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ABSTRACT
Typical large-scale scientific applications periodically write
checkpoint files to save the computational state through-
out execution. Existing parallel file systems improve such
write-only I/O patterns through the use of client-side file
caching and write-behind strategies. In distributed envi-
ronments where files are rarely accessed by more than one
client concurrently, file caching has achieved significant suc-
cess; however, in parallel applications where multiple clients
manipulate a shared file, cache coherence control can serial-
ize I/O. We have designed a thread based caching layer for
the MPI I/O library, which adds a portable caching system
closer to user applications so more information about the
application’s I/O patterns is available for better coherence
control. We demonstrate the impact of our caching solution
on parallel write performance with a comprehensive evalua-
tion that includes a set of widely used I/O benchmarks and
production application I/O kernels.

1. INTRODUCTION
Modern scientific applications often run long and periodi-
cally write snapshots of the current computational state to
checkpoint files. Checkpoint files are later used for post-
simulation data analysis such as visualization of the data
evolution over finite time steps. They are also used for ap-
plication restart when the program is unexpectedly termi-
nated or gone awry. Once written, checkpoint data is never
accessed again for the rest of the application run. Such
write-only checkpointing patterns have come to dominate
the overall I/O activities in many large-scale applications;
therefore, designing efficient techniques for addressing this
is very important.
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The write-behind strategy is a well-known technique used
by operating system designers as a way to speed up sequen-
tial writes [22]. The basic algorithm accumulates multiple
small writes into large contiguous file requests in order to
better utilize the network bandwidth. The implementation
of write-behind is often part of a file system’s client-side
caching component. File caching has achieved significant
success in distributed environments where files are rarely
accessed by more than one client concurrently. However, in
parallel environments where applications employ multiple
processes to solve a single problem, parallel I/O on shared
files becomes more frequent. In a parallel application, the
problem domain is often represented by a set of global data
structures, such as multi-dimensional arrays. These global
data structures are partitioned among the processes and
each process operates on the data in its sub-domain. When
writing the global data structures in files, it is desirable to
maintain their global canonical order. Combining the parti-
tioned data structures from multiple clients involves concur-
rent write operations to a shared file. For shared-file I/O,
file caching introduces the cache coherence problem. It oc-
curs when changes to a client’s local copy of cached data do
not propagate to other copies in a timely manner, leaving
caches in an incoherent state. Coherence control commonly
involves bookkeeping of cache status at file servers and in-
voking client callbacks as necessary to flush dirty data. Such
mechanisms require a lock as part of each read/write request
to ensure atomic access to cached data. While forcing a lock
request for every I/O call guarantees the desired outcome, it
can easily limit the degree of I/O parallelism for concurrent
file operations. We believe that by moving the cache system
closer to user applications, information about applications’
I/O patterns can be used for better coherence control. Fur-
thermore, the write-behind optimization can be more effec-
tive when the write-only mode is known in advance.

The Message Passing Interface (MPI) standard defines an
application programming interface for developing parallel
programs that explicitly use message passing for inter-process
communication [15]. MPI version 2 extends the interface
to include, among other things, file I/O operations [16].
MPI I/O focuses on the functions for concurrently access-



ing shared files. In practice, very few of today’s large-scale
scientific applications actually use MPI I/O for data access.
Instead, the majority of MPI applications simply use the
POSIX I/O functions (e.g. open, read, write, close) and
let each process access a unique file independently for per-
formance reasons. Poor shared file performance is typically
caused by the inefficient file system lock management. In
many parallel file systems, lock granularity is at the file
block, instead of the byte level. Block granularity simplifies
lock management but causes false sharing when two concur-
rent I/O requests access the same file block, regardless of
whether there are any overlapping bytes. For block based
systems, good parallel I/O performance can only be ob-
tained when requests are carefully aligned with lock bound-
aries: a rarity in real applications

We prototyped a user-level file caching layer as part of an
MPI I/O library by incorporating the MPI communicator
concept to enable process collaboration for caching [12, 11].
In the rest of the paper, we refer to this work as MPI-IO
caching. One immediate benefit of this design is that the
file system can pass consistency control responsibilities to
the caching system. We believe that knowing the group of
clients that will later access a shared file is the first step
in tracking incoherent cache state effectively. We use an
I/O thread in each MPI process to handle local file caching
and remote cache page access. All I/O threads communicate
with each other for cache coherence control. In our design, a
file is logically divided into equally sized blocks that are the
minimal caching unit. The cache metadata for the blocks is
cyclically distributed among all processes to avoid central-
ized management. A lock protocol is developed to ensure
the integrity of the cache data and metadata. Since data
are buffered at this caching layer between the application
and file system, there is an opportunity to reorganize the
I/O requests to align with the system lock boundaries and
minimize lock contention. In our experiments, this align-
ment provides a significant performance improvement.

