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1.1 Introduction

An important aspect of any large-scale scientific application is data storage and retrieval.
I/O technology lags other computing components by several orders of magnitude with a per-
formance gap that is still growing. In short, much of I/O research is dedicated to narrowing
this gap.
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FIGURE 1.1: (a) Abstract I/O software stack for scientific computing. (b) Current com-
ponents of the commonly used I/O software stack.
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Applications that utilize high-performance I/O do so at a specific level in the parallel
I/O software stack depicted in Figure 1.1. In the upper levels, file formats and libraries
such as netCDF and HDF5 provide certain advantages for particular application groups.
MPI-IO applications can leverage optimizations in the MPI specification [Mes] for various
operations in the MPI-IO and file system layers. This chapter explains many powerful I/O
techniques applied to each stratum of the parallel I/O software stack.

1.2 Portable File Formats and Data Libraries

Low level I/O interfaces, like UNIX I/O, treat files as sequences of bytes. Scientific appli-
cations manage data at a higher level of abstraction where users can directly read/write
data as complex structures instead of byte streams and have all type information and other
useful metadata automatically handled. Applications commonly run on multiple platforms
also require portability of data so that the data generated from one platform can be used
on another without transformation. As most scientific applications are programmed to run
in parallel environments, parallel access to the data is desired. This section describes two
popular scientific data libraries and their portable file formats, netCDF and HDF5.

1.2.1 File Access in Parallel Applications

Before presenting a detailed description of library design, general approaches for accessing
portable files in parallel applications (in a message-passing environment) are analyzed. The
first and most straightforward approach is described in the scenario of Figure 1.2a where
one process is in charge of collecting/distributing data and performing I/O to a single file
using a serial API. The I/O requests from other processes are carried out by shipping all
the data through this single process. The drawback of this approach is that collecting all
I/O data on a single process can easily create an I/O performance bottleneck and also
overwhelm its memory capacity.

In order to avoid unnecessary data shipping, an alternative approach has all processes
perform their I/O independently using the serial API, as shown in Figure 1.2b. In this way,
all I/O operations can proceed concurrently, but over separate files (one for each process).
Managing a dataset is more difficult, however, when it is spread across multiple files. This
approach undermines the library design goal of easy data integration and management.

A third approach introduces a parallel API with parallel access semantics and an opti-
mized parallel I/O implementation where all processes perform I/O operations to access
a single file. This approach, as shown in Figure 1.2c, both frees the users from dealing
with parallel I/O intricacies and provides more opportunities for various parallel I/O op-
timizations. As a result, this design principle is prevalent among modern scientific data
libraries.

1.2.2 NetCDF and Parallel NetCDF

NetCDF [RD90], developed at the Unidata Program Center, provides applications with a
common data access method for the storage of structured datasets. Atmospheric science
applications, for example, use netCDF to store a variety of data types that include single-
point observations, time series, regularly spaced grids, and satellite or radar images. Many
organizations, such as much of the climate modeling community, rely on the netCDF data
access standard for data storage.

NetCDF stores data in an array-oriented dataset which contains dimensions, variables,
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FIGURE 1.2: Using data libraries in parallel applications: (a) using a serial API to access
single files through a single process; (b) using a serial API to access multiple files concur-
rently and independently; (c) using a parallel API to access single files cooperatively or
collectively.

TABLE 1.1 NetCDF Library Functions
Function Type Description

Dataset Functions create/open/close a dataset, set the dataset to define/data mode, and syn-
chronize dataset

Define Mode Functions define dataset dimensions and variables
Attribute Functions manage adding, changing, and reading attributes of datasets
Inquiry Functions return dataset metadata: dim(id, name, len), var(name, ndims, shape, id)
Data Access Functions provide the ability to read/write variable data in one of the five access

methods: single value, whole array, subarray, subsampled array (strided
subarray) and mapped strided subarray

and attributes. Physically, the dataset file is divided into two parts: file header and array
data. The header contains all information (metadata) about dimensions, attributes, and
variables except for the variable data itself, while the data section contains arrays of variable
values (raw data). Fix-sized arrays are stored contiguously starting from given file offsets,
while variable-sized arrays are stored at the end of the file as interleaved records that grow
together along a shared unlimited dimension.

The netCDF operations can be divided into the five categories as summarized in Table
1.1. A typical sequence of operations to write a new netCDF dataset is to create the dataset;
define the dimensions, variables, and attributes; write variable data; and close the dataset.
Reading an existing netCDF dataset involves first opening the dataset; inquiring about
dimensions, variables, and attributes; then reading variable data; and finally closing the
dataset.

The original netCDF API was designed for serial data access, lacking parallel seman-
tics and performance. Parallel netCDF (PnetCDF) [LLC+03], developed jointly between
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FIGURE 1.3: Design of PnetCDF on a parallel I/O architecture. PnetCDF runs as a
library between the user application and file system. It processes parallel netCDF requests
from user compute nodes and, after optimization, passes the parallel I/O requests down to
MPI-IO library. The I/O servers receive the MPI-IO requests and perform I/O over the
end storage on behalf of the user.

Northwestern University and Argonne National Laboratory (ANL), provides a parallel API
to access netCDF files with significantly better performance. It is built on top of MPI-
IO, allowing users to benefit from several well-known optimizations already used in existing
MPI-IO implementations, namely the data sieving and two phase I/O strategies in ROMIO.
MPI-IO is explained in further detail in Section 1.3. Figure 1.3 describes the overall archi-
tecture for PnetCDF design.

In PnetCDF, a file is opened, operated, and closed by the participating processes in an
MPI communication group. Internally, the header is read/written only by a single process,
although a copy is cached in local memory on each process. The root process fetches the
file header, broadcasts it to all processes when opening a file, and writes the file header
at the end of the define mode if any modifications occur in the header. The define mode
functions, attribute functions, and inquiry functions all work on the local copy of the file
header. All define mode and attribute functions are made collectively and require all the
processes to provide the same arguments when adding, removing, or changing definitions so
the local copies of the file header are guaranteed to be the same across all processes from
the time the file is collectively opened until it is closed.

The parallelization of the data access functions is achieved with two subset APIs, the
high-level API and the flexible API. The high-level API closely follows the original netCDF
data access functions and serves as an easy path for original netCDF users to migrate to the
parallel interface. These calls take a single pointer for a contiguous region in memory, just
as the original netCDF calls did, and allow for the description of single elements (var1),
whole arrays (var), subarrays (vara), strided subarrays (vars), and multiple noncontiguous
regions (varm) in a file. The flexible API provides a more MPI-like style of access by
providing the user with the ability to describe noncontiguous regions in memory. These
regions are described using MPI datatypes. For application programmers that are already
using MPI for message passing, this approach should be natural. The file regions are still
described using the original parameters. For each of the five data access methods in the
flexible data access functions, the corresponding data access pattern is presented as an
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MPI file view (a set of data visible and accessible from an open file) constructed from the
variable metadata (shape, size, offset, etc.) in the netCDF file header and user provided
starts, counts, strides, and MPI datatype arguments. For parallel access, each process has
a different file view. All processes can collectively make a single MPI-IO request to transfer
large contiguous data as a whole, thereby preserving useful semantic information that would
otherwise be lost if the transfer were expressed as per process noncontiguous requests.

