
Noncontiguous Locking Techniques for Parallel File
Systems

Avery Ching, Wei-keng Liao, and Alok Choudhary
Department of EECS

Northwestern University
Evanston, Illinois 60208

{aching,wkliao,choudhar}@ece.northwestern.edu

Robert Ross
MCS Division

Argonne National Laboratory
Argonne, IL 60439

rross@mcs.anl.gov

Lee Ward
Scalable Computer Systems
Sandia National Laboratories

Albuquerque, NM 87185
lee@sandia.gov

ABSTRACT

Many parallel scientific applications use high-level I/O APIs
that offer atomic I/O capabilities. Atomic I/O in current
parallel file systems is often slow when multiple processes si-
multaneously access interleaved, shared files. Current atomic
I/O solutions are not optimized for handling noncontiguous
access patterns because current locking systems have a fixed
file system block-based granularity and do not leverage high-
level access pattern information.

In this paper we present a hybrid lock protocol that takes
advantage of new list and datatype byte-range lock descrip-
tion techniques to enable high performance atomic I/O oper-
ations for these challenging access patterns. We implement
our scalable distributed lock manager (DLM) in the PVFS
parallel file system and show that these techniques improve
locking throughput over a naive noncontiguous locking ap-
proach by several orders of magnitude in an array of lock-
only tests. Additionally, in two scientific I/O benchmarks,
we show the benefits of avoiding false sharing with our byte-
range granular DLM when compared against a block-based
lock system implementation.

1. INTRODUCTION
Researchers in fusion (GTC [18]), combustion (S3D [30]),

molecular dynamics (NAMD [27], Desmond [5], and Blue
Matter [14]), astrophysics (FLASH [15]) and many other
fields are achieving scientific breakthroughs by using large-
scale computing systems to simulate experiments which are
difficult to pursue in the physical world. CPU, memory,
and network components have made great performance leaps
that have enabled new problems to be tackled on these re-
sources. Storage systems, however, have lagged significantly.

(c) 2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

SC07 November 10-16, 2007, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

Because of this disparity, scientists find themselves ham-
strung by the I/O system in their ability to store simulation
results. Once these results are stored, the relatively slow
I/O systems further limit the rate at which results can be
analyzed. The addition of computational power and mem-
ory means that simulations may be performed at a higher
data resolution or with more time steps, which compounds
an already difficult situation for the storage system.

I/O system software and middleware is used to mitigate
this situation. Parallel file systems provide a way for I/O
bandwidth to scale on par with their computational counter-
parts. One area of progress in I/O has been the addition of
the MPI-IO interface in 1997 [24], which provides the same
portability and rich access pattern descriptions for paral-
lel I/O as MPI did for parallel computing. Additionally,
high-level I/O libraries built on top of the MPI-IO inter-
face, such as HDF5 [16] and parallel netCDF [20], provide
programmers with high-level I/O APIs and portable file for-
mats. When scientists can use high-level descriptions for
the access pattern of their application, optimizations such
as datatype I/O [9] and collective I/O [13] can be applied
to significantly improve performance. One implementation
of collective I/O, two-phase I/O [32] (unrelated to the two-
phase lock protocol), provides good performance in many
cases and can help solve the atomicity problem. Two-phase
I/O, however, requires that all processes coordinate their
I/O and is not suitable for individual I/O and/or unbal-
anced workloads. Our work can be applied to collective I/O
techniques, such as two-phase I/O, although in this paper
we target individual I/O operations.

One area of significant difficulty for the I/O library devel-
opers is to support atomicity for these high-level I/O APIs.
Atomic high-level I/O operations are useful when regions of
data in a file are shared by multiple processes, such as in
HDF5 where internal metadata in a file is used by all pro-
cesses to place application data in a consistent manner. The
MPI-IO atomic mode consistency semantics guarantee se-
quential consistency for all I/O operations among processes
which opened up a file collectively. This mode may be used
to implement the type of sharing described above.

Atomicity is even an issue for contiguous I/O operations.
For example, one process P0 may write a contiguous region
of data which spans two I/O servers I0 and I1. Another

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

(c) (d)
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Memory

File

(a) (b)

Figure 1: Various I/O access patterns which denote contiguous and noncontiguous descriptions in memory
and file.

process P1 may read the same regions of data. If P0 writes
to I0 first and I1 second and P1 reads from I1 first and I0
second, then P1 may see only part of P0 ’s write, violating
atomicity.

The most common technique for implementing atomicity
is to use file locking, and most file locking implementations
are limited in their ability to describe noncontiguous regions.
Unfortunately, noncontiguous access patterns (see Figure 1)
are common in scientific applications [2, 11]. Because file
locking implementations perform so poorly for these pat-
terns, the MPI-IO atomic mode is rarely used. The lack
of an efficient atomicity implementation for high-level I/O
APIs, such as MPI-IO, has led many parallel application
designers to simply have each process write to its own file
and manage this collection of files with scripts and custom
post-processing tools. This is a very inefficient solution, and
it lowers the scientist’s productivity.

Efficient atomic noncontiguous I/O operations could be
used for many producer-consumer problems, including real-
time visualization of data, and are critical for in-place data
manipulation techniques. In addition to giving support to
high-level APIs, efficient atomic noncontiguous I/O opera-
tions are an important building block in software-level RAID
techniques and file system journaling, both of which are
growing in importance as we build file systems from ever-
larger collections of storage devices.

Several solutions have been proposed to provide atomic
I/O for the file system. Most of them use some form of
locking for handling atomicity. Solutions in ROMIO [29],
the most popular implementation of MPI-IO, include the
use of byte-range locking across the entire access pattern
and file locking with MPI one-sided communication [19].
While these approaches offer some important benefits, they
are only useful within the context of MPI-IO accesses and
rely on MPI-2 calls that are not available on many large sys-
tems. More general solutions approach the problem at the
file system level. Atomicity at the file system level typically
uses some fixed size granularity that is a multiple of the file
system block size.

In this paper, we propose using a scalable distributed
lock manager (DLM) architecture which has true byte-range
granularity for handling atomicity within shared files. We
present list and datatype locking methods that leverage high-
level noncontiguous access pattern information and hybrid
two-phase lock protocols that make the best use of our new
locking methods. We provide synthetic performance evalu-
ations which test the scalability of our lock methods in non-
overlapping and overlapping situations. We also test our
ideas against two scientific I/O benchmarks, the S3D I/O
benchmark and S3aSim, which show our DLM can achieve

near lock-less I/O performance. Additionally, we compare
our DLM architecture against a block-based cache and lock-
ing Lustre implementation to show how false sharing nega-
tively impacts shared file I/O performance.