To specifically address the write-only I/O pattern, we de-
signed a two-stage write-behind buffering scheme. This scheme
is built based on the implementation of MPI-IO caching
and retains the general benefits of caching, but without the
coherence control overhead. This scheme has two require-
ments: the file must be opened in write-only mode and MPI
atomic I/O mode be disabled. These requirements are met
with data checkpoints in modern scientific applications since
they only consist of non-overlapping write operations. The
first stage write-behind accumulates write data into local
buffers and flushes the buffers to the second-stage global
buffers if they are full. The location of global buffers in the
second stage is based on a cyclic file block assignment among
the MPI processes, so data for a particular block is always
flushed to the same process. Once the global buffers are
full, they are written to the file system. Just as in MPI-IO
caching, this scheme also enables write alignment with the
file system lock boundaries.

In general, client-side file caching enhances I/O performance
under two scenarios: I/O patterns with repeated accesses to
the same file regions, and patterns with large numbers of
small requests. For the former, caching reduces the number
of data transfers between clients and servers. In this paper,

we do not consider this pattern since it is not commonly
seen in today’s parallel applications. We instead focus on
the latter I/O pattern and use the BTIO, FLASH I/O, and
S3D I/O benchmarks to present a comprehensive perfor-
mance evaluation. We examine both the MPI-IO caching
and write-behind approaches on two parallel machines run-
ning the Lustre and IBM GPFS file systems. The perfor-
mance results demonstrate that the proposed methods suc-
ceed in using a data buffering layer to align write requests
with the file system lock boundaries and effectively reduce
file system lock contention that otherwise appears in un-
aligned accesses.

The rest of the paper is organized as follows. Section 2 dis-
cusses background information and related work. MPI-IO
caching is described in Section 3. The design and implemen-
tation of the two-stage write-behind method are presented
in Section 4. Performance results are given in Section 5 and
the paper is concluded in Section 6.

2. BACKGROUND AND RELATED WORK
Many production MPI applications do not use MPI I/O
functions for file access. Instead, I/O programming often
consists of POSIX I/O interfaces in a style of accessing
one file per process. This is done primarily because of the
poor shared-file I/O performance of today’s file systems.
This one-file-per-process approach, however, produces an ex-
tremely large number of files, which creates a daunting tech-
nical challenge for file system design and post-simulation
data analysis. For instance, when a production run of an
application uses 1000 processes and takes 100 checkpoints,
the one-file-per-process policy creates 100,000 files in total
compared to 100 files if data are written into a shared file
at each checkpoint. Since today’s parallel file systems use
a comparatively small number of metadata servers, as the
number of processes and files increases dramatically, it is
very plausible that the heavy metadata workload may dis-
rupt the overall file system performance. Additionally, dur-
ing post-simulation data analysis, these sub-array files often
need to be merged into global arrays in a canonical for-
mat. This step is often costly during the post processing.
Furthermore, the raw-process checkpoint files created by a
given number of MPI processes may not be directly useful
for program restart with a different number of processes.

2.1 MPI I/O
MPI I/O inherits two important MPI features: MPI com-
municators define a set of processes for group operations
and MPI derived data types describe complex memory lay-
outs. A communicator specifies the processes that can par-
ticipate in a collective MPI operation for both inter-process
communication and I/O requests to a shared file. For file
operations, file open requires an MPI communicator to in-
dicate the group of processes accessing the file. In general,
MPI I/O data access operations can be split into two types:
collective I/O and independent (non-collective) I/O. Collec-
tive operations require all processes in the communicator to
participate. Because of this explicit synchronization, many
collective I/O implementations may exchange access infor-
mation among all processes to generate a better overall I/O
strategy. An example of this is the two-phase I/O technique
[4]. Two-phase I/O is used in ROMIO, a popular MPI I/O
implementation developed at Argonne National Laboratory



[25]. Independent I/O, in contrast, requires no synchroniza-
tion and makes any collaborative optimization very difficult.

Two-phase I/O consists of an I/O phase and a communica-
tion phase. First, an aggregate access region is calculated as
a contiguous range that covers all the I/O requests from all
MPI processes. File domains, contiguous regions for which
a processes are exclusively assigned, are then defined and
calculated by evenly dividing the aggregate access region by
the number of designated I/O aggregators. The division is
done at the byte range granularity. I/O aggregators can
be defined as all of or some subset of the MPI processes
that opened the shared file collectively. In the I/O phase,
each MPI aggregator makes read/write calls on behalf of
all processes to the file system for the requests within its file
domain. In the communication phase, data is distributed ei-
ther to processes from aggregators (read case) or vice versa
(write case). The file domain calculation currently used in
ROMIO balances I/O workload among the aggregators for
I/O evenly distributed across the aggregate access region,
but may not always result in the best I/O performance.

