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Abstract

Many large-scale production applications often have
very long executions times and require periodic data check-
points in order to save the state of the computation for pro-
gram restart and/or tracing application progress. These
write-only operations often dominate the overall applica-
tion runtime, which makes them a good optimization target.
Existing approaches for write-behind data buffering at the
MPI I/O level have been proposed, but challenges still exist
for addressing system-level I/O issues. We propose a two-
stage write-behind buffering scheme for handing checkpoint
operations. The first-stage of buffering accumulates write
data for better network utilization and the second-stage of
buffering enables the alignment for the write requests to
the file stripe boundaries. Aligned I/O requests avoid file
lock contention that can seriously degrade I/O performance.
We present our performance evaluation using BTIO bench-
marks on both GPFS and Lustre file systems. With the two-
stage buffering, the performance of BTIO through MPI in-
dependent I/O is significantly improved and even surpasses
that of collective I/O.

1. Introduction

Modern scientific applications often run for a long time
and perform data checkpointing to store snapshots of the
current computational state. Checkpointing data is used
for post-simulation data analysis, such as visualization, and
also for restarting the execution in case of failure. Once
written, checkpointing data is never accessed again during
the application run. Such write-once-never-read patterns
have been reported to dominate the overall I/O performance
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in many large-scale applications. Therefore, designing effi-
cient techniques for such I/O patterns is very important.

Write-behind strategies are a well-known technique by
operating system designers as a way to speed up sequen-
tial writes [10]. The basic algorithm accumulates multiple
small writes into large contiguous file requests in order to
better utilize the network bandwidth. The implementation
of write-behind is often a part of the client-side caching
system, which must consider complicated issues such as
cache coherency. Design for coherence control commonly
involves the bookkeeping of cache status at the servers and
invoking client callbacks when flushing dirty cache is nec-
essary. Such mechanisms require that file locking is part of
each read/write request to ensure atomic access to the cache
data. Since file locking is usually implemented in a cen-
tralized manner, it can easily limit the degree of I/O paral-
lelism for concurrent file operations. However, we believe
the write-behind optimization, as an independent compo-
nent from the caching system, can be used more effectively
if the write-only nature is known beforehand.

The Message Passing Interface (MPI) standard [5] de-
fines an application programming interface for developing
parallel programs that explicitly uses message passing to
perform inter-process communication. MPI version 2 [6]
extends the interface to include, among other things, file
I/O operations. MPI I/O focuses on the functions for con-
current accessing shared files. Realistically, today there are
very few large-scale scientific applications that actually use
MPI I/O functions as their primary I/O methods. Instead,
the majority of the MPI applications simply uses the POSIX
I/O functions (e.g. open, read, write, close) and let each
process to access a unique file independently. This “file-
per-process” model in a single production run may generate
thousands or millions of files which can easily overwhelm
users for management. The two possible reasons for choos-
ing the POSIX I/O API over MPI I/O are: 1) accessing
shared files concurrently often results in a significant file



system overhead; and 2) programming in MPI I/O, espe-
cially in collective I/O, is difficult for programmers. For the
former reason, the overhead mainly comes from the con-
flict file locks when the file system is maintaining coherence
cache data and enforcing the I/O atomicity. As for the latter,
collective I/O usually requires the use of derived data types
to define file views for every process, which is not trivial.

We propose a two-stage write-behind buffering scheme
for enhancing MPI independent I/O performance. Designed
to fully exploit the advantages of write behind, this scheme
has two requirements: 1) the I/O patterns must consist of
write operations only; and 2) atomic I/O mode is disabled.
Data checkpointing in today’s scientific applications fulfills
these requirements, since there are only non-overlapping
write operations. The two stages consist of local and global
buffering mechanisms. The first stage accumulates write
data into local buffers which are flushed to the global buffer
if they are full. The second stage uses global buffering
which is based on a static cyclic file domain assignment
among the MPI processes, such that data for the same do-
mains are flushed to the same processes. Once the global
buffers are full, they are written to the file system. The
global buffering enables write alignment with the file sys-
tem stripe size, which minimizes file lock contention that
otherwise can seriously degrade I/O performance. We eval-
uate the proposed method on two parallel machines running
Lustre and IBM GPFS file systems. We used the BTIO
benchmark and compare performance between MPI collec-
tive I/O and independent I/O functions. With the two-stage
write behind, independent I/O can even outperform collec-
tive I/O which has been reported in [2] do much better than
independent I/O.