Our paper is organized as follows. In Section 2, we discuss
previous work for implementing atomic I/O in detail and the
basic ideas of our research. In Section 3, we describe how
we leverage high-level I/O access pattern information to cre-
ate efficient lock interfaces. In Section 4, we explain how we
combined the ordered, rigorous two-phase lock protocol with
an optimistic lock protocol to improve overall lock perfor-
mance. In Section 5, we discuss the implementation of our
DLM at both the client and the server. Additionally, we de-
scribe how we translate MPI-IO operations into client lock
requests. In Section 6, we present the results of our lock
tests, S3D I/O benchmark, and S3aSim in a detailed perfor-
mance analysis. In Section 7, we summarize this paper and
discuss possibilities for future work with our DLM.

2. HISTORY & OUR DLM APPROACH
Most file systems today follow the POSIX standard for

I/O [17], which states that a read operation, that can be
proven to occur after a write, must return the new data
(the entire write should be visible). Further, I/O operations
should be “atomic,” where they are only seen in their en-
tirety, or not at all. The MPI-IO atomic mode is similar:
it guarantees sequential consistency of writes and reads to
a group of processes which have collectively opened a file.
The POSIX I/O API limits atomicity to contiguous regions
of the file. MPI-IO, however, also supports atomic noncon-
tiguous I/O operations.

Parallel file systems today do not have an optimized ap-
proach for handling efficient atomic noncontiguous I/O ac-
cess. IBM’s GPFS [31], which is POSIX compliant, has an
optimized MPI-IO implementation [28] for improving collec-
tive I/O access. It has a global lock manager which hands
out “lock tokens” to clients, which helps with optimizing
client-side caching. GPFS also employs a special lock di-
vision algorithm for acquiring locks on a file which splits
the file contiguously among processes. While this may work
well for certain cases, it is not generally well suited for in-
terleaved access. For interleaved access, GPFS relies on its
data shipping mode for the best performance. Additionally,
while GPFS allows byte-range locks, it rounds them to the
file system block size, which causes false sharing when writes
are not aligned.

Lustre [23] also follows the POSIX standard (except with
regard to atime updates and flock()/lockf() system calls)
and has a DLM incorporated into its object storage servers

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��
��
��
��
��
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���Memory

File

(a) (b) (c)

(0,3), (4,2)

(0,1), (2,1), (4,1), (6,1), (8, 1)

File offset−lengh pairs ct=5

Memory datatype ct=1

File datatype ct=5

vector(ct=5, size=1, skip=2)

indexed(ct=2, offsets=(0, 4), lens=(3,2))

Memory offset−length pairs ct=2

Figure 2: The three lock methods described in this paper: (a) POSIX locking, (b) list locking, and (c)
datatype locking.

(OSSs). The OSSs are responsible for locks on the data
they manage. The lock granularity on Lustre is the file sys-
tem page size, where client conflicts are resolved by sending
a message to the lock owner to release the page. All cache
pages must be flushed before a lock is released. Panasas [25],
while supporting file locking, does not appear to have any
special support for atomic MPI-IO operations. The Chubby
lock service [6], used by Google’s Bigtable [7], is a coarse-
grain whole-file lock service with a design emphasis on avail-
ability and reliability. The Frangipani file system [33] has a
single-writer/shared-reader whole-file lock service.

False sharing, which causes serialized I/O operations, oc-
curs when write sizes do not align with the file system lock
granularity. In addition to the overhead of serialized I/O op-
erations, file systems that use their lock systems for caching
must also flush cache pages before transferring locks among
clients. Deadlock avoidance in file systems has been pri-
marily based on the two-phase lock protocol. Our scalable
DLM approach seeks to provide efficient noncontiguous lock
operations that do not incur any false sharing through true
byte-range granular locks. We use high-level access pattern
information to create efficient lock APIs for our lock service.
Additionally, we have modified the ordered, rigorous two-
phase lock protocol to increase performance, while avoiding
deadlock (when there are no failures).

3. NEW LOCKING METHODS
Application developers commonly use rich abstractions to

describe their data access. In particular, they use high-level
I/O libraries such as HDF5 or parallel netCDF, which ad-
ditionally offer portable file formats. Many high-level I/O
libraries, such as those previously mentioned, are built on
top of MPI-IO, which is a portable, parallel I/O API. How-
ever, some scientific applications are written to directly use
MPI-IO. In either case, high-level APIs for I/O can pro-
vide opportunities for significant performance improvement.
In [9], MPI derived datatype abstractions were efficiently
supported by the file system and showed up to several mag-
nitudes of performance improvement over basic POSIX I/O
file system operations. We aim to apply these same datatype
abstractions to support efficient noncontiguous atomic oper-
ations. In following subsections, we describe three different
lock methods for implementing atomic noncontiguous I/O.

3.1 POSIX Locking
File systems typically present programmers with the POS-

IX I/O API. POSIX read and write operations use a pointer
to a contiguous region of memory, the current file pointer lo-
cation, and a count, to access data. We denote the locking
counterpart of this interface, which locks a contiguous re-
gion of bytes, as POSIX lock. The POSIX lock interface can
be used to make a noncontiguous access pattern atomic by
acquiring all locks to the necessary file regions before doing
any I/O as shown in Figure 2a. While POSIX locking can
provide atomicity guarantees for noncontiguous I/O access
patterns, it has several important drawbacks. The number
of lock requests to the lock servers is at least equal to the
number of noncontiguous file regions, which creates a signif-
icant request processing overhead. When lock regions span
multiple lock servers, the number of lock requests increases
further due to“splitting”the locks on lock server boundaries.

3.2 List Locking
Using list-based descriptions is a technique that has been

used for I/O [8] and in a prototype single lock server [1].
The concept of list I/O (illustrated in Figure 2b) extends
the POSIX I/O API to specify multiple noncontiguous re-
gions in both memory and file. Using this technique for
locking provides a way to take advantage of the high-level
I/O information available from MPI derived datatypes (i.e.
we can enumerate the regions).

Some I/O access patterns may have a large number of
noncontiguous file regions. We split up list lock requests
to the lock servers at every 64 noncontiguous regions since
requests should not be arbitrarily large. When application
programmers perform unstructured atomic data access, lists
of offsets and lengths are a concise way to describe the access
patterns to the lock servers. However, offset and length
pairs do not concisely capture structured access patterns.
When noncontiguous regions have less than 16 bytes, the
list locking description with offsets and lengths exceeds the
actual data amount being locked.

3.3 Datatype Locking
Many simulation applications use multi-dimensional ar-

rays to model scientific events, such as protein folding, com-
bustion, or fusion. It is common that the I/O accesses in

these data sets, for instance writing one variable for every
cell, is regular and structured. Structured data access can
be concisely described with a derived datatype. When struc-
tured data access requires atomicity, we can use the derived
datatype concept with our DLM. The datatype access pat-
tern, shown in Figure 2c, consists of a tree of datatypes
as opposed to the offset and length pairs used in list lock-
ing. When moving the access pattern description across a
network, datatype locking reduces network traffic and the
number of lock requests to the lock servers. The lock servers
unravel the derived datatypes to determine which locks they
are responsible for. If the lock servers were to lack sig-
nificant processing capabilities, this discovery process could
outweigh the benefit of reduced lock requests and network
traffic. Additionally, when presented with access patterns
containing no regularity, datatype locking breaks down into
list locking.