MPI file view can describe the data partitioning of a global
data structure among the processes and map a process’ sub-
array to the global array in the file. A process’ partition is
described with an MPI derived datatype created with the
starting file offsets of the sub-array relative to the global
array, the sub-array dimensionality, and the stride size for
repeating non-contiguous segments. The construction of a
derived datatype can also be nested. File views are of partic-
ular importance for collective I/O operations because they
are exchanged between processes to help improve I/O per-
formance. File views can also be used together with MPI
independent I/O. Although the most popular programming
style of using independent I/O is similar to the one using
POSIX I/O, its performance has compared poorly to collec-
tive I/O in several studies [4, 23, 26].

2.2 File Locking in Parallel File Systems
Most file systems adhere to the POSIX standard: two POSIX
requirements on I/O consistency and atomicity often signifi-
cantly degrade shared-file I/O performance. I/O consistency
is an issue that arises when client-side file caching is enforced
by file system’s cache coherence control. POSIX atomicity
requires that individual write calls are either entirely visible
or completely invisible to any read call [9]. A common solu-
tion to meet these two requirements uses file locking to guar-
antee exclusive access to file regions. Once lock contention
occurs, the degree of I/O parallelism is severely limited for
concurrent file operations.

Client-side file caching is supported in many parallel file sys-
tems; for instance, IBM’s GPFS [17, 21] and Lustre [13]. By
default, GPFS employs a distributed token-based locking
mechanism to maintain coherent caches on nodes. Lock to-
kens must be granted before any I/O operation is performed
[18]. Distributed locking avoids the obvious bottleneck of a
centralized lock manager by making a token holder a lo-
cal lock authority for granting further lock requests to its
corresponding byte range. A token allows a node to cache
data that cannot be modified elsewhere without first revok-
ing the token. Lock granularity for GPFS is the disk sector
size. IBM’s MPI I/O implementation over AIX operating

system uses the data shipping mechanism: files are divided
into equally sized blocks, each of which is bound to a single
I/O agent, a thread in an MPI process. The file block as-
signment is done in a round-robin striping scheme. A given
file block is only cached by the I/O agent responsible for all
accesses to this block. All I/O operations must go through
the I/O agents which then “ship” the requested data to the
appropriate processes. Data shipping maintains cache co-
herence by allowing at most one cached copy of file data
among agents. The Lustre file system uses a slightly dif-
ferent distributed locking protocol where each I/O server
manages locks for the stripes of file data it stores. The lock
granularity for Lustre is the file system page size. If a client
requests a lock held by another client, a message is sent to
the lock holder asking it to release the lock. Before a lock can
be released, dirty cache data must be flushed to the servers.
Both Lustre and GPFS are POSIX compliant file systems
and therefore respect POSIX I/O atomicity semantics. To
guarantee atomicity, file locking is used in each read/write
call to guarantee exclusive access to the requested file region.
On parallel file systems like Lustre and GPFS where files are
striped across multiple I/O servers, locks can span multiple
stripes for large read/write requests. Lock contention due
to atomicity enforcement can significantly degrade parallel
I/O performance [19].

2.3 Cooperative Caching and Active
Buffering

Cooperative caching has been proposed as a system-wise so-
lution for caching and coherence control [3]. Multiple clients
coordinate to relay requests not satisfied by one client’s lo-
cal cache to another client. Systems that use cooperative
caching include PGMS [27], PPFS [8], and PACA [2]. The
Clusterfile parallel file system integrates cooperative caching
and disk direct I/O for improving MPI collective I/O perfor-
mance [10]. Cooperative caching generally requires changes
in the file system at both client and server.

Active buffering is an optimization for MPI collective write
operations [14]. It accumulates write data into a local buffer
and uses an I/O thread to perform write requests in the
background. I/O threads dynamically adjust the size of lo-
cal buffers based on the available memory space. For each
write request, the main thread allocates a buffer, copies the
data over, and appends this buffer to a queue. The back-
ground I/O thread later retrieves the buffers from the head
of the queue, writes the buffered data to the file system,
and then releases the buffer space. Although active buffer-
ing demonstrates a significant performance improvement, it
is limited to MPI collective I/O and does not address the
potential for lock contention in the underlying file systems.