2. Background and Related Work

MPI I/O inherits two important MPI features: the abil-
ity to define a set of processes for group operations using
an MPI communicator and the ability to describe complex
memory layouts using MPI derived data types. A commu-
nicator specifies the processes that participate in an MPI
operation, whether for inter-process communication or I/O
requests to a shared file. For file operations, an MPI com-
municator is required when opening a file to indicate which
processes will access the file. In general, there are two types
of MPI I/O data access operations: collective I/O and inde-
pendent (non-collective) I/O. Collective operations require
all processes which opened the file to participate. Thanks
to the explicit synchronization, many collective I/O imple-
mentations take this opportunity to exchange access infor-
mation among all processes to generate a better overall I/O
strategy. An example of this is the two-phase I/O tech-
nique proposed in [1]. In contrast, independent I/O does
not require synchronization, making any cooperative opti-

mizations very difficult.
Many production MPI applications do not use MPI I/O

functions for file access. Instead, I/O is programmed using
POSIX interfaces using one file per process. Two possi-
ble reasons can be the poor performance for shared-file I/O
and difficulty in using MPI I/O for programming. As most
modern file systems adhere to the POSIX standard, several
POSIX requirements for shared-file I/O are known to de-
grade the performance. I/O consistency and atomicity are
the top two performance problems. The issue of I/O consis-
tency requires cache coherence control for file systems that
provide client-side file caching. POSIX atomicity requires
that all bytes written by a single write call are either com-
pletely visible or completely invisible to any read call [3].
A common solution for the two requirements is file lock-
ing. File locking will guarantee exclusive access for the
requested file regions. Since file locking is usually imple-
mented in a centralized manner, it severely limits the degree
of I/O parallelism for concurrent file operations.

Regarding problems when MPI I/O programming, defin-
ing file views for each process using MPI derived data types
is often the way to describe the data partitioning of a global
data structure among processes. The creation of a data type
for setting file view requires information such as the start-
ing file offsets of the sub-array relative to the global array,
the accessed file ranges along all dimensions, and the stride
size for repeating non-contiguous segments. The construc-
tion of a data type can also be nested. Defining a file view is
particularly essential for collective I/O operations because
it can be used for collaborating processes to improve I/O
performance. For independent I/O, the most common pro-
gramming style is to use explicit file offset for accessing a
contiguous file space at a specific location. Although pro-
gramming in MPI independent I/O is closer to using POSIX
I/O, its performance has compared poorly to collective I/O
in several studies [1, 11, 15]. We suspect that MPI I/O use
in production applications would dramatically increase if
performance and programming issues were address.

2.1. Active Buffering

Active buffering is considered an optimization for MPI
collective write operations [4]. It accumulates write data
into a local buffer and uses an I/O thread to perform write
requests in the background. I/O threads can dynamically
adjust the size of local buffers based on the available mem-
ory space. For each write request, the main thread allo-
cates a buffer, copies the data over, and appends this buffer
to a queue. The background I/O thread later retrieves the
buffers from the head of the queue, writes the buffered data
to the file system, and then releases the buffer space. Active
buffering demonstrated a significant performance improve-
ment when it is embedded in ROMIO [13], an I/O library
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implementation for Message Passing Interface.