4. HYBRID LOCK PROTOCOLS
Deadlock is always a potential problem when multiple

locks are acquired and then released. A variant of the well
known two-phase lock protocol [3], rigorous two-phase lock-
ing, serializes the order in which operations complete while
allowing parallelism on nonconflicting regions. Adding order
to the locks acquired in the rigorous two-phase lock proto-
col eliminates the possibility of deadlock when there are no
failures by lock system participants. An ordered, rigorous
two-phase lock approach is a good match for noncontiguous
file system operations since an order can be imposed based
on file offsets. The ordered, rigorous two-phase lock pro-
tocol separates the operations into two phases: a growing
phase and a shrinking phase. During the growing phase,
locks must be acquired in a monotonically increasing order.
After doing the necessary work on the locked regions, the
client enters the shrinking phase to release all the locks it
is holding. During the growing phase, no locks that have
been acquired in-order can be released. Similarly, during
the shrinking phase, no locks can be acquired. If there are
several clients all waiting on various locks, once the“highest”
one in the ordering is released, another client will be able to
make progress. This client will possibly acquire more locks
(assuming all other clients are waiting on other locks) and
then release its locks, which allows another client to proceed.
This strategy eliminates the possibility of deadlock assum-
ing that clients and lock servers do not fail. For brevity,
in the rest of the paper, we refer to the ordered, rigorous
two-phase lock protocol as simply the two-phase lock proto-
col. To improve upon the performance of the two-phase lock
protocol, we propose using an optimization that will signif-
icantly enhance I/O performance based on the knowledge
that it is atypical for a programmer will overwrite their own
data. Our optimization is an optimistic lock protocol where
clients try to acquire their locks from all lock servers and
then release locks that are out-of-order. A simple example
would be that client A wants to acquire locks on offset-length
pairs (0, 2), (4, 2), (6, 2), and (8, 2). Offset-length pairs (0,
2) and (4, 2), are on lock server 0. Offset-length pairs (6, 2)
and (8, 2) are on lock server 1. Client A optimistically tries
to acquire all locks from both lock servers simultaneously.
Client A waits for the responses from both lock servers and
then revokes locks which are out-of-order. If client A has re-
ceived locks with the offset-length pair (0, 2) from lock server
0 and offset-length pairs (6, 2), (8, 2) from lock server 1, it

must release (6, 2) and (8, 2) before deciding whether to
retry the optimistic lock protocol or use the two-phase lock
protocol.

Incorporating the partial use of an optimistic lock protocol
is very important to achieving maximum performance from
our optimized lock methods. If a client must in-order acquire
every lock through all its noncontiguous file regions, the
communication and processing overhead would be tremen-
dous, as is demonstrated in Section 6 with POSIX locking.
Below we discuss two combinations of the two-phase and
optimistic lock protocols, which helps us to achieve better
locking performance in nearly all I/O access patterns.

4.1 One-try Lock Protocol
Using only the optimistic lock protocol to acquire locks

might cause a set of clients to end up in a state of livelock,
where no locking progress is made. In our one-try lock proto-
col, a client first tries the optimistic lock protocol to acquire
locks. If it does not acquire all its locks, it releases the out-of-
order locks and then reverts to the two-phase lock protocol
of acquiring locks in-order. Most I/O access patterns are not
overlapping and therefore benefit from the ability to acquire
locks from all servers simultaneously.

4.2 Alt-try Lock Protocol
While there are an endless number of ways to combine op-

timistic and two-phase lock protocols, we felt that alternat-
ing protocols would ensure that progress is made while pro-
viding ample opportunity for optimistically acquiring locks.
The alt-try lock protocol first optimistically tries to acquire
all locks, releasing those which are out-of-order. Then it
uses the two-phase lock protocol to get its next lock. Upon
successfully acquiring its next lock, it again tries to opti-
mistically acquire all locks, releasing those which are out-of-
order. This alternating strategy repeats until all locks have
been acquired.

5. DLM IMPLEMENTATION
Our DLM implementation has two major components:

clients and lock servers. Both components are integrated
into the file system. We chose to implement our DLM into
the PVFS file system although the ideas could certainly be
ported to other parallel file systems or written into a stand-
alone DLM package. This design choice was made for a vari-
ety of reasons. As other distributed file systems with atomic
capabilities have noted [23], separating the DLM from the
file system makes handling failure significantly more diffi-
cult. The I/O servers and lock servers may lose communi-
cation. If clients lose communication with either the lock
server or the I/O server, coordination issues could cause
non-atomic behavior. Another reason for the integration is
that lock requests can use the same server mapping as I/O
requests. Both lock and I/O bandwidths scale as the num-
ber of servers a file stripes across is increased. From now on,
we refer to I/O servers and lock servers as simply “servers,”
since they are integrated as one component. PVFS was cho-
sen since it has derived datatype support, which provided
a starting point for implementing datatype locking. When
PVFS clients access the file system through the MPI-IO in-
terface, they directly interact with the PVFS servers (by-
passing the Linux buffer cache on the client). PVFS clients
can request byte-granular regions of data from the PVFS
servers. Similarly, client lock requests can access actual byte

fh = 286

(S,E,M)

0,2,2

rq=0

rq=1

rq=2

rq=3

rq=4

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

5,6,8

3,4,4 7,8,8

9,10,10

12,14,18

14,20,25

16,25,25

13,18,18

Write Interval Tree Read Interval TreeAll Request Queue

fh = 171

fh = 142

Granted Request Queue

Waiting Request Queue

Figure 3: Lock server architecture.

ranges and are not rounded to a sector or file system block
size as in other file systems. Therefore, no false sharing is
possible with our lock system. Although other file systems
may align locks requests to system block sizes which may
cause false sharing, they can still benefit from high-level ac-
cess pattern information and use our lock methods and lock
protocols to reduce the number of overall lock requests to
the lock system. Section 5.1 and Section 5.2, respectively,
describe the client and the server components in detail.

In order to be able to make our DLM implementation
usable for MPI-IO applications or other I/O libraries built
on top of MPI-IO, we implemented the necessary procedures
to convert MPI-IO calls into the appropriate lock calls. This
work is described briefly in Section 5.3.