3. CLIENT-SIDE FILE CACHING FOR
MPI-IO

As it is designed for MPI applications, our caching system
uses the MPI communicator supplied to the file open call
to identify the scope of processes that will collaborate with
each other to perform file caching. To preserve the existing
optimizations in ROMIO, like two-phase I/O and data siev-
ing, we incorporate our design in the Abstract Device I/O
(ADIO) layer where ROMIO interfaces with underlying file
systems [24]. To enable the collaboration of MPI processes,
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Figure 1: (a) The I/O thread operations from a single MPI process’ view. (b) Example of the I/O flow in
MPI-IO caching where MPI process P1 reads data from logical file page 7.

the caching system needs a transparent mechanism in each
process that can run independently and concurrently with
the main program. We create a thread in each MPI pro-
cess when the first file is opened and keep the threads alive
until the last file is closed. The I/O thread carries out the
work of file I/O and caching without interrupting the main
thread. Figure 1(a) illustrates the I/O thread’s operations
from a single MPI process’s point of view. This approach
is particularly important for MPI applications that make
independent I/O calls. Since independent I/O may be initi-
ated by each process in an unrelated manner and requires no
process synchronization, any collaboration among the pro-
cesses’ main threads is difficult. In our design, each I/O
thread handles both local and remote requests to the locally
cached data, and cooperates with remote threads for coher-
ence control. The I/O thread communicates with the main
thread through a POSIX mutex protected shared variable
and uses MPI_Iprobe() to detect remote requests. Block-
ing MPI communication functions such as MPI_Wait() and
MPI_Probe() cannot be used, because the I/O thread must
be always available to respond to requests for any of the
opened files. In fact, our implementation uses only asyn-
chronous MPI communication calls for this very reason.

3.1 Cache Metadata Management
Our caching scheme logically divides a file into equally sized
pages, each of which can be cached. The default cache page
size is set to the file system block size and is also adjustable
through an MPI hint. A page size aligned with the file
system lock granularity is recommended, since it prevents
false sharing. Cache metadata describing the cache status

of these pages are statically distributed in a round-robin
fashion among the MPI processes that collectively open the
shared file. Finding the MPI rank of the process storing
a page’s metadata requires only a modulus operation. This
distributed approach avoids centralization of metadata man-
agement. Cache metadata includes the MPI rank of the
page’s current location, lock mode, and the page’s recent
access history. The lock mode is separated into sharable
read locks and exclusive write locks. A page’s access history
is used for cache eviction and page migration policies.

To ensure cache metadata integrity (atomic access to meta-
data), a distributed locking mechanism is implemented where
each MPI process manages the lock requests for its assigned
metadata. Metadata locks must be obtained before an MPI
process can freely access the metadata, cache page, and the
file range corresponding to the page. If an I/O request cov-
ers multiple consecutive file blocks that are currently cached
at different MPI processes, all cache pages must be locked
prior to their access. Since dead lock may occur when more
than two processes are simultaneously requesting locks for
the same two pages, we employ the two-phase locking strat-
egy proposed in [1]. Under this strategy, lock requests are
issued in a strictly increasing page ID order and the prior
page lock must be obtained before requesting the next lock.

3.2 Cache Page Management
To simplify coherence control, we allow at most a single
cached copy of file data among all MPI processes. When ac-
cessing a file page that is not being cached anywhere, the re-
questing process will try to cache the page locally, by reading



the entire page from the file system if it is a read operation,
or by reading the necessary part of the page if it is a write
operation. An upper bound, by default 32 MB, indicates the
maximum memory size that can be used for caching. If the
memory allocation utility, malloc() finds enough memory
to accommodate the page and the total allocated cache size
is below the upper bound, the page will be cached. Other-
wise, under memory pressure, the page eviction routine is
activated. Eviction is solely based on only local references
and a least-recent-used policy. If the requested file pages
are not cached and the request amount is larger than the
upper bound, the read/write calls will go directly to the file
system. If the requested page is already cached locally, a
simple memory copy will satisfy the request. If the page is
cached at a remote process, the request is forwarded to the
page owner. An example I/O flow for a read operation is
illustrated in Figure 1(b) with four MPI processes. In this
example, process P1 reads data in file page 7. The first step
is to lock and retrieve the metadata of page 7 from P3 (7
mod 4 = 3). If the page is not cached yet, P1 will cache it
locally (into local page 3) by reading from the file system,
as depicted by steps (2.a) and (3.a). If the metadata indi-
cates that the page is currently cached on P2, then an MPI
message is sent from P1 to P2 asking for data transfer. In
step (3.b), assuming file page 7 is cached in local page 2, P2

sends the requested data to P1.

When closing a file, all dirty cache pages are flushed to the
file system. A high water mark is used in each cache page
to indicating the range of dirty data, so that flushing needs
not always be an entire page. Because logically contiguous
file pages are potentially scattered across MPI processes, a
two-phase flushing is devised at file close to shuffle cache
pages such that neighboring cache pages are moved to the
same processes before the flush. Although shuffling requires
extra communication cost, this approach enables sequential
file access and further improves the performance.