2.2. Data Shipping in IBM’s MPI I/O

IBM’s MPI I/O implementation for GPFS parallel file
system adopts a strategy called data shipping that binds each
GPFS file block to a unique I/O agent responsible for all the
accesses to this block [7, 9]. The file block assignment is
done in a round-robin striping scheme. I/O operations must
go through the I/O agents which ship the requested data to
the appropriate processes. I/O agents are threads residing
in each MPI process and are responsible for combining I/O
requests in collective operations. In the background, I/O
threads also assist in advanced caching techniques such as
read-ahead and write-behind. Although data can be cached
at the I/O agents, the write-behind strategy is not used to
accumulate data locally. Once the I/O request returns, all
data must have been shipped to the designated I/O agents.

3. Design and Implementation

The two-stage write-behind buffering proposed in this
paper has two requirements: 1) the I/O patterns must only
consist of write operations; and 2) the MPI atomic mode
must be set to false. The first requirement can be detected
at file open by checking the file access mode argument for
MPI MODE WRONLY. The atomic mode can be set through
calling MPI File set atomicity(). Our implemen-
tation is placed at the ADIO layer of ROMIO to catch ev-
ery write system call. ADIO is an abstract-device interface
providing uniform and portable I/O interfaces for parallel
I/O libraries [12]. This design preserves the existing opti-
mizations used by ROMIO, such as two-phase I/O and data
sieving, which are both implemented above ADIO [13, 14].

3.1. Two-Stage Write Behind

The write-behind scheme consists of two stages. The
first stage uses local buffering and the second stage uses
global buffering. The write data is first accumulated in
the local buffers along with the corresponding file offset
and write length. Once the local buffer is full, the data is
flushed to the global buffer. A double buffering method is
implemented so that one buffer can keep accumulating the
write data while the other is used for asynchronous commu-
nication. The global buffering is the distributed file pages
among the MPI processes that collectively open a shared
file. Similar to IBM’s data shipping approach, a file is logi-
cally divided into equal sized pages, each bound to a single
MPI process in a round-robin striping scheme. Thus, page i
resides on the process with rank (i mod nproc), where nproc
is the number of processes in the MPI communicator. The
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Figure 1. Design of two-stage write-behind
buffering.

page size is set by default as the file system stripe size but
is changeable through an MPI hint.

The local buffer is further separated into (nproc - 1) sub-
buffers, each which corresponds to a remote MPI process
for data flushing. When accumulated in the local buffer,
write data is appended to the sub-buffers based on its des-
tination MPI process. Therefore, data from a single write
may be copied to different sub-buffers. For example, when
a write spans two pages in the global buffer, it will be sep-
arated and appended to two local buffers. The default size
for each local sub-buffer is 64 KB, which is also changeable
through an MPI hint. When flushing the local buffers to
the global buffers, the offset-length information is flushed
along with the data. Since the local data accumulation is
based on the destination processes, a sub-buffer may con-
tain data spanning across multiple pages on a destination
process. The offset-length information helps the receiving
process distribute the received data to its proper file pages.
The file pages will reside in memory until their eviction is
necessary. Figure 1 illustrates the operations of the two-
stage write-behind buffering.

3.2. I/O Thread

Since the global buffering is distributed among multiple
processes, each process must be able to respond to remote
requests for flushing the write-behind data. Because col-
lective I/O is inherently synchronous, remote queries can
be fulfilled easily with inter-process communication. The
fact that independent I/O is asynchronous makes it difficult
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for any one process to explicitly handle arbitrary remote re-
quests. Hence, we choose to create an I/O thread that runs
concurrently with the main program thread for buffering. To
improve the portability, our implementation uses the POSIX
thread library [3]. In our design, each process can have mul-
tiple files opened, but only one thread is created. It is im-
portant to note that every process will create at most one I/O
thread even if a process opens multiple files. Our algorithm
will create its I/O thread when it opens the its first file. It
destroys the I/O thread when the all files are closed. Once
the I/O thread is created, it enters an infinite loop to serve
both local and remote write requests until it is signaled by
the main thread for its termination. All operations related
to data buffering are carried out by the I/O thread only. A
shared conditional variable protected by a mutual exclusion
lock is used to indicate if a write request has been issued by
the main thread or if the I/O thread has completed the re-
quest. The communication between the two threads is done
through a few shared variables which contain information
such as the file handler, write offset, write buffer, etc. To
serve remote requests, the I/O thread probes for incoming
I/O requests from all processes in the MPI communicator
group. Since each opened file is associated with a commu-
nicator, the probe will scan all the opened files.