1.2.3 HDF5

HDF (Hierarchical Data Format) is a portable file format and software, developed at the
National Center for Supercomputing Applications (NCSA). It is designed for storing, re-
trieving, analyzing, visualizing, and converting scientific data. The current and most pop-
ular version is HDF5 [HDF], which stores multi-dimensional arrays together with ancillary
data in a portable, self-describing file format. It uses a hierarchical structure that provides
application programmers with a host of options for organizing how data is stored in HDF5
files. Parallel I/O is also supported.

HDF5 files are organized in a hierarchical structure, similar to a UNIX file system. Two
types of primary objects, groups and datasets, are stored in this structure, respectively
resembling directories and files in the UNIX file system. A group contains instances of
zero or more groups or datasets while a dataset stores a multi-dimensional array of data
elements. Both are accompanied by supporting metadata. Each group or dataset can have
an associated attribute list to provide extra information related to the object.

A dataset is physically stored in two parts: a header and a data array. The header
contains miscellaneous metadata describing the dataset as well as information that is needed
to interpret the array portion of the dataset. Essentially, it includes the name, datatype,
dataspace, and storage layout of the dataset. The name is a text string identifying the
dataset. The datatype describes the type of the data array elements and can be a basic
(atomic) type or a compound type (similar to a struct in C language). The dataspace
defines the dimensionality of the dataset, i.e., the size and shape of the multi-dimensional
array. The dimensions of a dataset can be either fixed or unlimited (extensible). Unlike
netCDF, HDF5 supports more than one unlimited dimension in a dataspace. The storage
layout specifies how the data arrays are arranged in the file.

The data array contains the values of the array elements and can be either stored together
in contiguous file space or split into smaller chunks stored at any allocated location. Chunks
are defined as equally-sized multi-dimensional subarrays (blocks) of the whole data array and
each chunk is stored in a separate contiguous file space. The chunked layout is intended to
allow performance optimizations for certain access patterns, as well as for storage flexibility.
Using the chunked layout requires complicated metadata management to keep track of how
the chunks fit together to form the whole array. Extensible datasets whose dimensions can
grow are required to be stored in chunks. One dimension is increased by allocating new
chunks at the end of the file to cover the extension.

The HDF5 library provides several interfaces that are categorized according to the type
of information or operation the interface manages. Table 1.2 summarizes these interfaces.

To write a new HDF5 file, one needs to first create the file, adding groups if needed;
create and define the datasets (including their datatypes, dataspaces, and lists of properties
like the storage layout) under the desired groups; write the data along with attributes; and
finally close the file. The general steps in reading an existing HDF5 file include opening the
file; opening the dataset under certain groups; querying the dimensions to allocate enough
memory to a read buffer; reading the data and attributes; and closing the file.

HDF5 also supports access to portions (or selections) of a dataset by hyperslabs, their
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TABLE 1.2 HDF5 Interfaces
Interface Function Name Prefix and Functionality

Library Functions H5: General HDF5 library management
Attribute Interface H5A: Read/write attributes
Dataset Interface H5D: Create/open/close and read/write datasets
Error Interface H5E: Handle HDF5 errors
File Interface H5F: Control HDF5 file access
Group Interface H5G: Manage the hierarchical group information
Identifier Interface H5I: Work with object identifiers
Property List Interface H5P: Manipulate various object properties
Reference Interface H5R: Create references to objects or data regions
Dataspace Interface H5S: Defining dataset dataspace
Datatype Interface H5T: Manage type information for dataset elements
Filters & Compression Interface H5Z: Inline data filters and data compression

unions, and lists of independent points. Basically, a hyperslab is a subarray or strided
subarray of the multi-dimensional dataset. The selection is performed in the file dataspace
for the dataset. Similar selections can be done in the memory dataspace so that data in
one file pattern can be mapped to memory in another pattern as long as the total number
of data elements is equal.

HDF5 supports both sequential and parallel I/O. Parallel access, supported in the MPI
programming environment, is enabled by setting the file access property to use MPI-IO
when the file is created or opened. The file and datasets are collectively created/opened
by all participating processes. Each process accesses part of a dataset by defining its own
file dataspace for that dataset. When accessing data, the data transfer property specifies
whether each process will perform independent I/O or all processes will perform collective
I/O.

1.3 General MPI-IO Usage and Optimizations

Before MPI, there were proprietary message passing libraries available on several computing
platforms. Portability was a major issue for application designers and thus more than 80
people from 40 organizations representing universities, parallel system vendors, and both
industrial and national research laboratories formed the Message Passing Interface (MPI)
Forum. MPI-1 was established by the forum in 1994. A number of important topics
(including parallel I/O) had been intentionally left out of the MPI-1 specification and were
to be addressed by the MPI Forum in the coming years. In 1997, the MPI-2 standard
was released by the MPI Forum which addressed parallel I/O among a number of other
useful new features for portable parallel computing (remote memory operations and dynamic
process management). The I/O goals of the MPI-2 standard were to provide developers
with a portable parallel I/O interface that could richly describe even the most complex of
access patterns. ROMIO [ROM] is the reference implementation distributed with ANL’s
MPICH library. ROMIO is included in other distributions and is often the basis for other
MPI-IO implementations. Frequently, higher level libraries are built on top of MPI-IO,
which leverage its portability across different I/O systems while providing features specific
to a particular user community. Examples such as netCDF and HDF5 were discussed in
Section 1.2.

1.3.1 MPI-IO Interface

The purposely rich MPI-IO interface has proven daunting to many. This is the main ob-
stacle to developers using MPI-IO directly, and also one of the reasons most developers
subsequently end up using MPI-IO through higher level interfaces like netCDF and HDF5.
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TABLE 1.3 Commonly used MPI datatype constructor
functions. Internal offsets can be described in terms of the
base datatype or in bytes.

function internal offsets base types

MPI Type contiguous none single
MPI Type vector regular (old types) single
MPI Type hvector regular (bytes) single
MPI Type index arbitrary (old types) single
MPI Type hindex arbitrary (bytes) single
MPI Type struct arbitrary (old types) mixed

It is, however, worth learning a bit of advanced MPI-IO, if not to encourage more direct
MPI-IO programming, then to at least increase general understanding of what goes on in
the MPI-IO level beneath the other high level interfaces. A very simple execution order of
the functions described in this section is as follows:

1. MPI Info create/MPI Info set (optional)
2. datatype creation (optional)
3. MPI File open
4. MPI File set view (optional)
5. MPI File read/MPI File write
6. MPI File sync (optional)
7. MPI File close
8. datatype deletion (optional)
9. MPI Info free (optional)

Open, Close, and Hints

MPI_File_open(comm, filename, amode, info, fh)
MPI_File_close(fh)
MPI_Info_create(info)
MPI_Info_set(info, key, value)
MPI_Info_free(info)

While definitely far from “advanced” MPI-IO, MPI File open and MPI File close still
warrant some examination. The MPI File open call is the typical point at which to pass
optimization information to an MPI-IO implementation. MPI Info create should be used
to instantiate and initialize an MPI Info object, and then MPI Info set is used to set specific
hints (key) in the info object. The info object should then be passed to MPI File open and
later freed with MPI Info free after the file is closed. If an info object is not needed,
MPI INFO NULL can be passed to open. The hints in the info object are used to either
control optimizations directly in an MPI-IO implementation or to provide additional access
information to the MPI-IO implementation so it can make better decisions on optimizations.
Some specific hints are described in 1.3.2. To get the hints of the info object back from the
MPI-IO library the user should call MPI File get info and be sure to free the info object
after use.