4. TWO-STAGEWRITE-BEHIND
BUFFERING

We used our MPI-IO caching design as a basis for construct-
ing a two-stage write-behind method to focus on improving
the performance of write-only operations. While MPI-IO
caching can handle any I/O operations, this write-behind
method has two restrictions: the file must be opened in
write-only mode and the MPI atomic mode must be set to
false. The former is indicated by the use of MPI_MODE_WRONLY
in the access mode argument of MPI_File_open(). Note that
the MPI atomic mode is set to false by default but is change-
able through function MPI_File_set_atomicity(). In the
first stage, write data is accumulated in local buffers along
with the requesting file offset and length. Once the local
buffer is full, the data is sent to the global buffer at the sec-
ond stage. Double buffering is used so one buffer can accu-
mulate incoming write data while the other is asynchronous
sent to the global buffer. The global buffer’s assignment
consists of file pages statically distributed among the MPI
processes that collectively open a shared file. Similar to
IBM’s data shipping approach, a file is logically divided into
equally sized pages with each page bound to a single MPI
process in a round-robin striping scheme. Accordingly, page
i resides on the process of rank (i mod nproc), where nproc
is the number of processes. To minimize lock contention in
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ing.

the underlying file system, the default page size is set to the
file system stripe size, but it is adjustable through an MPI
hint.

The first-stage local buffer is separated into (nproc - 1) sub-
buffers: each of which is dedicated to a remote MPI pro-
cess. When accumulating in the local buffer, write data is
appended to the sub-buffer corresponding to its destination
MPI process. Consequently, data for a write request span-
ning more than one page in the global buffer space will be
split and appended to different local buffers. The default
size for each local sub-buffer is 64 KB, but can be changed
by the application through an MPI hint. When flushing the
local buffers to the global buffers, the supplemental offset
and length information for each request is sent along with
the data. Since a local sub-buffer may contain data spanning
multiple global pages on the same destination process, the
destination process must use the offset-length information to
correctly distribute the incoming data to the proper pages.
Global file pages reside in memory until their eviction is nec-
essary. Figure 2 illustrates the operations of the two-stage
write-behind method. In this example, there are four MPI
processes and each has three first-stage local sub-buffers.
Each sub-buffer is corresponding to a remote process. At
P2, when the sub-buffer tied to P1 is full, it is flushed to P1.
After receiving the flushed data from P2, P1 redistributes
it to the global pages based on the included offset-length
information.

Since the global buffer is distributed over multiple processes,
each process must be able to respond to remote requests for
flushing the first-stage write-behind data. Similar to the
caching implementation, we use the I/O thread approach to
permit the process collaboration without interrupting the
main program thread. Each process can have multiple files
opened, but only one thread is created. Our algorithm cre-
ates the I/O threads when the program opens its first file



and terminates the I/O thread when all files are closed. Once
an I/O thread is created, it enters an infinite loop to serve
both local and remote write requests until it is signaled to
terminate by the main thread. All operations related to I/O
and data buffering are carried out by the I/O thread alone.
A shared conditional variable protected by a mutex is used
to indicate whether a write request has been issued by the
main thread or the I/O thread has completed a request.
Other communication between the main thread and the I/O
thread is also done through a few shared variables which
contain information such as the file handler, write offset,
write buffer, etc. To serve remote requests, the I/O thread
probes for incoming I/O requests from all processes in the
MPI communicator.

5. EXPERIMENTAL RESULTS
Our implementations for MPI-IO caching and two-stage
write-behind are evaluated on two machines: Tungsten and
Mercury, at the National Center for Supercomputing Appli-
cations. Tungsten is a 1280-node Dell Linux cluster where
each node contains two Intel 3.2 GHz Xeon processors shar-
ing 3 GB of memory. The compute nodes run a Red Hat
Linux operating system and are inter-connected by both
Myrinet and Gigabit Ethernet communication networks. A
Lustre parallel file system version 1.4.4.5 is installed on Tung-
sten. The lock granularity of Lustre is the system page size:
4 KB on Tungsten. Output files are saved in a directory
configured with a stripe count of 16 and a 512 KB stripe
size. All files created in this directory share the same strip-
ing parameters. Mercury is an 887-node IBM Linux cluster
where each node contains two Intel 1.3/1.5 GHz Itanium II
processors sharing 4 GB of memory. Running a SuSE Linux
operating system, the compute nodes are inter-connected
by both Myrinet and Gigabit Ethernet. Mercury runs an
IBM GPFS parallel file system version 3.1.0 configured in
the Network Shared Disk (NSD) server model with 54 I/O
servers and 512 KB file block size. The lock granularity on
GPFS is the disk sector size, 512 bytes on Mercury. Note
that because IBM’s MPI library is not available on Mer-
cury, we could not comparatively evaluate the performance
of GPFS’s data shipping mode. MPI-IO caching is imple-
mented in the ROMIO layer of MPICH version 2-1.0.5, the
latest thread-safe version of MPICH2 at the time our experi-
ments were performed. Support for thread-safety is limited,
however, to the default sock channel of MPICH2; thereby
restricting inter-process communication in our experiments
to the slower Gigabit Ethernet.