5.1 Client
Our client component is a state machine in PVFS. It be-

gins a lock request by calculating which servers to access,
then uses a lock protocol which is chosen at runtime. It
supports all three lock protocols (two-phase, one-try and
alt-try). All lock protocols are implemented with the two
basic lock rounds: optimistic and two-phase. A heap which
contains last abs offset and next abs offset from each server
is used to figure out which servers need to revoke locks and
which server has the next in-order lock.

The optimistic round begins when the client attempts to
get all locks at once by sending all its lock requests to all the
servers involved. It waits for all the replies, which include
the last absolute offset locked (last abs offset) and the abso-
lute offset of the next lock it is waiting on (next abs offset),
and puts this data into the heap. Then the client retrieves
the min(next abs offset) from the heap. If any server has
a last abs offset greater than the min(next abs offset), the
client must make a request to the relevant servers to re-

voke locks up to the min(next abs offset). At this point, the
round is complete.

The two-phase round begins when a client makes a single
lock request to the server which has min(next abs offset) of
the heap. The lock request will try to get the locks from
min(next abs offset) to the next min(next abs offset) of the
heap. At this point the server will only reply when it has
acquired the necessary locks requested (the client is blocking
during this time). Once the client receives the server’s reply
with last abs offset and next abs offset, the client updates
the heap and the two-phase round is complete.

The client implements the two-phase, one-try, and alt-try
lock protocols described in Section 4 using a combination of
these two basic lock rounds. The two-phase lock protocol
continually uses the two-phase round. The one-try lock pro-
tocol begins with an optimistic round followed by two-phase
rounds (if necessary) to fulfill the rest of the lock operation.
The alt-try lock protocol begins with an optimistic round,
followed by a two-phase round, and continues to alternate
lock rounds until the lock operation is satisfied.

Every lock request stores a lock request number for each
server involved in the operation. A release request is imple-
mented by sending every server involved in the lock opera-
tion the relevant lock request number.

5.2 Server
Servers are not aware of the client lock protocols; they

only process acquire (nonblocking or blocking) and release
(full or partial) requests. The server uses a variety of data
structures for fast lock operations as shown in Figure 3. Files
which have any locks are in a hash table in each server for
fast lookup. Each file has two interval trees associated with
it: a write tree and a read tree. The interval trees provide
O(lg(n)) algorithmic inserts and deletes, allows easy lookups

for conflicting locks, and are balanced. Each file also has a
queue which contains all requests (all req queue), a queue
of waiting requests (wait req queue), and a red-black tree
of granted requests (granted req queue). The wait req queue
may have lock requests that are blocking or nonblocking.
When the server tries to add locks for lock requests in the
wait req queue, it will ignore the lock requests with non-
blocking tags.

For a nonblocking acquire request, the server tries to grant
as many locks as possible before it overlaps another lock. If
the lock request is a read operation, the server checks the
write tree and inserts the lock in the read tree if no conflicts
are found. If the lock request is a write operation, the server
checks the write tree and the read tree for conflicts before
inserting locks in the write tree. This implementation pro-
vides byte-granular single-writer/shared-reader lock seman-
tics. All locks for a lock request are also chained in a linked
list for fast removal. If the lock request has been granted, it
is added to the granted req queue, otherwise it is added to
the wait req queue with a nonblocking tag. Then the server
returns last abs offset and next abs offset to the client im-
mediately. For a blocking acquire request with a specified
final offset, the server again tries to grant as many locks as
possible before it overlaps another lock. If the lock request
reaches the desired offset, the server returns last abs offset
and next abs offset to the client. If the lock request is com-
pletely finished is added to the granted req queue. Other-
wise, it is added to the wait req queue with a nonblock-
ing tag. If the lock request does not reach the desired
offset, the request is also entered into the wait req queue,
but with a blocking tag. The nonblocking requests in the
wait req queue either add locks or remove locks as speci-
fied by later lock requests. The blocking requests in the
wait req queue are checked to see if any locks can be added
when locks from other lock requests are released.

Release requests may be full or partial. When the opti-
mistic round is used by a client, partial release requests only
remove locks up to a particular absolute offset. A full re-
lease typically occurs only after a client has completed all
I/O operations protected by its locks. The lock server re-
leases locks by looking up the lock request number in the
wait req queue or granted req queue and removes the rele-
vant locks using the linked list chain while keeping the in-
terval tree balanced. After the locks are freed, the server
returns completion to the client and immediately examines
the wait req queue for lock requests with the blocking tag
for servicing. If any of the lock requests in wait req queue
completes, the server notifies the relevant clients.

5.3 MPI-IO Implementation
In order to leverage our scalable DLM implementation for

MPI-IO and high-level I/O APIs, we modified the PVFS de-
vice driver in ROMIO, which was developed at Argonne Na-
tional Laboratories. ROMIO supports many parallel file sys-
tems through its abstract device interface for I/O (ADIO).
Each file system has its own ADIO device driver. In the
PVFS device driver we convert MPI file types into PVFS de-
rived datatypes for datatype locking, offset and length pairs
for list locking, and contiguous regions for POSIX locking.
Additionally, we added several new hints to ROMIO for en-
abling the various lock methods and lock protocols at run-
time.

6. PERFORMANCE EVALUATION
We evaluated the performance of our DLM implementa-

tion on the Feynman cluster at Sandia National Labora-
tories. Feynman, composed of Europa nodes, Ganymede
nodes, and I/O nodes, has a total of 371 computers with
about 160 nodes available at the time of testing. In order to
keep our testing as homogeneous as possible, we only used
the Ganymede nodes. The Ganymede nodes are dual 2.4
GHz Pentium-4 Xeon CPUs with 2 GBytes RDRAM and
15 GByte Serial ATA hard drives. They are connected with
a Myrinet-2000 network, have access to a production Lustre
volume, and use the Redhat Linux Enterprise 2.6.9 operat-
ing system. Since each computer has dual CPUs, we used 2
compute processes per node in all our tests.

We configured our PVFS 2.5.1 file system on up to 32 com-
puters as servers, with one computer also handling metadata
responsibilities. On tests where we compare against Lustre,
we used 16 servers. We kept the default 64 KByte strip
size and other default parameters. Compute nodes access
the servers through IP over Myrinet. Our Lustre 1.4.7 test
directory was configured to use 16 OSTs with a 64 KByte
stripe size to match the PVFS configuration. The Lustre
lock granularity is aligned to the file system block size for
caching reasons and cannot be changed. The Lustre storage
nodes (OSSs) are on Infiniband interconnect and connect to
the compute nodes via Myrinet to Infiniband routers.