Derived Datatypes

Before delving into the rest of the I/O interface and capabilities of MPI-IO, it is essential
to have a sound understanding of derived datatypes. Datatypes are what distinguish the
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file view

etype

MPI_File_set_view (fh, disp, etype, filetype, datarep, info)

filetype

disp = 2 (in etypes)

FIGURE 1.4: File views illustrated: filetypes are built from etypes. The filetype access
pattern is implicitly iterated forward starting from the disp. An actual count for the filetype
is not required as it conceptually repeats forever, and the amount of I/O done is dependent
on the buffer datatype and count.

MPI-IO interface from the more familiar standard POSIX I/O interface.
One of the most powerful features of the MPI specification is user defined derived datatypes.

MPI’s derived datatypes allow a user to describe an arbitrary pattern in a memory space.
This access pattern, possibly noncontiguous, can then be logically iterated over the memory
space. Users may define derived datatypes based on elementary MPI predefined datatypes
(MPI INT, MPI CHAR, etc.) as well as previously defined derived datatypes. A common and
simple use of derived datatypes is to single out values for a specific subset of variables in
multi-dimensional arrays.

After using one or more of the basic datatype creation functions in table 1.3, MPI Type commit
is used to finalize the datatype and must be called before use in any MPI-IO calls. After
the file is closed, the datatype can then be freed with MPI Type free.

Seeing as a derived datatype simply maps an access pattern in a logical space, while the
discussion above has focused on memory space, it could also apply to file space.

File Views

MPI_File_set_view(fh, disp, etype, filetype, datarep, info)

File views specify accessible file regions using derived datatypes. This function should
be called after the file is opened, if at all. Not setting a file view allows the entire file to be
accessed. The defining datatype is referred to as the filetype, and the etype is a datatype
used as an elementary unit for positioning. Figure 1.4 illustrates how the parameters in
MPI File set view are used to describe a “window” revealing only certain bytes in the
file. The displacement (disp) dictates the start location of the initial filetype in terms of
etypes. The file view is defined by both the displacement and filetype together. While this
function is collective, it is important each process defines its own individual file view. All
processes in the same communicator must use the same etype. The datarep argument is
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typically set to “native,” and has to do with file interoperability. If compatibility between
MPI environments is needed or the environment is heterogeneous, then “external32” or
“internal” should be used. File views allow an MPI-IO read or write to access complex
noncontiguous regions in a single call. This is the first major departure from the POSIX
I/O interface, and one of the most important features of MPI-IO.

Read and Write

MPI_File_read(fh, buf, count, datatype, status)
MPI_File_write(fh, buf, count, datatype, status)
MPI_File_read_at(fh, offset, buf, count, datatype, status)
MPI_File_write_at(fh, offset, buf, count, datatype, status)
MPI_File_sync(fh)

In addition to the typical MPI specific arguments like the MPI communicator, the datatype
argument in these calls is the second important distinction of MPI-IO. Just as the file
view allows one MPI-IO call to access multiple noncontiguous regions in file, the datatype
argument allows a single MPI-IO call to access multiple memory regions in the user buffer
with a single call. The count is the number of datatypes in memory being used.

The functions MPI File read and MPI File write use MPI File seek to set the position
of the file pointer in terms of etypes. It is important to note that the file pointer position
respects the file view, skipping over inaccessible regions in the file. Setting the file view
resets the individual file pointer back to the first accessible byte.

The MPI File read at and MPI File write at, “ at” variations of the read and write
functions, explicitly set out a starting position in the additional offset argument. Just as
in the seek function, the offset is in terms of etypes and respects the file view.

Similar to MPI non-blocking communication, non-blocking versions of the I/O functions
exist and simply prefix read and write with “i” so the calls look like MPI File iread. The
I/O need not be completed before these functions return. Completion can be checked just
as in non-blocking communication with completion functions like MPI Wait.

The MPI File sync function is a collective operation used to ensure written data is pushed
all the way to the storage device. Open and close also implicitly guarantee data for the
associated file handle is on the storage device.

Collective Read and Write

MPI_File_read_all(fh, buf, count, datatype, status)
MPI_File_write_all(fh, buf, count, datatype, status)

The collective I/O functions are prototyped the same as the independent MPI File read
and MPI File write functions and have “ at” equivalents as well. The difference is that
the collective I/O functions must be called collectively among all the processes in the com-
municator associated with the particular file at open time. This explicit synchronization
allows processes to actively communicate and coordinate their I/O efforts for the call. One
major optimization for collective I/O is disk directed I/O [Kot94, Kot97]. Disk directed
I/O allows I/O servers to optimize the order in which local blocks are accessed. Another
optimization for collective I/O is the two phase method described in further detail in the
next section.
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FIGURE 1.5: (a) Example POSIX I/O request. Using traditional POSIX interfaces for this
access pattern cost four I/O requests, one per contiguous region. (b) Example two phase
I/O request. Interleaved file access patterns can be effectively accessed in larger file I/O
operations with the two phase method.

1.3.2 Significant Optimizations in ROMIO

The ROMIO implementation of MPI-IO contains several optimizations based on the POSIX
I/O interface, making them portable across many file systems. It is possible, however, to
implement a ROMIO driver with optimizations specific to a given file system. In fact, the
current version of ROMIO as of this writing (2005-06-09) already includes optimizations
for PVFS2 [The] and other file systems. The most convenient means for controlling these
optimizations is through the MPI-IO hints infrastructure mentioned briefly above.

