NORTHWESTERN UNIVERSITY

Microarchitectural Approaches for Optimizing Povaeid Profitability in
Multi-core Processors

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical Engineering and Computer Sceenc

By

Abhishek Das

EVANSTON, ILLINOIS

October 2010

Copyright © 2010, Abhishek Das

All Rights Reserved

ABSTRACT

Microarchitectural Approaches for Optimizing Powaerd Profitability in Multi-core

Processors

Abhishek Das

Chip multiprocessors (CMPs) or multicore processnstinue to have increasing
core-counts with advances in process technologyis Thore-core-per-die trend
introduces several concerns which need to be askehteby architects. This thesis
addresses two such important concerns: (i) profitln the manufacturing process,
and (i) power-efficient computing. Firstly, manafaring variations/defects is
becoming more prominent with technology scaling &ad a direct impact on chip
power and performance. Because of process vargtidnps from a single batch are
rated by different frequencies and sold at differpnices. An efficient binning
distribution thus decides the profitability of thkeip manufacturer. Similarly, variation-
aware supply voltage assignment to cores opensheppossibility of extra power
savings. The first part of this thesis propose®harchitectural schemes that result in

efficient speed binning, hence impacting the padbiiity of chip manufacturers. The

power problem is dealt by customizing voltage-idam a multicore chip in such a way
that both leakage and dynamic power dissipatioadsiced.

The second part of the thesis addresses the nmeltmmwver problems with respect
to on-chip interconnection network. The latter litaies the active sharing of data on
chip and already consume a large fraction of thg’'shpower, and the rapidly
increasing core counts in future technologies ertggravate the problem. This thesis
proposes Power-Aware Directory Placement (PAD), @veh distributed cache
architecture that co-locates directories togethdh wvhighly active sharers of the
corresponding data, thereby eliminating a largetioa of the on-chip interconnect
traversals. Results demonstrate that such a scltamesignificantly reduce on-chip

interconnect power with negligible hardware ovetheand small performance

improvement.

Acknowledgements

First and foremost | would like to thank my pringipadvisor Professor Alok
Choudhary, not only for motivating and directing mggearch, but providing me with
ample opportunities and flexibility to expand myeras a graduate student. Secondly, |
would like to acknowledge the valuable advice anddgnce of my co-advisor
Professor Gokhan Memik, who owes much credit irpsttaup this thesis. | would also
like to thank Professor Nikos Hardavellas and Pasde Joseph Zambreno (lowa State
University) for their collaborations during the tdew years, and for serving on my
Final Examination committee. Lastly, | would be hgent if | didn’t mention the
support of my father Professor Ramtanu Das and mthen Krishna Das, who have
provided me with encouragement and support dunnegyestep of this journey.

This thesis work was supported in part by NSF graGCF-0916746, CCF-
0747201, CNS-0830927, CNS-0551639, 11S-0536994, BIRE CCF-0621443, OCI

0956311, OCI 0724599, and SDCI OCI-0724599.

Table of Contents

A [0 O PP 3
F o L0111 T=To o =T 0 =T o | £ 5
TabIE Of CONENTS ... e e 6
Table Of FIQUIESottt e e 8
Table Of TADIESuiiiiiiieeee e 11
Chapter 1 INtrOAUCTIONeiii et e e e e e e e e e e e e eeeeeeeeannes 12
Chapter 2 Background and Related WOrK ... oeiieeiiiiiiiiiiiiiii e 18

Chapter 3 Mitigating the Effects of Process Vaoas: Profitability ..27_Toc275532607

3.1 The Substitute Cache SChEME.......... e 29
3.2 Cache ReSIZING SCNEMESuuuiiii e 34
3.3 Modeling Process Variation and Speed Binninghid@ology.............cccccevvvneee. 43
3.4 EXPerimental RESUILSuuiiii et e e e 50
3.5 SUMMIATY et e ettt e e e e e remm e e e e eennaanns 59
Chapter 4 Mitigating the Effects of Process Vaoias: Power in CMPS....................... 61
4.1 Multiple Voltage Island Scheme: Methodology.............uueiiiiiiiiiiiiiiiiiiiiiiiiiins 62
4.2 Modeling Power Optimization............. e eeeeeeeiiiiiiiinnae e e e e eeeeeeeeeeees 66