3.3. Flushing Policy

During the first stage, data is flushed when the local sub-
buffers are full. During the second stage, file pages are
flushed when under memory pressure or at file close. An
upper bound, by default 64 MB, is used to indicate the max-
imum memory size that can be used for the second-stage
buffering. For a new page, if the memory allocation util-
ity, malloc() finds enough memory to accommodate the
page and the total allocated buffer size is below the upper
bound, the page will be created. Otherwise, i.e. under mem-
ory pressure, page eviction is activated. Eviction is based
on the local references and a least-recent-used policy. We
keep the dirty data ranges in a linked list for each file page
and during the eviction, only dirty data will be written to
the file system. When closing a file, because file pages
are cyclically distributed across all MPI processes, a two-
phase flushing function is devised to shuffle pages such that
neighboring pages are moved to the same processes before
the flush. Although shuffling requires extra communication
cost, this approach enables each process to make consecu-
tive, contiguous I/O accesses and further improves perfor-
mance.

4. Experimental Results

Our evaluation was done on two machines, Tungsten and
Mercury, at the National Center for Supercomputing Appli-

cations. Tungsten is a 1280-node Dell Linux cluster where
each node contains two Intel 3.2 GHz Xeon processors with
a shared 3 GB memory. A Lustre parallel file system ver-
sion 1.4.4.5 is installed on Tungsten. We created a directory
for output files with the configuration of 64 KB stripe size
and 8 I/O servers. Mercury is a 887-node IBM Linux clus-
ter where each node contains two Intel 1.3/1.5 GHz Itanium
II processors with a shared 4 GB memory. Mercury runs an
IBM GPFS parallel file system version 3.1.0 configured in
the Network Shared Disk (NSD) server model with 54 I/O
servers and 512 KB file block size. Regarding thread-safety,
our MPI-IO caching was implemented in the ROMIO layer
of the MPICH version 2-1.0.3, the thread-safe and latest
version of MPICH2, at the time our experiments were per-
formed. Thread-safety is only supported for the default sock
channel of MPICH2. Therefore, although both Tungsten
and Mercury have both Myrinet and Gigabit Ethernet in-
stalled, for thread-safety reason we can only use Gigabit
Ethernet, which is relatively slower than the Myrinet on the
same machines.

4.1. BTIO Benchmark

Developed by NASA Advanced Supercomputing Divi-
sion, the parallel benchmark suite NPB-MPI version 2.4
I/O is formerly known as the BTIO benchmark [16]. BTIO
presents a block-tridiagonal partitioning pattern on a three-
dimensional array across a square number of processes.
Each process is responsible for multiple Cartesian subsets
of the entire data set, whose number increases with the
square root of the number of processors participating in the
computation. Figure 2 illustrates the BTIO partitioning pat-
tern with an example of nine processes. BTIO provides op-
tions for four I/O methods: MPI collective I/O, MPI inde-
pendent I/O, Fortran I/O, and separate-file I/O. According
to our experiments and the performance evaluation reported
in [2], the independent I/O option results in much worse ex-
ecution time than collective I/O. Therefore, the case of inde-
pendent I/O running current ROMIO implementation is not
provided. In BTIO, forty arrays are consecutively written
to a shared file by appending one after another. We evalu-
ated two I/O sizes: classes B and C with array dimensions
of 102× 102× 102 and 162× 162× 162, respectively. The
aggregate write amount for class B is 1.62 GB and 6.49 GB
for class C. Table 1 shows the number of write() calls
generated from the BTIO. Since ROMIO’s implementation
for MPI collective I/O uses the two-phase I/O strategy that
redistributes I/O requests in order to make large contiguous
file accesses, the number of write requests for collective I/O
is significantly less than the independents. We report the
aggregate write bandwidth, because we only use MPI asyn-
chronous functions in our implementation and it is very hard
to separate the costs for computation, communication, and
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file I/O. The I/O bandwidth numbers were obtained by di-
viding the aggregate write amount by the time measured
from the beginning of file open until after file close. Note
that although no explicit MPI File sync() call is made
in BTIO benchmark, closing files will flush all dirty data
and is, thus, also included in our performance results.