POSIX I/O

All parallel file systems support what is called the POSIX I/O interface, which relies on an
offset and a length in both memory and file to service an I/O request. This method can
service noncontiguous I/O access patterns by dividing them up into contiguous regions and
then individually accessing these regions with corresponding POSIX I/O operations. While
such use of POSIX I/O can fulfill any noncontiguous I/O request with this technique,
it does incur several expensive overheads. The division of the I/O access pattern into
smaller contiguous regions significantly increases the number of I/O requests processed by
the underlying file system. Also, the division often forces more I/O requests than the actual
number of noncontiguous regions in the access pattern as shown in Figure 1.5a. The serious
overhead sustained from servicing so many individual I/O requests limits performance for
noncontiguous I/O when using the POSIX interface. Fortunately for users which have access
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FIGURE 1.6: (a) Probably data sieve: Data sieving reduces I/O requests by a factor of 4,
but almost doubles the I/O amount (b) Do not data sieve: Data sieving I/O requests are
reduced by half, but almost 4 (8 if write) times more data is accessed (c) Do not data sieve:
Data sieving increases I/O requests and only marginally reduces I/O amount. (d) Do not
data sieve (Pareto optimal):Data sieving doubles I/O requests, but has no effect on I/O
amount. (e) Probably data sieve: Data sieving reduced I/O requests by a factor of 4, but
almost doubles I/O.

to file systems supporting only the POSIX interface, two important optimizations exist to
more efficiently perform noncontiguous I/O while using only the POSIX I/O interface: data
sieving I/O and two phase I/O.

Data Sieving

Since hard disk drives are inherently better at accessing large amounts of sequential data,
the data sieving technique [TGL99a] tries to satisfy multiple small I/O requests with a
larger contiguous I/O access and later “sifting” the requested data in or out of a temporary
buffer. In the read case, a large contiguous region of file data is first read into a temporary
data sieving buffer and then the requested data is copied out of the temporary buffer into
the user buffer. For practical reasons, ROMIO uses a maximum data sieving buffer size so
multiple data sieving I/O requests may be required to service an access patterns. ROMIO
will always try to fill the entire data sieving buffer each time in order to maximize the
number of file regions encompassed. In the write case, file data must first be read into the
data sieving buffer unless the user define regions in that contiguous file region cover the
entire data sieving region. User data can then be copied into the data sieving buffer and
then the entire data sieving buffer is written to the file in a single I/O call. Data sieving
writes require some concurrency control since data that one process does not intend to
modify is still read and then written back with the potential of overwriting changes made
by other processes.

Data sieving performance benefits come from reducing the number of head seeks on the
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FIGURE 1.7: Evaluating the file access pattern alone in this case does not paint the entire
I/O picture. The small noncontiguous memory pieces break up the large contiguous file
access pattern into many small I/O requests. Since these small I/O requests end up next
to each other, data sieving can reduce the number of I/O requests by a factor of 4 without
accessing any extraneous data, making data sieving Pareto optimal, assuming it takes longer
to read/write 1 unit of data 4 times than to copy 4 units of data into or out of the buffer
and to read/write 4 units of data.

disk, the cut in the accrued overhead of individual I/O requests, and large I/O accesses.
Figure 1.6a and Figure 1.6e illustrate specific cases where data sieving may do well. Data
sieving is less efficient when data is either sparsely distributed or the access pattern consists
of contiguous regions much larger than the data sieving buffer size (end case would be a
completely contiguous access pattern). In the sparse case, as in Figure 1.6b and 1.6d, the
large data sieving I/O request may only satisfy a few user requests, and in even worse, may
be accessing much more data than will actually be used (Figure 1.6b). The number of I/O
accesses may not be reduced by much, and the extra time spent accessing useless data may
be more than the time taken to make more small I/O requests. In the case where the user’s
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FIGURE 1.8: The three main factors to consider in determining whether to use data sieving
are whether the user buffer is noncontiguous with small pieces, the size of the noncontiguous
file regions, and the distribution of the file accesses all with respect to the data sieving buffer
size. If both memory and file descriptions are contiguous, do not use data sieving.

access pattern is made up of contiguous regions nearly the size of or greater than the data
sieving buffer size, shown in Figure 1.6c and 1.6d, the number of I/O requests generated
may actually be greater than the number of I/O requests generated had the user’s I/O
requests been passed directly to the file system. Additionally, data sieving will have been
double buffering, and paid an extra memory copy penalty for each time the data sieve buffer
was filled and emptied.

One factor not yet considered is the user memory buffer. If the user memory buffer is
noncontiguous with small regions (relative to the data sieving buffer), it will have the effect
of breaking up, but not separating what might have been large contiguous regions in file,
thus creating an numerous I/O requests for POSIX I/O. This effect is illustrated in Figure
1.7, and presents an ideal opportunity for data sieving to reduce the overall number of I/O
calls, as well as making efficient use of the data sieving buffer. Even if the original filetype
consisted of large sparsely distributed regions, data sieving would still likely prove to be
very beneficial.

So while data sieving could conceivably result in worse performance (the point at which
would be sooner in the case of read-modify-write data sieving writes), some simple con-
siderations can be kept in mind to determine whether data sieving will be a benefit or
detriment. Assuming data is fairly uniformly spaced (no locally dense, overall sparse distri-
butions), and the user access pattern is indeed noncontiguous, Figure 1.8 provides a quick
table for determining when data sieving is most appropriate. Small, big, sparse, and dense
metrics are all relative to the data sieving buffer size. An MPI-IO implementation ought to
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preprocess the user’s access pattern at least to some degree to determine the appropriate-
ness of data sieving on its own. As mentioned earlier, however, less uniform access patterns
may require some user intervention as an automated runtime determination may not catch
certain cases. In the previous example (Figure 1.6e), an access pattern which consists of
clusters of densely packed data will likely benefit from data sieving. Using only the data
sieving technique for I/O will be referred to as data sieving I/O.

Two Phase I/O

Figure 1.5b illustrates the two phase method for collective I/O [TGL99b], which uses both
POSIX I/O and data sieving. This method is referred to as two phase I/O throughout this
chapter. The two phase method identifies a subset of the application processes that will
actually do I/O; these processes are called aggregators. Each aggregator is responsible for
I/O to a specific and disjoint portion of the file.

In an effort to heuristically balance I/O load on each aggregator, ROMIO calculates these
file realms dynamically based on the aggregate size and location of the accesses in the col-
lective operation. When performing a read operation, aggregators first read a contiguous
region containing desired data from storage and put this data in a local temporary buffer.
Next, data is redistributed from these temporary buffers to the final destination processes.
Write operations are performed in a similar manner. First, data is gathered from all pro-
cesses into temporary buffers on aggregators. Aggregators read data from storage to fill in
the holes in the temporary buffers to make contiguous data regions. Next, this temporary
buffer is written back to storage using POSIX I/O operations. An approach similar to
data sieving is used to optimize this write back to storage when there are still gaps in the
data. As mentioned earlier, data sieving is also used in the read case. Alternatively, other
noncontiguous access methods, such as the ones described in Section 1.4.2, can be leveraged
for further optimization.

The big advantage of two phase I/O is the consolidation by aggregators of the noncon-
tiguous file accesses from all processes into only a few large I/O operations. One significant
disadvantage of two phase I/O is that all processes must synchronize on the open, set view,
read, and write calls. Synchronizing across large numbers of processes with different sized
workloads can be a large overhead. Two phase I/O performance relies heavily on the par-
ticular MPI implementation’s data movement performance. If the MPI implementation is
not significantly faster than the aggregate I/O bandwidth in the system, the overhead of
the additional data movement in two phase I/O will likely prevent two phase I/O from
outperforming direct access optimizations like list I/O and datatype I/O discussed later.