In our experiments, we use a 512 KB page size for both MPI-
IO caching and two-stage write-behind method. Setting the
cache page size to the file system stripe size aligns all write
requests to the stripe boundaries and hence lock bound-
aries. For performance evaluation, we use three benchmarks:
BTIO, FLASH I/O, and S3D I/O. We report the aggregate
write bandwidth, because the asynchronous MPI functions
used in our implementation prevent accurate breakdowns
of the costs for computation, communication, and file I/O.
The I/O bandwidth numbers are obtained by dividing the
aggregate write amount by the time measured from the be-
ginning of file open until after file close. Note that although
no explicit file synchronization is called in these benchmarks,
closing files will flush all dirty data in both MPI-IO caching
and the two-stage write-behind implementations to the file
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P6.

system.

5.1 BTIO Benchmark
Developed by NASA Advanced Supercomputing Division,
the parallel benchmark suite NPB-MPI version 2.4 I/O is
formerly known as the BTIO benchmark [28]. BTIO presents
a block-tridiagonal partitioning pattern on a three-dimen-
sional array across a square number of processes. Each pro-
cess is responsible for multiple Cartesian subsets of the en-
tire data set, whose number increases with the square root of
the number of processors participating in the computation.
Figure 3 illustrates the BTIO partitioning pattern with an
example of nine processes. BTIO provides options for using
either MPI collective or independent I/O. In BTIO, forty ar-
rays are consecutively written to a shared file by appending
one after another. Each array must be written in a canoni-
cal, row-major format in the file. We evaluate the Class C
data size with array dimensionality 162 × 162 × 162 and an
aggregate write amount for a complete run of 6.34 GB. With
this fixed aggregate write amount, we evaluate BTIO using
different number of MPI processes; therefore, the amount
written by each process decreases as the number of processes
increases.

BTIO performance results are given in Figure 4. It shows
write bandwidths for three scenarios: using collective MPI
I/O functions natively, using collective I/Os with MPI-IO
caching, and using independent I/Os with the two-stage
write-behind method. Our experiments verify the perfor-
mance evaluation reported in [5], using independent I/O
natively results in significantly worse write bandwidth than
using collective I/O. This is because there is a significant
difference in the number of the write requests to the file sys-
tem. Table 1 shows the number of file system write() calls
and their data amounts generated at the ADIO layer. Since
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Figure 4: Performance results of BTIO benchmark.

ROMIO uses the two-phase I/O strategy in its collective
I/O implementation to redistribute and aggregate I/O re-
quests to large contiguous file accesses, the number of write
requests generated by collective I/O is significantly less than
independent I/Os. The extremely large number of write re-
quests generated by native independent I/O in BTIO makes
the aggregate write performance very poor. With less than
5 MB per second bandwidth in our experience, the results
for independent I/O alone are not presented.

On the GPFS and Lustre file systems, both the MPI-IO
caching and write-behind methods outperform the native
MPI collective I/O. The performance improvement is at-
tributed to reduced file system lock contention. For each col-
lective write operation in BTIO, the aggregate write amount
is 162.18 MB. When partitioned evenly among all MPI pro-
cesses, the file domains are not aligned with the file system
lock boundaries. Table 1 also shows the write amounts per
request per process when collective MPI I/O is used. It is
clear that they do not generate aligned request offsets for all
four numbers of processes used in our experiments. Thus,
conflict locks due to false sharing occur and hence serialize
the concurrent write requests. As for the two-stage write-
behind method, there is a significant improvement over not
only the native independent I/O, but also the native col-
lective I/O. This improvement is attributed to the local
data accumulation at the first stage write-behind achiev-
ing better network bandwidth as well as the second-stage
write request alignment reducing file system lock contention.
On Lustre, the write-behind method even outperforms the

Table 1: Number of write requests and data amount
generated by the BTIO benchmark when running
MPI I/O natively.

Number of Collective I/O Independent I/O
processes NWRPP WAPRPP NWRPP WAPRPP

16 40 10.14 MB 262440 1620 B
36 40 4.51 MB 174960 1080 B
64 40 2.53 MB 131240 810 B
100 40 1.27 MB 105000 405 B

NWRPP: number of write requests per process
WAPRPP: write amount per request per process

MPI-IO caching. In fact, both the MPI-IO caching and
two-stage write-behind methods have their own advantages
and disadvantages. As we described earlier, the distributed
lock protocol used in MPI-IO caching to maintain the cache
metadata integrity incurs a certain degree of communica-
tion overhead. Because the write-behind method deals with
write-only patterns, no coherence control is required at all.
MPI-IO caching allows the first process that requests a page
to buffer it locally; thereby, taking advantage of data lo-
cality and increasing the likelihood of local cache hits. In
contrast, since the second-stage buffers of the write-behind
method are statically assigned across MPI processes in a
round-robin fashion, the data written by a process in the
first-stage buffers will most likely need to be flushed to re-
mote processes.