As our DLM uses true byte-range locking, it is not prone
to false sharing. In order to understand how this elimina-
tion of false sharing would affect performance, we compared
our approach to the block-based locking implementation on
the Lustre file system on some real-world benchmarks in-
cluding S3D, a combustion code from Sandia National Lab-
oratories, and S3aSim, a parallel sequence-search algorithm
simulator developed at Northwestern University. While, the
two systems are not directly compared since they use dif-
ferent hardware, we tried to compare overall trends of how
false sharing affects performance. While Lustre has excel-
lent performance in the file-per-process model, shared file
performance has been shown to be inefficient due to lock-
ing and cache swapping overheads [21]. Lustre does not
support atomicity at the MPI-IO level; it is supporting the
weaker POSIX consistency semantic which only guarantees
atomicity for POSIX I/O operations. Although this is a
weaker consistency semantic, the overheads of false sharing
are still apparent in our benchmarks. Our initial tests runs
with Lustre revealed extremely poor performance (less than
1 MByte / sec) from the MPI-IO data sieving optimization
[32] (most likely due to the locking and caching overheads).
We set hints in ROMIO to turn off data sieving for non-
contiguous data access, which improved performance by an
order of magnitude in most cases.

We begin our performance evaluation with a series of lock
tests to demonstrate the scalability of our DLM and how
it efficiently deals with lock contention in Section 6.1. We
continue our analysis with two application based I/O bench-
marks. In Section 6.2, we test our DLM in structured data
access with the S3D combustion I/O benchmark. In Section
6.3, we demonstrate the performance of our DLM in un-
structured data access. Each data point was averaged over
3 runs.

We use numerous lock methods in our benchmarks and
define them as follows. Lustre refers to the Lustre file sys-
tem and its block-based caching and locking. no-lock refers

Acquire Lock No Contention - 64 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 10 20 30

Processes / Lock Servers

(a)

L
o

c
k

s
 /

 s
e

c datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

POSIX-one-try

POSIX-two-phase

Unlock No Contention - 64 Byte Offsets

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25 30

Processes / Lock Servers

(b)

L
o

c
k

s
 /

 s
e

c

datatype

list

POSIX

Figure 4: Lock tests without contention: (a) acquire and (b) unlock. Each client accesses locks within an 8
MB range.

Acquire Lock No Contention - 4096 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 10 20 30

Processes / Lock Servers

(a)

L
o

c
k

s
 /

 s
e

c datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

POSIX-one-try

POSIX-two-phase

Unlock No Contention - 4096 Byte Offsets

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25 30

Processes / Lock Servers

(b)

L
o

c
k

s
 /

 s
e

c

datatype

list

POSIX

Figure 5: Lock tests without contention: (a) acquire and (b) unlock. Each client accesses locks within a 512
MB range.

Lock Contention - 64 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 50 100

% of Lock Contention

(a)

L
o

c
k
s

 /
 s

e
c

datatype-alt-try

datatype-one-try

datatype-two-phase

Lock Contention - 64 Byte Offsets

500000

700000

900000

1100000

0 50 100

% of Lock Contention

(b)

L
o

c
k
s

 /
 s

e
c

list-alt-try

list-one-try

list-two-phase

Lock Contention - 64 Byte Offsets

0

20000

40000

60000

0 50 100

% of Lock Contention

(c)

L
o

c
k
s

 /
 s

e
c

POSIX-alt-try

POSIX-one-try

POSIX-two-phase

Figure 6: Lock tests with contention: (a) datatype, (b) list, and (c) POSIX. Each client accesses locks within
an 8 MB range.

Lock Contention - 4096 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 50 100

% of Lock Contention

(a)

L
o

c
k

s
 /

 s
e

c

datatype-alt-try

datatype-one-try

datatype-two-phase

Lock Contention - 4096 Byte Offsets

500000

700000

900000

1100000

0 50 100

% of Lock Contention

(b)

L
o

c
k
s
 /

 s
e
c

list-alt-try

list-one-try

list-two-phase

Lock Contention - 4096 Byte Offsets

0
10000
20000
30000
40000
50000
60000

0 50 100

% of Lock Contention

(c)

L
o

c
k
s
 /

 s
e
c

POSIX-alt-try

POSIX-one-try

POSIX-two-phase

Figure 7: Lock tests with contention: (a) datatype, (b) list, and (c) POSIX. Each client accesses locks within
a 512 MB range.

to the PVFS file system only doing I/O. POSIX-two-phase
refers to using the POSIX locking method with the two-
phase lock protocol. POSIX-one-try refers to using the
POSIX locking method with the one-try lock protocol. POS-
IX-alt-try refers to the using the POSIX locking method
with the alt-try lock protocol. Similar references are made to
list-two-phase, list-one-try, list-alt-try, datatype-two-phase,
datatype-one-try, and datatype-alt-try, respectively.

6.1 Lock Tests
Our lock tests study the locking performance of our DLM

directly. We first increased our clients and servers in a 1:1
ratio to see how lock performance scales when given a simple
noncontiguous access pattern. Each client attempts to ac-
quire and release 128K locks that are 1 byte long and offset
by 64 bytes in Figure 4, and 4096 bytes in Figure 5, respec-
tively. The benchmark begins with measuring the aggregate
acquire time (time for all processes to acquire all locks), bar-
riers, and then measures the aggregate release time (time
for all process to release all locks). The one-try and alt-try
lock protocols have identical performance when the locks are
non-overlapping and are represented by the one-try lock pro-
tocol in this test. Since we scale up the number of processes
with the number of servers in this test, a server has at most
128K locks in its interval tree since locks are equally divided
among the servers.

In Figure 4a, acquiring locks increases very rapidly and
then stagnates for all methods. Using the two-phase lock
protocol is worse for all lock methods due to the communica-
tion overhead associated with contacting each server in-order
4 times at 32 processes and servers (the client access pattern
spans 8 MBytes compared to a 2 MByte aggregate stripe size
with 32 servers). POSIX-one-try is very slow due to the sig-
nificant number of 128K lock requests to the lock servers.
Datatype-one-try reaches a maximum of 2,059,165 locks /
sec, a 51 times improvement over POSIX-one-try (40,532
locks / sec), and a 1.8 times improvement over list-one-try
(1,123,928 locks / sec). Lock acquiring cannot increase com-
pletely linearly in this test case due to datatype processing.
In our implementation, all servers which have some locks lo-
cally receive the same access pattern description. They must
process this access pattern to figure out which locks they are
responsible for. As the number of servers is increased, the
processing overhead increases since the access pattern pro-
cessing engine examines each region to sees if it is the owner.
While increasing the number of servers reduces the number
of locks per server in a given lock request (assuming uniform
distribution), the computational processing overhead is not
reduced, and therefore limits scalability.