Common ROMIO Hints

There are a few reserved hints in the MPI-IO specification and are therefore universal across
MPI-IO implementations, but for the most part, MPI-IO implementers are free to make up
hints. The MPI-IO specification also dictates that any unrecognized hints should just be
ignored, leaving data unaffected. In this way user applications that specify hints relevant
to either a certain file system or MPI-IO implementation should still be portable, though
the hints may be disregarded.

Table 1.4 lists some hints that are typically used. The exact data sieving hints are specific
to ROMIO, but the collective I/O hints are respected across MPI-IO implementations.
While an MPI-IO developer may choose not to implement two phase collective I/O, if they
do decide to, they should use the hints in the table for user configuration. The striping factor
and striping unit are standardized MPI-IO hints used to dictate file distribution parameters
to the underlying parallel file system.
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TABLE 1.4 The same column indicates whether the hint passed needs to be the
same across all processes in the communicator. The Std. column indicates official
MPI reserved hints.

Hint Value Same Std. Basic Description

romio cb read E/D/A yes no ctrl 2-phase collective reads
romio cb write E/D/A yes no ctrl 2-phase collective writes
cb buffer size integer yes yes 2-phase collective buffer size
cb nodes integer yes yes no. of collective I/O aggregators
cb config list string list yes yes list of collective aggregator hosts
romio ds read E/D/A no no ctrl data sieving for indep. reads
romio ds write E/D/A no no ctrl data sieving for indep. writes
romio no indep rw bool yes no no subsequent indep. I/O
ind rd buffer size integer no no read data sieve buffer sz.
ind wr buffer size integer no no write data sieve buffer sz.
striping factor integer yes yes no. of I/O servers to stripe file across
striping unit integer yes yes stripe sz distributed on I/O servers

E/D/A = Enable/Disable/Auto

Although hints are an important means for applications and their developers to communi-
cate with MPI implementations, it is usually more desirable for the MPI-IO implementation
to automate the use and configuration of any optimizations.

1.3.3 Current Areas of Research in MPI-IO

Although data sieving I/O and two phase I/O are both significant optimizations, I/O re-
mains a serious bottleneck in high-performance computing systems. MPI-IO remains an
important level in the software stack for optimizing I/O.

Persistent File Realms

The Persistent File Realm (PFR) [CCL+04] technique modifies the two phase I/O behavior
in order to ensure valid data in an incoherent client-side file system cache. Following
MPI consistency semantics, non-overlapping file writes should be immediately visible to all
processes within the I/O communicator. An underlying file system must provide coherent
client-side caching if any at all.

Maintaining cache coherency over a distributed or parallel file system is no easy task, and
the overhead introduced by the coherence mechanisms sometimes outweigh the performance
benefits of providing a cache. This is the exact reason that PVFS [CLRT00] does not provide
a client-side cache.

If an application can use all collective MPI I/O functions, PFRs can carefully manage
the actual I/O fed to the file system in order to ensure access to only valid data in an
incoherent client-side cache. As mentioned earlier, the ROMIO two phase I/O implementa-
tion heuristically load balances the I/O responsibilities of the I/O aggregators. Instead of
rebalancing and reassigning the file realms according to the accesses of each collective I/O
call, the file realms “persist” between collective I/O calls. The key to PFRs is recognizing
that the data cached on a node is not based on its own MPI-IO request, but the combined
I/O accesses of the communicator group. Two phase I/O adds a layer of I/O indirection.
As long as each I/O aggregator is responsible for the same file realm in each collective I/O
call, the data it accesses will always be the most recent version. With PFRs, the file system
no longer needs to worry about the expensive task of cache coherency, and the cache can
still safely be used. The alternative is to give up on client-side caches completely as well as
the performance boost they offer.
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Portable File Locking

The MPI-IO specification provides an atomic mode, which means file data should be sequen-
tially consistent. As it is, even with a fully POSIX compliant file system, some extra work
is required to implement atomicity in MPI-IO because of the potential for noncontiguous
access patterns. MPI-IO functions must be sequentially consistent across noncontiguous file
regions in atomic mode. In high-performance computing, it is typical for a file system to re-
lax consistency semantics or for a file system that supports strict consistency to also support
less strict consistency semantics. File locking is the easiest way to implement MPI’s atomic
mode. It can be done in three different ways based on traditional contiguous byte-range
locks. The first is to lock the entire file being accessed during each MPI-IO call, the down
side being potentially unneeded access serialization for all access to the file. The second
is to lock a contiguous region starting from the first byte accessed ending at the last byte
access. Again, since irrelevant bytes between a noncontiguous access pattern are locked,
there is still potential for false sharing lock contention. The last locking method is two
phase locking where byte range locks for the entire access (possibly noncontiguous) must be
acquired before performing I/O [ACTC06]. While file locking is the most convenient way
to enforce MPI’s atomic mode, it is not always available.

Portable file locking at the MPI level [LGR+05] provides the necessary locks to implement
the MPI atomic mode on any file system. This is accomplished by using MPI-2’s Remote
Memory Access (RMA) interface. The “lock” is a remote accessible boolean array the size
of the number of processes N. Ideally, the array is a bit array, but it may depend on the
granularity of a particular system. To obtain the lock, the process puts a true value to
its element in the remote array and gets the rest of the array in one MPI-2 RMA epoch
(in other words both the put and get happen simultaneously and atomically). If the array
obtained is clear, the lock is obtained, otherwise the lock is already possessed by another
process, and the waiting process sets up a MPI Recv to receive the lock from another process.
To release the lock, the locking process writes a false value to its element in the array and
gets the rest of the array. If the array is clear, then no other process is waiting for the
lock. If not, then should pass the lock with a MPI Send call to the next waiting process
in the array. Once lock contention manifests itself, the lock is passed around in the array
sequentially (and circularly), and thus this algorithm does not provide fairness.

MPI-IO File Caching

It is important to remember that caching is a double-edged sword that can some times
help and other times impede. Caching is not always desirable, and these situations should
be recognized during either compile or run time [VSK+03]. Caching is ideally suited to
applications performing relatively small writes that can be gathered into larger more efficient
writes. Caching systems need to provide run time infrastructure for identifying patterns
and monitoring cache statistics to make decisions such as whether to keep caching or bypass
the cache. Ideally, the cache could self-tune other parameters like page sizes, cache sizes,
and eviction thresholds as well.

Active Buffering [MWLY02] gathers writes on the client and uses a separate I/O thread
on the client to actually write the data out to the I/O system. I/O is aggressively interleaved
with computation, allowing computation to resume quickly.