5.2 FLASH I/O Benchmark
The FLASH I/O benchmark suite [29] is the I/O kernel of
the FLASH application, a block-structured adaptive mesh
hydrodynamics code that solves fully compressible, reactive
hydrodynamic equations, developed mainly for the study of
nuclear flashes on neutron stars and white dwarfs [6]. The
computational domain is divided into blocks that are dis-
tributed across a number of MPI processes. A block is a
three-dimensional array with an additional 4 elements as
guard cells in each dimension on both sides to hold infor-
mation from its neighbors. In our experiments, we used
a 16 × 16 × 16 block size that produces about 2.5 MB of
write data per process in each MPI I/O operation. There
are 24 variables per array element, and about 80 blocks on
each MPI process. A variation in block numbers per MPI
process is used to generate a slightly unbalanced I/O load.
Since the number of blocks is fixed for each process, increase
in the number of MPI processes linearly increases the aggre-
gate I/O amount as well. FLASH I/O produces a checkpoint
file and two visualization files containing centered and cor-
ner data. The largest file is the checkpoint, the I/O time
of which dominates the entire benchmark. FLASH I/O uses
the HDF5 I/O interface to save data along with its meta-
data in the HDF5 file format. Since the implementation of
HDF5 parallel I/O is built on top of MPI-IO [7], the MPI
performance effects of the MPI-IO caching and two-stage
write-behind methods can be observed in overall FLASH
I/O performance. To eliminate the overhead of memory
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Figure 5: Performance results of FLASH I/O benchmark.

copying in the HDF5 hyper-slab selection, FLASH I/O ex-
tracts the interiors of the blocks via a direct memory copy
into a buffer before calling the HDF5 functions. There are
24 I/O loops, one for each of the 24 variables. In each loop,
every MPI process writes into a contiguous file space, ap-
pending its data to the previous ranked MPI process; there-
fore, a write request from one process does not overlap or
interleave with the request from another. In ROMIO, this
non-interleaved access pattern actually triggers the indepen-
dent I/O subroutines, instead of collective subroutines, even
if MPI collective writes are explicitly called. This behav-
ior can be overridden by enabling the romio_cb_write hint.
For the FLASH I/O pattern, forcing collective I/O creates
a balanced workload, but adds extra communication costs.

Figure 5 shows the performance results of the FLASH I/O
benchmark. The aggregate write bandwidth is calculated
by dividing the data size written to all three files by the
overall execution time. At first, we observe that the results
of forcing collective writes are worse than using the default
independent writes. This is because the cost of rebalanc-
ing the I/O load overwhelms the benefit of a balanced I/O.
From this we can conclude that whether or not the I/O
load is balanced is not a significant enough factor in the
I/O performance of FLASH. Both the MPI-IO caching and
two-stage write-behind methods outperform the native inde-
pendent writes. Since the data amount per write request in
each MPI process is about 2.5 MB, larger than the system
stripe size of 512 KB, the improvement is due to the fact
that accumulating write data in both caching and write-
behind enables write request alignment to the file system
stripe boundaries. Similar to our analysis for BTIO, such
alignment significantly eliminates the lock contention that
would otherwise occur in the underlying GPFS and Lus-
tre file systems from the use of native MPI I/O. Note that
FLASH I/O writes both array data and metadata through
the HDF5 I/O interface to the same file. Metadata, usually
stored at the file header, may cause unaligned write requests
for array data when using native MPI I/O.

5.3 S3D I/O Benchmark

The S3D I/O benchmark is the I/O kernel of the S3D ap-
plication, a parallel turbulent combustion application us-
ing a direct numerical simulation solver developed at San-
dia National Laboratories [20]. S3D solves fully compress-
ible Navier-Stokes, total energy, species and mass continuity
equations coupled with detailed chemistry. The governing
equations are solved on a conventional three-dimensional
structured Cartesian mesh. A checkpoint is performed at
regular intervals, and its data consists primarily of the solved
variables in 8-byte three-dimensional arrays, corresponding
to the values at the three-dimensional Cartesian mesh points.
During the analysis phase the checkpoint data can be used
to obtain several more derived physical quantities of inter-
est; therefore, a majority of the checkpoint data is retained
for later analysis. At each checkpoint, four global arrays
are written to files and they represent the variables of mass,
velocity, pressure, and temperature, respectively. Mass and
velocity are four-dimensional arrays while pressure and tem-
perature are three-dimensional arrays. All four arrays share
the same size for the lowest three spatial dimensions X, Y,
and Z, and they are all partitioned among MPI processes
along X-Y-Z dimensions in the same block-block-block fash-
ion. For the mass and velocity arrays, the length of the
fourth dimension is 11 and 3, respectively. The fourth di-
mension is not partitioned.

