s
ec

)

Number of processors

ROMIO Three−Dimensional Block Test

 2

 1

 0

 4

Figure 4. Three-dimensional block test re-
sults

4.3 FLASH I/O Simulation

The FLASH code is an adaptive mesh refinement ap-
plication that solves fully compressible, reactive hydrody-
namic equations, developed mainly for the study of nu-
clear flashes on neutron stars and white dwarfs. The I/O
performance for FLASH determines how often checkpoint-
ing may be performed, so I/O performance is critical. The
actual FLASH code uses HDF5 for writing checkpoints,
but the organization of variables in the file is the same in
our simulation. The element data in every block on MPI
Datatypes. The access pattern of the FLASH code is non-
contiguous both in memory and in file, making it a chal-
lenging application for parallel I/O systems. The FLASH
memory datatype consists of 80 FLASH three-dimensional
blocks, or cells in the refined mesh, on each processor. Ev-
ery block contains an inner data block surrounded by guard
cells. Each of these data elements has 24 variables associ-
ated with it. Every processor writes these blocks to a file in
a manner such that the file appears as the data for variable
0, then the data for variable 1, up to variable 23. Within
each variable in file, there exist 80 blocks, each of these
blocks containing all the FLASH blocks from every proces-
sor. Since every processor writes 80 FLASH blocks to file,
as we increase the number of clients, the dataset size in-
creases linearly as well. Every processor adds 7 MBytes
to the file, so the dataset ranges between 14 MBytes (2
clients) to 448 MBytes (64 clients). Similarly to the three-
dimensional block test, 16 tests were run - four with each

Table 1. Characteristics of each testing scenario for three-dimensional block test
Number of Number of Locks Maximum Concurrent
Processors per Client Processes

Whole-File 8 1 1
Locking 27 1 1

64 1 1
Byte-Range 8 1 4
Locking 27 1 9

64 1 16
List Lock 8 25 8

27 12 27
64 64 64

Table 2. Characteristics of each testing scenario for FLASH I/O simulation
Number of Number of Locks Maximum Concurrent
Processors per Client Processes

Whole-File 8 1 1
Locking 16 1 1

32 1 1
64 1 1

Byte-Range 8 1 1
Locking 16 1 1

32 1 1
64 1 1

List Lock 8 64 8
16 64 16
32 64 64
64 64 64

Table 3. Characteristics of each testing scenario for tile reader benchmark
Number of Locks Maximum Concurrent

per Client Processes

Whole-File 1 per file 1
Locking
Byte-Range 1 per file 2
Locking
List Lock 64 per file 2

No locking

Byte−Range Locking
Whole−File Locking

List Lock

 0

 2.5

 3

 3.5

 4

6432168

A
ve

ra
ge

 b
an

dw
id

th
 (

M
B

/s
ec

)

Number of processors

FLASH I/O Simulation

 1.5

 1

 0.5

 2

Figure 5. FLASH I/O Simulation results.

of the locking scenarios and each of 8, 16, 32 and 64 pro-
cessors. Table 2 shows the number of locks generated in
each locking scenario and each scenario’s maximum con-
currency.

Figure 5 shows our results. Again we see that, when
there is less contention, list locking performs almost as well
as no locking at all. We see again the performance when
locking with 8 processors is about 90% of the performance
without locking, and list lock performance with 16 proces-
sors is about 97% of non-locking performance. Interest-
ingly, the performance when list locking actually exceeds
that when not locking with 32 processors by about 6%, and
with 64 processors by about 5.5%. A possible explanation
for this is that the discipline of achieving locks reduces con-
tention among the processors for access to the file, allow-
ing a more orderly sharing of the file, which would reduce
thrashing by the file system.

4.4 Tile Reader Benchmark

Tiled visualization code is used to study the effectiveness
of commodity based graphics systems in creating parallel
and distributed visualization tools. The amount of detail in
current visualization methods requires more than a single
desktop monitor can resolve. Using two-dimensional dis-
plays to visualize large datasets or real-time simulation is
important for high performance applications. Our version
of the tiled visualization code, the tile reader benchmark,
uses multiple compute nodes, with each compute node tak-
ing high-resolution display frames and read- ing only the
visualization data necessary for its own display. We use six
compute nodes for our testing, which mimics the display
size of the full application. The six compute nodes are ar-
ranged in a3× 2 matrix of panels, each with a resolution of
1024 × 768 with 24-bit color. In order to hide the merging
of display edges, there is a 270-pixel horizontal overlap and

Byte−Range Locking
Whole−File Locking
No locking

List Lock

 0

 10

 12

 14

6

A
ve

ra
ge

 b
an

dw
id

th
 (

M
B

/s
ec

)

Number of processors

Tile Reader Benchmark

 6

 4

 2

 8

Figure 6. Tile reader benchmark results

a 128-pixel vertical overlap. Each frame has a file size of
about 10.2 MBytes. A set of 100 frames is read for a to-
tal of 1.02 GBytes. Five runs were performed using each
locking scenario. Table 3 shows the number of locks gener-
ated in each locking scenario and each scenario’s maximum
concurrency.

The results are shown in Figure 6. We can see that, due
to a great deal of overlapping byte ranges, there was a great
deal of lock contention, resulting in much lower bandwidth
versus reading the tiles without locking the file. Still, we
show that, even with the large amount of contention, list
locking gives us a 12% bandwidth improvement over the
more naive locking methods.