4.2. Performance Analysis

The performance results are given in Figure 3. Since
running independent I/O gives very low I/O bandwidth, we
consider it as the worse case. To see how much the two-
stage method can improve the independent BTIO, instead
of using the naive independent BTIO, we compare our ideas
against the performance of naive collective BTIO. As shown
in Table 1, collective I/O only generates 40 write requests
per process and hence its I/O bandwidth can be considered
as a baseline for any new I/O strategy that wishes to further
improve the performance. The one-stage write behind is an
implementation based on the IBM’s data shipping, since the
IBM’s MPI is not available on both machines. This method
is actually the global write-behind buffering part of the two-
stage method. As shown in Figure 3, the two-stage write
behind outperforms both one-stage buffering and the naive
collective I/O in most of the cases.

When looking into the two-phase I/O strategy, one can
see that write data is redistributed based on the contiguous
file domains assigned among the processes. This strategy is

Table 1. Number of write calls per process
generated from BTIO benchmark using col-
lective (coll.) and independent I/O (indep.).

Number of Class B Class C
processes coll. indep. coll. indep.

16 40 104040 40 262440
25 40 83240 40 209910
36 40 69360 40 174960
49 40 59400 40 150000
64 40 52000 40 131240

similar to the first stage of our two-stage method. One dif-
ference in comparison with two-phase I/O is that we use the
static file domain assignment in our method. Additionally,
the two-phase I/O implementation flushes out data before
the function returns. The better network utilization from
the write-behind strategy used in our method makes a strong
performance improvement.

The cyclic distribution of file pages used in the second
stage avoids the communication bottleneck during the data
flushing in the first stage. Obviously, the file page size can
impact the communication cost of the first-stage data flush-
ing. In fact, choosing a proper page size also affects the
flushing cost for the second stage, because it heavily de-
pends on the write performance of the underlying file sys-
tem. Both Lustre and GPFS are POSIX compliant file sys-
tems and therefore respect POSIX I/O atomicity semantics.
To guarantee atomicity, file systems often enforce file lock-
ing in each read/write call to gain exclusive access to the re-
questing file region. On parallel file systems like Lustre and
GPFS where files are striped across multiple I/O servers,
locks can span multiple stripes for large read/write requests.
It is known that lock contention due to enforcing atomicity
can significantly degrade parallel I/O performance [8]. In
some cases, even though the requests do not have overlap-
ping byte ranges, lock contentions can still exist when the
lock granularity is the file block and there are overlapping
file blocks. This scenario is also known as false sharing. By
choosing the file system stripe size as the page size in our
two-stage method, all write requests are aligned with the
stripe boundaries and hence conflict locks can be avoided
entirely in the second-stage flushing. This alignment effect
can also be observed by the better write bandwidth from the
one-stage write behind over the naive collective I/O.

5. Conclusions

Write-behind data buffering is known to be able to im-
prove I/O performance by combining multiple small writes
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Figure 3. I/O bandwidth results for BTIO benchmark.

into large writes to be executed later. We apply this con-
cept to generate aligned I/O that reduces the lock contention
in the file system. For write-only I/O patterns, the perfor-
mance of MPI independent I/O is significantly improved
and even better than collective I/O. In BTIO, the indepen-
dent I/O functions are called with explicit file offset. There
is no derived data type created for setting the file view
in comparison to the collective mode of BTIO. Therefore,
the two-stage write-behind buffering allows programmers
to use the simpler, independent MPI I/O functions, while si-
multaneously providing performance that meets or exceeds
the more difficult collective I/O programming model.
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