In Figure 4b, we find that unlocking is almost linearly
scalable. We only show the unlock bandwidth from each
of the three basic lock methods since unlocking is not af-
fected by the acquire lock protocol. In a release request, the
server simply finds the matching lock request and removes
all locks in a linked list. Since the locks are in an inter-
val tree, keeping the tree balanced is bounded by O(lg(n)).
However, in most cases the balancing process is O(1), which
provides very good performance for unlocking. At its peak,
the datatype method unlocks 55,721,183 locks / sec with 32
clients and servers, which is 20 times faster than list lock-
ing and almost 3,000 times faster than POSIX locking. The
list and POSIX methods are slower since they keep track
of more lock requests. Each client using the list method

or POSIX method makes 8K unlock requests or 128K un-
lock requests, respectively. In comparison, clients using the
datatype method make a single unlock request.

In Figures 5a and 5b, we increase the range of the non-
contiguous access pattern by a factor of 64, which increases
the overhead for lock methods using the two-phase lock pro-
tocol. Since the two-phase lock protocol requires that locks
are acquired in-order, each process acquires 16 locks from
a server then must ask the next server for next 16 locks.
When the lock offset was 64 bytes, the two-phase lock pro-
tocol could acquire 1024 locks from a server, before moving
to the next server. In Figure 5a, all lock methods using the
two-phase lock protocol fare poorly in comparison to using
the one-try lock protocol. Again, since unlocking is not af-
fected by the lock protocol or the lock offset, the results in
Figure 5b are nearly identical to Figure 4b.

True lock contention is very rare in scientific applications.
As previously mentioned, most lock contention arises from
false sharing in other lock systems. Taking this into account,
we wanted to test true lock contention to understand how it
affected the various lock protocols. In Figures 6 and 7, we
kept the locks offset by 64 bytes and 4096 bytes, respectively,
and used 32 clients and 32 servers. The locks began with no
contention (lined up one after the other) and then overlap
each other at 25%, 50%, 75%, and 100% (full overlap) in-
tervals. Each of the graphs has a different scale for clarity.
Datatype-alt-try outperforms the other methods with up to
2,062,079 locks / sec in Figure 7a. Using the alt-try lock pro-
tocol enables close to full locking bandwidth at all levels of
contention. Datatype-one-try and datatype-two-phase sig-
nificantly drop in lock bandwidth as lock contention reaches
100%, since they must contact the servers multiple times
using the slower two-phase protocol. The difference is more
pronounced in Figure 7a since the two-phase lock protocol
has increased the number of server rounds due to the larger
lock offset. List locking is fairly effective in both list-alt-
try and list-one-try. List-two-phase does not fair as well, at
about a constant 1

3
drop in performance. POSIX-based lock

methods react poorly to increasing lock contention in both
the 64 byte and 4096 byte offset cases.

In summary, these lock tests demonstrate how our hybrid
lock protocols with list locking and datatype locking provide
a large performance increase over a naive POSIX-two-phase
method in both overlapping and nonoverlapping cases. In
particular, the alt-try lock protocol with the datatype lock
method improves performance by an order to two orders of
magnitude over the naive locking method.

6.2 S3D I/O Benchmark
S3D is a parallel direct numerical simulation (DNS) solver

designed at Sandia National Laboratories [30]. S3D solves
the full compressible Navier-Stokes, total energy, species and
mass continuity equations coupled with detailed chemistry
and is based on a high-order accurate, non-dissipative nu-
merical scheme. S3D writes checkpoint files at periodic in-
tervals which also are used for post-processing in the anal-
ysis phase. The three-dimensional Cartesian mesh points
of solved variables constitute most of the checkpoint data,
which is also in a three-dimensional array. A majority of the
checkpoint data is useful during the analysis phase. Since
data analysis is an iterative process, the checkpoints are
likely to be revisited periodically. Each aggregate check-
point stores four global arrays, which represent mass, veloc-

S3D I/O Benchmark

0

20

40

60

80

100

120

140

0 20 40 60

Processes

(a)

I/
O

 B
a

n
d

w
id

th

datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

posix-one-try

posix -two-phase

no-lock

Lustre

S3D I/O Benchmark

0

20

40

60

80

100

120

0 20 40 60

Processes

(b)

I/
O

 %
 o

f
S

in
g

le
 W

ri
te

r

datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no-lock

Lustre

Figure 8: (a) Raw I/O bandwidth. (b) I/O bandwidth as a fraction of single writer I/O time.

ity, pressure, and temperature, respectively. The mass and
velocity arrays are four-dimensional and the pressure and
temperature arrays are three-dimensional. All four arrays
have the same dimensionality for the lowest three spatial di-
mensions X, Y, and Z. The XYZ dimensions of all arrays are
partitioned in the same block-block-block fashion among the
MPI processes. The fourth dimension sizes of the mass and
velocity data are 11 and 3, respectively, and are not parti-
tioned. The S3D benchmark only performs the checkpoint
writes of the S3D code. When a single process is used for
checkpointing, its writes are contiguous. As we increase the
number of processes for checkpointing, the aggregate data
size of approximately 1.19 GBytes remains constant, which
makes the access pattern more noncontiguous and reduces
the size of each individual write. Smaller writes are a chal-
lenging problem for file systems since hard drives prefer large
I/O sizes.

The original S3D application uses Fortran I/O, where each
process writes its own sub-arrays to an individual file dur-
ing each checkpoint. While this is typically very fast due to
large contiguous I/O calls to non-shared files, it creates a
file management problem with an increased number of pro-
cesses. Additional problems include the requirements that
post-processing techniques must access all the individual
files and restarts must use the same number of processes.
We added an I/O implementation using the MPI-IO API
to write the arrays to a shared file in their canonical or-
der. With this change, there is only one file created per
checkpoint, no matter how many MPI processes are used,
reducing the data management problem. In this test, we try
all our lock methods as well as a no-lock method for under-
standing lock overhead costs. We also compare our single
writer normalized results against the Lustre file system to
look at false sharing costs (these writes are not aligned to
the file system block size). Since the writes are not over-
lapping, we represent the one-try and alt-try lock protocols
with one-try in these tests.

In Figure 8a, we show the overall I/O bandwidth with
varying numbers of processes. As expected, as the number
of processes increases, overall I/O bandwidth decreases for
all methods. Lustre performance begins well with one client
since the writes are contiguous and not shared. Then, since
the writes are not aligned to the block size, caching and
locking overheads reduce performance significantly as the
number of processes increases. The POSIX locking method
fairs poorly as well due to the large number of lock requests

S3D I/O Benchmark

0

20

40

60

80

100

120

0 20 40 60

Processes

%
 o

f
M

a
x

im
u

m
 I

/O
 (

n
o

-l
o

c
k

)

datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

posix-one-try

posix-two-phase

Figure 9: % of I/O bandwidth compared with no
locking.

to the server. The list and datatype locking methods fair
better with their reduced locking overheads.