In the original S3D, the I/O is programmed in Fortran I/O
functions and each process writes all its sub-arrays to a new,
separate file at each checkpoint. We added the functionality
of using MPI I/O to write the arrays into a shared file in
their canonical order. With this change, there is only one
file created per checkpoint, regardless of the number of MPI
processes used. Figure 6 shows the data partitioning pat-
tern on a 3D array and the mapping of a 4D sub-array to
the global array in file. 3D arrays can be considered a special
case with a fourth dimension length of one. For performance
evaluation, we keep the size of partitioned X-Y-Z dimensions
a constant 50×50×50 in each process. This produces about
15.26 MB of write data per process per checkpoint. Similar
to FLASH I/O, as we increase the number of MPI processes,
the aggregate I/O amount proportionally increases as well.
We measure the execution time for running ten checkpoints.
Figure 7 shows the write bandwidth results for using For-
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tran I/O, MPI collective I/O natively, collective I/O with
MPI-IO caching, and independent I/O with the two-stage
write-behind method. Fortran I/O has significantly better
performance than the other cases on Lustre, but this sit-
uation changes on GPFS. On GPFS, Fortran I/O is even
worse than the MPI-IO caching for 64 and 128 processes.
Further investigation by separately measuring the file open
time of ten checkpoints shows that file open costs increase
more dramatically on GPFS than Lustre when scaling the
number of processes. Lustre seems to handle larger number
of files more efficiently than GPFS. As for the MPI I/O per-
formance, we observe that MPI-IO caching outperforms the
native collective I/O on both GPFS and Lustre. Similar to
BTIO and FLASH I/O, the effect of I/O alignment enhances
the performance of MPI-IO caching. The two-stage write-
behind behaves differently on each file system in that it is
worse than the native collective I/O on GPFS, but outper-
forms the MPI-IO caching on Lustre. We think write-behind
performance is worse because the S3D I/O pattern results
in many remote data flushes from the local first-stage to
global second-stage buffers. Note that the native MPI I/O
case uses collective I/O functions, while the write-behind
method uses independent I/O functions. Compared to the
use of native independent writes that produces I/O band-
width less than 5 MB per second, our write-behind method
shows a clear improvement and achieves a bandwidth close
to, or better than, the collective I/O method.

6. CONCLUSIONS

Client-side file caching has been demonstrated as a power-
ful tool for file systems to reduce the data transfer between
clients and the I/O servers. If not used carefully, however,
caching can seriously hurt the shared-file parallel I/O per-
formance. As discussed in this paper, there are several non-
obvious factors that influence the performance, such as false
sharing and I/O atomicity. Besides lock contention, other
costs for file caching include operations for extra memory
copying, and memory space management for cache data.
When this combined overhead overwhelms caching benefits,
caching only reduces performance. Another factor also sig-
nificantly affecting a caching system’s performance is the
available memory space. The performance evaluation of a
caching system is different from measuring the maximum
data rate for a file system. Typical file system benchmarks
avoid caching effects by using an I/O amount larger than
the aggregated memory size of either clients or servers. In
contrast, file caching performance can really only be cap-
tured when there is sufficient unused memory space for the
caching system to operate in. All these factors contribute to
the complex challenge of evaluating and explaining the par-
allel I/O performance of a caching system in great detail.

We use the BTIO benchmark and two production applica-
tion’s I/O kernels, FLASH I/O and S3D I/O, to evaluate our
idea of a file caching layer between the applications and file
systems. In the real world, applications’ parallel I/O pat-
terns may not always result in the aligned I/O requests used
in many I/O benchmark suites. Our experiments demon-
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Figure 7: Write bandwidth and file open timing for S3D I/O benchmark.

strate the significance of aligning the I/O requests with the
file system lock boundaries. In fact, enforcing POSIX se-
mantics such as I/O atomicity has become substantial ob-
stacles to parallel file systems efficiently handling shared-file
I/O at sustained I/O rates close to the maximum network
bandwidth. Since the primary I/O patterns of large-scale
parallel applications are write-only and non-overlapping, en-
forcing strict semantics like POSIX atomicity is not always
necessary. We plan to add a mechanism in MPI-IO caching
to selectively relax the atomicity requirement. Our current
design for MPI-IO caching conservatively chooses to keep at
most a single copy of cached file data. Although this policy
simplifies coherence control, it also increase the likelihood of
accessing remote cache pages instead of local cache pages.
We will investigate a new implementation that allows mul-
tiple cached copies of the same file date. We also plan to
explore other issues such as cache load re-balancing and data
prefetching.
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