DAChe [CCL+05] is a coherent cache system implemented using MPI-2 for communica-
tion. DAChe makes local client-side file caches remotely available to other processes in the
communicator using MPI-2 RMA functions. The same effect can be achieved using threads
on the clients to handle remote cache operations [LCC+05b, LCC+05a]. A threaded ver-
sion of coherent caching provides additional functionality over DAChe to intermittently
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write out the cache. Though some large-scale systems lack thread support, most clusters
do support threads, and multi-core microprocessors are starting to become commonplace
in high-performance computing. Modern high-performance computers also commonly use
low latency networks with native support for one-sided RMA, which provides DAChe with
optimized low level transfers. Cache coherency is achieved by allowing any given data to
be cached on a single client at a time. Any peer accessing the same data passively accesses
the data directly on the client caching the page, assuring a uniform view of the data by all
processes.

1.4 Parallel File Systems

1.4.1 Summary of Current Parallel File Systems

Currently there are numerous parallel I/O solutions available. Some of the current major
commercial efforts include Lustre [Lus], Panasas [Pan], GPFS [SH02], and IBRIX Fusion
[IBR]. Some current and older research parallel file systems include PVFS [CLRT00, The],
Clusterfile [IT01], Galley [NK96], PPFS [EKHM93], Scotch [GSC+95] and Vesta [CF96].

This section begins by describing some of the parallel file systems in use today. Next,
various I/O methods for noncontiguous data access and how I/O access patterns and file
layouts can significantly affect performance are discussed with a particular emphasis on
structured scientific I/O parameters (region size, region spacing, and region count).

Lustre

Lustre is widely used at the U.S. National Laboratories, including Lawrence Livermore
National Laboratory (LLNL), Pacific Northwest National Laboratory (PNNL), Sandia Na-
tional Laboratories (SNL), the National Nuclear Security Administration (NNSA), Los
Alamos National Laboratory (LANL), and NCSA. It is an open source parallel file sys-
tem for Linux developed by Cluster File Systems, Inc. and HP.

Lustre is built on the concept of objects that encapsulate user data as well as attributes
of that data. Lustre keeps unique inodes for every file, directory, symbolic link, and special
file which holds references to objects on OSTs. Metadata and storage resources are split
into metadata servers (MDSs) and object storage targets (OSTs), respectively. MDSs are
replicated to handle failover and are responsible for keeping track of the transactional record
of high level file system changes. OSTs handle actual file I/O directly to and from clients
once a client has obtained knowledge of which OSTs contain the objects necessary for I/O.
Since Lustre meets strong file system semantics through file locking, each OST handles
locks for the objects that it stores. OSTs handle the interaction of client I/O requests and
the underlying storage, which are called object-based disks (OBDs). While OBD drivers
for accessing journaling file systems such as ext3, ReiserFS, and XFS are currently used
in Lustre, manufacturers are working on putting OBD support directly into disk drive
hardware.

PanFS

Panasas ActiveScale File System (PanFS) has customers in the areas of government sciences,
life sciences, media, energy, and many others. It is a commercial product which, like Lustre,
is also based on an object storage architecture.

The PanFS architecture consists of both metadata servers (MDSs) and object-based stor-
age devices (OSDs). MDSs have numerous responsibilities in PanFS including authentica-
tion, file and directory access management, cache coherency, maintaining cache consistency
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among clients, and capacity management. The OSD is very similar to Lustre’s OST in that
it is also a network-attached device smart enough to handle object storage, intelligent data
layout, management of the metadata associated with objects it stores, and security. PanFS
supports the POSIX file system interface, permissions, and ACLs. Caching is handled at
multiple locations in PanFS. Caching is performed at the compute nodes and is managed
with callbacks from the MDSs. The OBDs have a write data cache for efficient storage and
a third cache is used for metadata and security tokens to allow secure commands to access
objects on the OSDs.

GPFS

The General Parallel File System (GPFS) from IBM is a shared disk file system. It runs on
both AIX and Linux and has been installed on numerous high-performance clusters such
as ASCI Purple. In GPFS, compute nodes connect to file system nodes. The file system
nodes are connected to shared disks through a switching fabric (such as fibre channel or
iSCSI). The GPFS architecture uses distributed locking to guarantee POSIX semantics.
Locks are acquired on a byte-range granularity (limited to the smallest granularity of a
disk sector). A data shipping mode is used for fine-grain sharing for applications, where
GPFS forwards read/write operations originating from other nodes to nodes responsible for
a particular data block. Data shipping is mainly used in the MPI-IO library optimized for
GPFS [PTH+01].

FusionFS

IBRIX, founded in 2000, has developed a commercial parallel file system called FusionFS.
It was designed to have a variety of high-performance I/O needs in scientific computing and
commercial spaces. Some of its customers include NCSA, the Texas Advanced Comput-
ing Center at the University of Austin at Texas, Purdue University, and Electromagnetic
Geoservices.

FusionFS is a file system which is a collection of segments. Segments are simply a repos-
itory for files and directories with no implicit namespace relationships (for example, not
necessarily a directory tree). Segments can be variable sizes and not necessarily the same
size. In order to get parallel I/O access, files can be spread over a group of segments.
Segments are managed by segment servers in FusionFS, where a segment server may “own”
one or more segments. Segment servers maintain the metadata and lock the files stored
in their segments. Since the file system is composed of segments, additional segments may
be added for increasing capacity without adding more servers. Segment servers can be
configured to handle failover responsibilities, where multiple segment servers have access
to shared storage. A standby segment server would automatically take control of another
server’s segments if it were to fail. Segments may be taken offline for maintenance without
disturbing the rest of the file system.

PVFS

The Parallel Virtual File System 1 (PVFS1) is a parallel file system for Linux clusters de-
veloped at Clemson University. It has been completely redesigned as PVFS2, a joint project
between ANL and Clemson University. While PVFS1 was a research parallel file system,
PVFS2 was designed as a production parallel file system made easy for adding/removing re-
search modules. A typical PVFS2 system is composed of server processes which can handle
metadata and/or file data responsibilities.

PVFS2 features several major distinctions over PVFS1. First of all, it has a modular
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FIGURE 1.9: (a) Example list I/O request. All offsets and lengths are specified for both
memory and file using offset-length pairs. (b) Example datatype I/O request. Memory and
file datatypes are built for expressing structured I/O patterns and passed along with an
I/O request.

design which makes it easy to change the storage subsystem or network interface. Clients
and servers are stateless, allowing the file system to cleanly progress if a connected client
crashes. Most important to this chapter, PVFS2 has strong built-in support for noncon-
tiguous I/O and an optimized MPI-IO interface. PVFS2 also uses the concept of objects
which are referred to by handles in the file system. Data objects in PVFS2 are stored
in the servers with metadata information about the group of objects that make up a file
as well as attributes local to a particular object. It is best to access PVFS2 through the
MPI-IO interface, but a kernel driver provides access to PVFS2 though the typical UNIX
I/O interface.