In order to make a trend comparison of the Lustre block-
based caching and locking methods to our byte-ranged based
locking, we normalized the I/O bandwidth as a % of the
single write performance in Figure 8b. Most of the lock
methods increase slightly from 8 to 16 processes, but fall
slightly after that due to the noncontiguous file regions get-
ting smaller and less efficient for the file system. The op-
timistic locking round in the one-try lock protocol makes
a noticeable performance improvement over the two-phase
lock protocol. The performance trend for Lustre is a large
drop due to its false sharing and associated overheads.

Our final chart in Figure 9 examines the lock overhead
of our DLM compared to the I/O bandwidth. POSIX-one-
try can, at best, achieve approximately 35% of the no-lock
bandwidth due to a large number of lock requests. From
8 to 64 processes, datatype-one-try maintains between 76%
to 100% of the maximum I/O bandwidth. List-one-try also
keeps I/O bandwidth between 73% to 100% from 8 to 64
processes.

6.3 S3aSim
With the exponential growth of biological sequence databases,

parallel sequence-search has recently become a hot topic in
computational biology. Tools such as mpiBLAST [12], pi-
oBLAST [22], TurboBlast [4], and many others, are helping
scientists understand similarities between newly discovered

S3aSim

0

50

100

150

200

250

0 20 40 60

Processes

(a)

T
o

ta
l

T
im

e
 (

s
e

c
s

)

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no-lock

Lustre

S3aSim

0

5

10

15

20

25

30

0 20 40 60

Processes

(b)

I/
O

 T
im

e
 (

s
e

c
s

)

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no-lock

Lustre

Figure 11: (a) S3aSim total execution time from 2 - 64 processes. (b) S3aSim I/O time from 2 - 64 processes.

>gi|3123744|dbj|AB013447.1|AB013447
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi|221778|dbj|D00026.1|HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATG

>gi|7328961|dbj|AB032155.1|AB032154S2
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>Perilla Frutescens CDS 0001
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Queries

Worker nodes

Figure 10: An illustration of database segmentation.

DNA or amino-acid sequences and those in known nucleotide
or protein databases. Search results may provide estimates
on the evolution distance in phylogeny reconstruction, per-
form genome alignments, and predict the structure and func-
tion of new sequences. Most of these parallel sequence tools
have a master-worker architecture and use the database seg-
mentation technique (illustrated in Figure 10) to partition
searches between worker processes. In order to provide a
powerful tool that could alter input parameters and vary
I/O algorithms to optimize future search tools, S3aSim, a
sequence similarity search algorithm simulator, was devel-
oped [10]. S3aSim uses a variety of input parameters such
as the database fragment size, box histograms for the input
queries and database sequence sizes, variable computational
algorithms, and multiple I/O algorithms.

Our tests were configured based on the NT database char-
acteristics from NCBI [26] with a minimum sequence length
of 6 bytes, a maximum sequence length of slightly over 43
MBytes, and a mean sequence length of 4401 bytes. We sim-
ulated the search of 20 input queries against 128 database
fragments, all with the NT database characteristics. Any-
where between 1000 to 2000 results were pseudo-randomly
generated per query and written to file (after the entire
query had been completely searched) with MPI File write()
and then forced to disk with MPI File sync(). The results
generated are consistent and are not dependent on the num-

ber of worker nodes. Each test run produced an aggregate
208 MBytes of output data. We used between 2 - 64 pro-
cesses in our tests. With only 2 processes, there is a master
process and a single worker process, therefore, the worker is
writing contiguous data to file. When there are more worker
processes writing, the data is noncontiguous and unstruc-
tured with varying result sizes and counts. Since the data
is unstructured, we do not use the datatype locking method
as it breaks down to list locking. Additionally, since the
data access is nonoverlapping, the one-try lock protocol and
alt-try lock protocol have identical performance, hence we
represent both lock protocols with the one-try lock protocol.

In Figure 11a, we look at the scalability of total execution
time. The total execution time falls as the number of pro-
cesses is increased due to the embarrassingly parallel com-
putation. As the number of processes reaches 32, however,
the curve flattens out and Lustre starts to increase due to its
increasing I/O burden. The Lustre block-based caching and
locking has increased false sharing as more processes share
file access. The isolated I/O times are shown in Figure 11b.

In Figure 12a, we examine I/O time as a percentage of
total execution time. Lustre begins at about 3% when a
single worker process is writing to the file. However, as the
number of processes increases, the Lustre I/O % increases
sharply up to 4 processes and rises up to 68% at 64 processes.
The lock methods implemented in our DLM all stay below
11%, rising much slower than Lustre.

In Figure 12b, we check the locking overhead of our atomic
operations with respect to I/O times. When there is only
a single worker, the lock overhead is practically negligible
since it is a single contiguous lock and a large amount of I/O.
However, as the number of processes increases, the amount
of I/O per worker decreases rapidly and becomes more non-
contiguous. For instance, results that may have been con-
tiguous on one worker are now split into two. Therefore, the
overall I/O time increases due to smaller I/O requests, which
causes the locking overhead to be a smaller % of overall I/O
time. In the best case (excluding one worker), list-one-try
stays between 70 % to 87% of peak I/O performance, a rea-
sonable overhead for atomicity.

7. CONCLUSION & FUTURE WORK
In this paper, we have presented a novel DLM approach

with true byte-range locking using hybrid lock protocols in
combination with highly descriptive lock methods to im-

S3aSim

0

10

20

30

40

50

60

70

0 20 40 60

Processes

(a)

I/
O

 %
 o

f
T

o
ta

l
T

im
e

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no lock

Lustre

S3aSim

20

40

60

80

100

120

0 20 40 60

Processes

(b)

%
 o

f
M

a
x

im
u

m
 I

/O
 (

n
o

-l
o

c
k

)

list-one-try

list-two-phase

posix-one-try

posix-two-phase

Figure 12: (a) S3aSim I/O time as a % of total execution time from 2 - 64 processes. (b) S3aSim % of I/O
bandwidth compared to no locking from 2 - 64 processes.

prove atomic noncontiguous I/O performance. We have
shown that this fusion of techniques can improve locking
throughput up to between one to two orders of magnitude
in performance and maintain a low overhead in achieving
atomicity for noncontiguous I/O operations. Additionally,
we have shown the benefits of eliminating false sharing with
our byte-range granular approach in a comparison with a
block-based locking system. Our application benchmarks
showed that in most cases, the list or datatype lock meth-
ods in conjunction with our optimistic lock protocol exhib-
ited the best performance.

There are many areas where we would like to further ex-
plore this work. First of all, an open problem is how to
handle failure on clients or servers. While timeout solutions
have been proposed to handle client failures, server failures
remain an issue. We are investigating the persistent storage
of locks as a possible method for resolving this problem. An-
other area for study is how to best use these lock techniques
for supporting the atomic mode for nonblocking, noncon-
tiguous I/O operations efficiently. At present, we are not
aware of any support for an atomic mode for nonblocking,
noncontiguous I/O operations even though they are part of
the MPI-IO specification.