5 Related Work

GPFS [13] describes a high-performance filesystem with
a novel approach to locking that involves a modification of
the whole-file locking mechanism: the first lock requester
is granted a lock on the whole file, and subsequent lock re-
quests for the same file cause existing lock requests to be cut
in half, similar to the well-known “buddy system” of mem-
ory management. Petal [10] describes a distributed file sys-
tem that locks copies of data blocks before reading or writ-
ing to guarantee consistency. NFS version 3 [14] introduced
support for file locking, while NFS version 4 [15] also in-
troduced support for byte-range locking. UNIX provides
whole-file locking via the file locking functionflock()
and byte-range locking via the functionfcntl(), as spec-
ified in the POSIX standard [12].

6 Conclusions, Significance, and Further
Work

Our lock server implementation for MPI datatypes pro-
vides a fair comparison of various atomicity strategies. Our

tests have shown that list locking is superior to more naive
methods of locking in cases where there is no byte-range
overlap of derived datatypes (as seen with the FLASH and
three-dimensional block tests), and is still somewhat bene-
ficial in cases where there is a great deal of lock contention
(as with the tile reader benchmark).

This work has also demonstrated that a robust and scal-
able lockserver can be developed using object-oriented
techniques and Java. The key to success involves knowing
when to use Java, avoiding the overhead of starting the Java
Virtual Machine within the application itself, being careful
with the native class library, and relying upon lightweight
approaches for client/server communication.

Future work on this server can be taken in a few differ-
ent directions. One significant problem not addressed by
this implementation is the question of what should be done
with stale locks; that is, locks that are granted to a process,
but are never deleted since the process that requested either
dies or otherwise misbehaves. To some extent, this is an im-
plementation detail; however, the current thought is to ex-
tend our current architecture by using an approach found in
other atomicity mechanisms, such aspthreads, wherein op-
erations on a lock can be timed. In our framework, it would
be easy to extend the lock concept to allow a time-to-live
(TTL) value to be specified, after which the locks would
be deleted/released automatically. Performance of the lock
server could also be further improved by using an alterna-
tive coding of locks, rather than the simple offset/length
combination used by our implementation to represent locks.

In terms of list locking itself, many requests—especially
those of a computed nature as found in MPI derived
datatypes—could be compacted using well known com-
pression techniques (e.g. run-length encoding) or produced
by generator (or iterator) expressions. Generator expres-
sions allow you to express a concept—in code—such as the
following: Generate a list of locks(n, n + 10), for all bytes
from n = 0 to n = 1000000 wheren%10 == 0. The
advantage of this approach is that the application passes a
concise lock request to the server, which expands the re-
quest into its present list representation.

Finally, although building a list locking strategy from
byte ranges yields promising results, we think it might be
possible to do even better by using a block-oriented ap-
proach, in which a whole range of bytes could be locked
by locking a single bit within a bit vector and eliminate
the need to compare overlapping intervals. However, this
approach might have the drawback of exposing (unwanted)
functionality to the application developer, wherein the block
size might need to be specified upon creation of the file it-
self.

Acknowledgments

This work was funded in part by a grant from the Na-
tional Science Foundation to Loyola University Chicago
(CCF-0444197) and a Cabell Fellowship provided by the
Northwestern University McCormick School of Engineer-
ing. The authors would also like to acknowledge the advice
and input of Kenin Coloma, Wei-keng Liao, and Gokhan
Memik, Narayan Desai, Rick Bradshaw Rob Ross, and
Benjam´ın González.

References

[1] Java Grande Forum Report: Making Java Work for High-
End Computing. http://www.javagrande.org.

[2] Jazz, the Argonne scalable cluster.
http://www.lcrc.anl.gov/jazz/.

[3] S. J. Baylor and C. E. Wu. Parallel I/O Workload Character-
istics Using Vesta. InProceedings of the IPPS ’95 Workshop
on Input/Output in Parallel and Distributed Systems, pages
16–29, April 1995.

[4] T. W. Christopher and G. K. Thiruvathukal.High Perfor-
mance Java Platform Computing. Prentice Hall PTR, Upper
Saddle Ridge, NJ, 2000.

[5] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. In-
put/Output Characteristics of Scalable Parallel Applications.
In Proceedings of Supercomputing ’95, San Diego, CA, De-
cember 1995. IEEE Computer Society Press.

[6] M. T. Goodrich and R. Tamassia.Data Structures and Algo-
rithms in Java, 2nd Edition. John Wiley and Sons, 2001.

[7] L. J. Guibas and R. Sedgewick. A Dichromatic Framework
for Balanced Trees. InProceedings of the 19th Annual Sym-
posium on Foundations of Computer Science, pages 8–21.
IEEE Computer Society, 1978.

[8] HDF5 home page.http://hdf.ncsa.uiuc.edu/HDF5/.
[9] W. Kahan and J. D. Darcy.How Java’s Floating-Point Hurts

Everyone Everywhere.
[10] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual

Disks. SIGPLAN Notices, 31(9):84–92, 1996.
[11] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur,

W. Gropp, R. Latham, A. Sigel, B. Gallagher, and M. Zin-
gale. Parallel netCDF: A High-Performance Scientific I/O
Interface. InProceedings of Supercomputing 2003, Novem-
ber 2003.

[12] The Open Group, http://www.unix.org/.The Single UNIX
Specification Version 3, 2004 Edition, 2004.

[13] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters. InProceedings of the
FAST 2002 Conference on File and Storage Technologies,
San Jose, CA, January 2002. IBM Almaden Research Cen-
ter.

[14] Sun Microsystems, http://www.faqs.org/rfcs/rfc1813.html.
RFC 1813 - NFS Version 3 Protocol Specification, 1995.

[15] Sun Microsystems and Network Appliance,
http://www.faqs.org/rfcs/rfc3530.html. RFC 3530 -
NFS Version 4 Protocol Specification, 2003.

[16] G. K. Thiruvathukal and U. Verun.Apt Compiler Toolkit.
http://www.sourceforge.net/projects/apt.