1.4.2 Noncontiguous I/O Methods for Parallel File Systems

Numerous scientific simulations compute on large, structured multi-dimensional datasets
which must be stored at regular time steps. Data storage is necessary for visualization,
snapshots, checkpointing, out-of-core computation, post processing [NSLD99], and numer-
ous other reasons. Many studies have shown that the noncontiguous I/O access patterns
evident in applications as IPARS [IPA] and FLASH [FOR+00] are common to most sci-
entific applications [BW95, CACR95]. This section begins by describing the important
noncontiguous I/O methods that can be leveraged through MPI-IO which require specific
file system support (list I/O and datatype I/O). POSIX I/O and two phase I/O were dis-
cussed in depth in Section 1.3.2. In this section, noncontiguous I/O methods are described
and compared.

List I/O

The list I/O interface is an enhanced file system interface designed to support noncontiguous
accesses and is illustrated in Figure 1.9a. The list I/O interface describes accesses that are
both noncontiguous in memory and file in a single I/O request by using offset-length pairs.
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Using the list I/O interface, an MPI-IO implementation can flatten the memory and file
datatypes (convert them into lists of contiguous regions) and then describe an MPI-IO
operation with a single list I/O request. Given an efficient implementation of this interface
in a file system, list I/O improves noncontiguous I/O performance by significantly reducing
the number of I/O requests needed to service a noncontiguous I/O access pattern. Previous
work [CCC+03] describes an implementation of list I/O in PVFS and support for list I/O
under the ROMIO MPI-IO implementation. Drawbacks of list I/O are the creation and
processing of these large lists and the transmission of the file offset-length pairs from client
to server in the parallel file system. Additionally, list I/O request sizes should be limited
when going over the network; only a fixed number of file regions can be described in one
request. So while list I/O significantly reduces the number of I/O operations (in [CCC+03],
by a factor of 64), a linear relationship still exists between the number of noncontiguous
regions and the number of actual list I/O requests (within the file system layer). In the rest
of this section, this maximum number of offset-length pairs allowed per list I/O request is
addressed as ol-max.

Using POSIX I/O for noncontiguous I/O access patterns will often generate the same
number of I/O requests as noncontiguous file regions. In that case, previous results have
shown that list I/O performance runs parallel to the POSIX I/O bandwidth curves and
shifted upward due to a constant reduction of total I/O requests by a factor of ol-max. List
I/O is an important addition to the optimizations available in MPI-IO. It is most effective
when the I/O access pattern is noncontiguous and irregular, since datatype I/O is more
efficient for structured data access.

Datatype I/O

While list I/O provides a way for noncontiguous access patterns to be described in a sin-
gle I/O request, it uses offset-length pairs. For structured access patterns, more concise
solutions exist for describing the memory and file regions. Hence, datatype I/O (Figure
1.9b) borrows from the derived datatype concept used in both message passing and I/O for
MPI applications. MPI derived datatype constructors allow for concise descriptions of the
regular, noncontiguous data patterns seen in many scientific applications (such as extract-
ing a row from a two-dimensional dataset). The datatype I/O interface replaces the lists
of I/O regions in the list I/O interface with an address, count, and datatype for memory,
and a displacement, datatype, and offset into the datatype for file. These parameters cor-
respond directly to the address, count, datatype, and offset into the file view passed into
an MPI-IO call and the displacement and file view datatype previously defined for the file.
While the datatype I/O interface could be directly used by programmers, it is best used
as an optimization under the MPI-IO interface. The file system must provide its own sup-
port for understanding and handling datatypes. A datatype I/O implementation in PVFS1
[CCL+03] demonstrates its usefulness in several I/O benchmarks.

Since datatype I/O can convert a MPI-IO operation directly into a file system request
with a one-to-one correspondence, datatype I/O greatly reduces the amount of I/O requests
necessary to service a structured noncontiguous request when compared to the other non-
contiguous access methods. Datatype I/O is unique with respect to other methods in that
increasing the number of noncontiguous regions that are regularly occurring does not re-
quire additional I/O access pattern description data traffic over the network. List I/O, for
example, would have to pass more file offset-length pairs in such a case. When presented
with an access pattern of no regularity, datatype I/O regresses into list I/O behavior.
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1.4.3 I/O Suggestions for Application Developers

Application developers often create datasets using I/O calls in a simple to program manner.
While convenient, the logical layout of a dataset in a file can have a significant impact on I/O
performance. When creating I/O access patterns, application developers should consider
three major I/O access pattern characteristics that seriously affect I/O performance. These
suggestions focus on structured, interleaved, and noncontiguous I/O access, all of which
are common for scientific computing (as mentioned earlier in Section 1.4.2). The following
discussion addresses the effect of changing each parameter while holding the others constant.

• Region Count - Changing the region count (whether in memory or file) will
cause some I/O methods to increase the amount of data sent from the clients to
the I/O system over the network. For example, increasing the region count when
using POSIX I/O will increase the number of I/O requests necessary to service
a noncontiguous I/O call. Datatype I/O may be less affected by this parameter
since changing the region count does not change the size of the access pattern
representation in structured data access. List I/O could be affected by the region
count since it can only handle so many offset-length pairs before splitting into
multiple list I/O requests. Depending on the access pattern, two phase I/O
may also be less affected by the region count, since aggregators only make large
contiguous I/O calls.

• Region Size - Memory region size should not make a significant difference in
overall performance if all other factors are constant. POSIX I/O and list I/O
could be affected since smaller region sizes could create more noncontiguous re-
gions, therefore requiring more I/O requests to service. File region size makes
a large performance difference since hard disk drive technology provides better
bandwidth to larger I/O operations. Since two phase I/O already uses large I/O
operations, it will be less affected by file region size. The other I/O methods will
see better bandwidth (up to the hard drive disk bandwidth limit) for larger file
region sizes.

• Region Spacing - Memory region spacing should not make an impact on per-
formance. However, file regions spacing changes the disk seek time. Even though
this section considers region spacing as the logical distance to the next region,
there is a some correlation with respect to actual disk distance due to the phys-
ical data layout many file systems choose. If the distance between file regions
is small, two phase I/O will improve performance due to internal data sieving.
Also, when the file region spacing small enough to fit multiple regions into a
file system block, file system block operations may help with caching. Spacing
between regions is usually different in memory and in file due to the interleaved
data operation that is commonly seen in scientific datasets that are accessed by
multiple processes. For example, in the FLASH code [FOR+00], the memory
structure of the block is different that the file structure, since the file dataset
structure takes into account multiple processes.

An I/O benchmark, Noncontiguous I/O Test (NCIO), was designed in [CCL+06] for
studying I/O performance using various I/O methods, I/O characteristics, and noncontigu-
ous I/O cases. This work validated many of the I/O suggestions listed here. Table 1.5 and
Table 1.6 show a summary of how I/O parameters affect memory and file descriptions. If
application developers understand how I/O access patterns affect overall performance, they
can create optimized I/O access patterns which will both attain good performance as well
as suit the needs of the application.
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TABLE 1.5 The effect of changing the memory description parameters of an I/O
access pattern assuming that all others stay the same.