8. ACKNOWLEDGMENTS
We would like to thank our shepherd, Dr. Frank Mueller,

for his guidance. This work was supported in part by DOE’s
SCiDAC program (Scientific Data Management Center) un-
der award number DE-FC02-07ER25808, the Mathemati-
cal, Information, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under
Contract DE-AC02-06CH11357, the NSF/DARPA ST-HEC
program under grant CCF-0444405, NSF HECURA CCF-
0621443, the NSF NGS program under grant CNS-0406341,
and the DOE HPCSF program.

9. REFERENCES
[1] P. Aarestad, A. Ching, G. Thiruvathukal, and

A. Choudhary. Scalable approaches for supporting
MPI-IO atomicity. In Proceedings of the IEEE/ACM
International Symposium on Cluster Computing and
the Grid, May 2006.

[2] S. J. Baylor and C. E. Wu. Parallel I/O workload
characteristics using Vesta. In Proceedings of the

IPPS ’95 Workshop on Input/Output in Parallel and
Distributed Systems, pages 16–29, April 1995.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[4] R. Bjornson, A. Sherman, S. Weston, N. Willard, and
J. Wing. TurboBLAST(r): A parallel implementation
of BLAST built on the TurboHub. In Proceedings of
the International Parallel and Distributed Processing
Symposium, 2002.

[5] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P.
Eastwood, B. A. Gregersen, J. L. Klepeis,
I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K.
Salmon, Y. Shan, and D. E. Shaw. Molecular
dynamics—scalable algorithms for molecular dynamics
simulations on commodity clusters. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 84, New York, NY, USA, 2006.
ACM Press.

[6] M. Burrows. Chubby distributed lock service. In
Proceedings of the 7th Symposium on Operating
System Design and Implementation, OSDI’06, Seattle,
WA, November 2006.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In Proceedings of the 7th Symposium
on Operating System Design and Implementation,
OSDI’06, pages 205–218, Seattle, WA, November 2006.

[8] A. Ching, A. Choudhary, W. K. Liao, R. Ross, and
W. Gropp. Noncontiguous I/O through PVFS. In
Proceedings of the IEEE International Conference on
Cluster Computing, September 2002.

[9] A. Ching, A. Choudhary, W. K. Liao, R. Ross, and
W. Gropp. Efficient structured data access in parallel
file systems. In Proceedings of the IEEE International
Conference on Cluster Computing, December 2003.

[10] A. Ching, W. Feng, H. Lin, X. Ma, and A. Choudhary.
Exploring I/O strategies for parallel sequence
database search tools with S3aSim. In Proceedings of
the International Symposium on High Performance
Distributed Computing, June 2006.

[11] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A.
Reed. Input/output characteristics of scalable parallel

applications. In Proceedings of Supercomputing ’95,
San Diego, CA, December 1995. IEEE Computer
Society Press.

[12] A. Darling, L. Carey, and W. Feng. The design,
implementation, and evaluation of mpiBLAST. In
Proceedings of the 4th International Conference on
Linux Clusters: The HPC Revolution, 2003.

[13] J. M. del Rosario, R. Bordawekar, and A. Choudhary.
Improved parallel I/O via a two-phase run-time access
strategy. In Proceedings of the IPPS ’93 Workshop on
Input/Output in Parallel Computer Systems, pages
56–70, Newport Beach, CA, 1993. Also published in
Computer Architecture News 21(5), December 1993,
pages 31–38.

[14] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C.
Ward, M. Giampapa, M. C. Pitman, and R. S.
Germain. Molecular dynamics—blue matter:
approaching the limits of concurrency for classical
molecular dynamics. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing,
page 87, New York, NY, USA, 2006. ACM Press.

[15] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes,
M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, and
H. Tufo. FLASH: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes.
Astrophysical Journal Suppliment, 131:273, 2000.

[16] HDF5 home page. http://hdf.ncsa.uiuc.edu/HDF5/.

[17] IEEE/ANSI Std. 1003.1. Portable operating system
interface (POSIX)–part 1: System application
program interface (API) [C language], 1996 edition.

[18] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune,
and R. Samtaney. Grid-based parallel data streaming
implemented for the gyrokinetic toroidal code. In SC
’03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, page 24, Washington, DC, USA,
2003. IEEE Computer Society.

[19] R. Latham, W. Gropp, R. Ross, R. Thakur, and
B. Toonen. Implementing MPI-IO atomic mode
without file system support. In Proceedings of the
IEEE Conference on Cluster Computing Conference,
September 2005.

[20] J. Li, W. K. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Sigel, B. Gallagher, and
M. Zingale. Parallel netcdf: A high-performance
scientific I/O interface. In Proceedings of
Supercomputing, November 2003.

[21] W. K. Liao, A. Ching, K. Coloma, A. Choudhary, and
L. Ward. An implementation and evaluation of
client-side file caching for MPI-IO. In Proceedings of
the International Parallel & Distributed Processing
Symposium, March 2007.

[22] H. Lin, X. Ma, P. Chandramohan, A. Geist, B.-H.
Park, and N. Samatova. Efficient data access for
parallel blast. In Proceedings of 19th International
Parallel and Distributed Processing Symposium, 2005.

[23] Lustre. http://www.lustre.org.

[24] Message Passing Interface Forum. MPI-2: Extensions
to the message-passing interface, July 1997.
http://www.mpi-forum.org/docs/docs.html.

[25] D. Nagle, D. Serenyi, and A. Matthews. The panasas
activeScale storage cluster - delivering scalable high
bandwidth storage. In Proceedings of the 2004

ACM/IEEE Supercomputing Conference, November
2004.

[26] NCBI. National center for biotechnology information.
http://www.ncbi.nlm.nih.gov/.

[27] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé.
NAMD: biomolecular simulation on thousands of
processors. In SC ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages
1–18, 2002.

[28] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and
A. Koniges. MPI-IO/GPFS, an Optimized
Implementation of MPI-IO on top of GPFS. In
Proceedings of Supercomputing, November 2001.

[29] ROMIO: A high-performance, portable MPI-IO
implementation. http://www.mcs.anl.gov/romio.

[30] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and
C. K. Law. Direct numerical simulations of turbulent
lean premixed combustion. Journal of Physics:
Conference Series, 46:38–42, 2006.

[31] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proceedings of
the Conference on File and Storage Technologies, San
Jose, CA, January 2002. IBM Almaden Research
Center.

[32] R. Thakur, W. Gropp, and E. Lusk. On implementing
MPI-IO portably and with high performance. In
Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems, pages 23–32, May
1999.

[33] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani:
a scalable distributed file system. In SOSP ’97:
Proceedings of the sixteenth ACM symposium on
Operating systems principles, pages 224–237, New
York, NY, USA, 1997. ACM Press.