I/O Method Increase region count Increase region size Increase region spacing
from (1 to c) from (1 to s) from (1 to p)

POSIX increase I/O ops no change no change
from 1 to c

List increase I/O ops no change no change
from 1 to c/ol-max

Datatype increment datatype no change no change
count from 1 to c

Data sieving minor increase of surpassing buffer surpassing buffer
local memory size requires more size requires more

movement I/O ops I/O ops
Two phase minor increase of surpassing aggregate surpassing aggregate

memory movement buffer requires buffer requires
across network more I/O ops more I/O ops

TABLE 1.6 The effect of changing the file description parameters of an I/O access
pattern assuming that all others stay the same.

I/O Method Increase region count Increase region size Increase region spacing
from (1 to c) from (1 to s) from (1 to p)

POSIX increase I/O ops improves disk increases disk
from 1 to c bandwidth seek time

List increase I/O ops improves disk increases disk
from 1 to c/ol-max bandwidth seek time

Datatype increment datatype improves disk increase disk
count from 1 to c bandwidth seek time

Data sieving minor increase of lessens buffered I/O lessens buffered I/O
local memory advantages & advantages &

movement surpassing buffer surpassing buffer
size requires more requires more

I/O ops I/O ops
Two phase minor increase of lessens buffered I/O lessens buffered I/O

memory movement advantages & advantages &
across network surpassing aggregate surpassing aggregate

buffer size requires buffer size requires
more I/O ops more I/O ops

MPI_create_vector(3, 4, 12 MPI_BYTE, filetype)

MPI_File_read(fd, buf, 12, MPI_BYTE, status)
MPI_File_set_view(fh, 0, MPI_BYTE, filetype, "native", info)

read(fd, buf, 4)
lseek(fd, 8, SEEK_CUR)
read(fd, buf, 4)
lseek(fd, 8, SEEK_CUR)
read(fd, buf, 4)

FIGURE 1.10: Example code conversion from the POSIX interface to the MPI-IO interface.

Possible I/O Improvements

• All large-scale scientific applications should use the MPI-IO interface
(either natively or through higher level I/O libraries). MPI-IO is a
portable parallel I/O interface that provides more performance and functional-
ity over the POSIX I/O interface. Whether using MPI-IO directly or through
a higher level I/O library which uses MPI-IO (such as PnetCDF or HDF5), ap-
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FIGURE 1.11: (a) Original layout of variables in data cells. (b) Reorganization of data to
combine file regions during write operations increases I/O bandwidth.

plications can use numerous I/O optimizations such as collective I/O and data
sieving I/O. MPI-IO provides a rich interface to build descriptive access patterns
for noncontiguous I/O access. Most programmers will benefit from the relaxed
semantics in MPI-IO when compared to the POSIX I/O interface. If a program-
mer chooses to use a particular file system’s custom I/O interface (i.e. not POSIX
or MPI-IO), portability will suffer.

• Group individual I/O access to make large MPI-IO calls. Even if an
application programmer uses the MPI-IO interface, they need to group their
read/write accesses together into larger MPI datatypes and then do a single MPI-
IO read/write. Larger MPI-IO calls allow the file system to use optimizations
such as data sieving I/O, list I/O and datatype I/O. It also provides the file
system with more information about what the application is trying to do, allowing
it to take advantage of data locality on the server side. A simple code conversion
example in Figure 1.10 changes 3 POSIX read() calls into a single MPI File read()
call, allowing it to use data sieving I/O, list I/O, or datatype I/O to improve
performance.

• Whenever possible, increase the file region size in an I/O access pat-
tern. After creating large MPI-IO calls which service noncontiguous I/O access
patterns, try to manipulate the I/O access pattern such that the file regions
are larger. One way to do this is data reorganization. Figure 1.11 shows how
moving variables around in a data cell combined file regions for better perfor-
mance. While not always possible, if a noncontiguous file access pattern can be
made fully contiguous, performance can improve by up to 2 orders of magnitude
[CCL+06]. When storing data cells, some programmers write one variable at a
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FIGURE 1.12: Cost of collective I/O synchronization. Even if collective I/O (a) can reduce
the overall I/O times, individual I/O (b) outperforms it in this case because of no implicit
synchronization costs.

time. Making a complex memory datatype to write this data contiguously in file
in a single MPI-IO I/O call will be worth the effort.

• Reduce the file region spacing in an I/O access pattern. When using
data sieving I/O and two phase I/O, this will improve buffered I/O performance
by accessing less unused data. POSIX I/O, list I/O, and datatype I/O will suffer
less disk seek penalties. Again, a couple of easy ways to do this is to reorganize
the data layout or combine multiple I/O calls to make fewer, but larger I/O calls.

• Consider individual versus collective (two phase I/O). Two phase I/O
provides good performance over the other I/O methods when the file regions are
small (bytes or tens of bytes) and nearby since it can make large I/O calls, while
the individual I/O methods (excluding data sieving I/O) have to make numerous
small I/O accesses and disk seeks. The advantages of larger I/O calls outweigh
the cost of passing network data around in that case. Similarly, the file system
can process accesses in increasing order across all the clients with two phase I/O.
If the clients are using individual I/O methods, the file system must process the
interleaved I/O requests one at a time, which might require a lot of disk seeking.
However, in many other cases, list I/O and datatype I/O outperform two phase
I/O [CCL+06]. More importantly, two phase I/O has an implicit synchronization
cost. All processes must synchronize before any I/O can be done. Depending
on the application, this synchronization cost can be minimal or dominant. For
instance, if the application is doing a checkpoint, since the processes will likely
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synchronize after the checkpoint is written, the synchronization cost is minimal.
However, if the application is continually processing and writing results in an
embarrassingly parallel manner, the implicit synchronization costs of two phase
I/O can dominate the overall application running time as shown in Figure 1.12.

• When using individual I/O methods, choose datatype I/O. In nearly all
cases datatype I/O exceeds the performance of the other individual I/O methods.
The biggest advantage of datatype I/O is it can compress the regularity of an
I/O access pattern into datatypes, keeping a one-to-one mapping from MPI-IO
calls to file system calls. In the worst case (unstructured I/O), datatype I/O
breaks down to list I/O which is still much better than POSIX I/O.

• Do not use data sieving I/O for interleaved writes. Interleaved writes will
have to be processed one at a time by the file system because the read-modify-
write behavior in the write case requires concurrency control. Using data sieving
I/O for writes is only supported by file systems which have concurrency control.
Data sieving I/O is much more competitive with the other I/O methods when
performing reads, but should still be used in limited cases.

• Generally, there is no need to reorganize the noncontiguous memory
description if file description is noncontiguous. Some programmers might
be tempted to copy noncontiguous memory data into a contiguous buffer before
doing I/O, but recent results suggest that it will not make any difference in
performance [CCL+06]. It would most likely just incur additional programming
complexity and memory overhead.
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