4.3 Experimental RESUILScooo oot eeeeeeeeeeeees 68

A4 SUMMAIY ...ttt e ettt e e e e e e e et e e e e eeeat e e e e eeeebaa s e eeeesbmmmnnn e aeeeennnnnnns 70
Chapter 5 Power due to On-Chip INtErCONNECE . ceieeeeeiiiiiiiiiiiiie e 72
5.1 Background on NUCA CacChesuuuiiiiiiniiiiiiiiieeii e 75
5.2 Overview of Power-Aware Directory PlacementBA...........coeiiiiiiiiiiiiiiinnnn, 80
5.2.1 Experimental Methodologyuuuuiieeiieiiiiiieee e 80
5.2.2 Analysis of Sharing PatternsS........cccccceoivvieiiiiiiiiiecee e 81
5.3 Power-Aware Directory Placement: In Detailcccoooveeiiiiiiiiiiiiiiiiiiinnns 85.
5.3.1 Operating SYStemM SUPPOITccoi i eeeeeeeeciree e 86
5.3.2 DISCUSSION ...ttt ettt e e e e e e e e e e e e e e e s s 87
5.4 EXPerimental RESUILSuuiiii et e e e e 88
Y0 300 N \V 111 g T To (0] (o o | RPN 88
5.4.2 First Touch Directory Placemento ooeeeeeeeeeeeeeieeeeeeiiieiiiiiaas 89
5.4.3 Distribution of Directory Entries ACross BIe..........oooevviiiiiiiiiiiiiiiiieieeeee, 90
5.4.4 ENEIQY SAVINGS ..oeiiiiiiiiiiinnnens s esssssasssaaaeeaeaaaaaaeeesesssssrnnnnnsssssnns 92
5.4.5 Performance IMPACT............uuuuuuimmmmmmmeeae e 93
5.5 SUMMATY .o e ettt e e e e e e nm e e e e e ennnanns 95
Chapter 6 CONCIUSIONScoiiiiiiiiiiiitmmmmmn e e e eeeeeeteti s e e e e e e e e e e e e aeeeeeeeeeeeeeeseeees 97

(=11 0] [ToTe | =1 o] o 2N P 99

Table of Figures

Figure 3.1. Speed binning in MOdern ProCeSSAIS. caeivviieeeeeeeeeeeeeeeeeiiiinea e 28
Figure 3.2. Distribution of processor critical patbh modeled architectural units. 28
Figure 3.3. One cache way of a 32KB 4-way set aatoe L1 cache with Substitute
Cache. Column muxes are shaded as they seledrolat® inputs as opposed to 8
1] 10 £ PSP 32
Figure 3.4. The mapping of indexes to word lingsMdVS. Straddled blocks show the
lines disabled by the “resize enable” Signal....cc......cccoooeeiiiiiiiiiiiiiiie 38

Figure 3.5. Post-decoder implementation for chamgfie index to word-line mapping.

Figure 3.6. Performance results for OWS schemeth&EPEC2000 applications...... 42
Figure 3.7. Performance results of MWS schemeth®dSPEC2000 applications.42
Figure 3.8. A single cache way for a 4-way sete@issioe L1 cache............cccceevvnnnees 45
Figure 3.9. Monte Carlo SPICE simulation framework.............ccccoevvvvvviiciiinnnnennn. 6.4
Figure 3.10. Normalized leakage and delay distiiibuscatter plot for simulated chips

showing the binning for 5-bin strategy. BO throlghrepresent the bin numbers

from lowest to highest freqQUENCY.cooveeeeeeiiiee e, 49
Figure 3.11. Binning with 5-bin strategy for MWS............ccccoeeiiiiiiiiieeeeeeeeeeeeeiiee 52
Figure 3.12. Binning with 5-bin strategy for OWS............cviiiiiiiiiiieeeeeeeeeeeeeiiies 52

Figure 3.13. Binning with 5-bin strategy for SCu...cccovviiviiiiiiiiie e, 52

Figure 4.1. Various voltage island SChemMES. o eee.veviiiiiiiie s 64
Figure 4.2. Optimum voltage for different voltagéands given as a function (h) of
E= =] [Y2 PP URUUURPPPUPPTTPPPRPRRN 65
Figure 4.3. An example latency distribution curg@)].cccoooveeriiiiiiiiiiiiiiiims 65
Figure 4.4. Power savings for 1, 2, 4, 8 and 16agd islands for (a) = 0.3, (b)e =
0.5aNd (CJp = 0.7+ oottt ee e DO
Figure 5.1. Baseline tiled architecture of a 16ecGMP. Each tile has core, split I/D
[2= o o o [=Tod (0] V] Lo = 76
Figure 5.2. (a) Sequence of on-chip network messtalewing a request by tile 7 for a
block owned by tile 1, with its directory at tile ®) The same when the owner tile
1 also holds the direCtory eNtry.eccc i 77

Figure 5.3. Access sharing pattern at the blockllbased on number of sharers per

Figure 5.4. Accesses breakdown by off-chip andldp-accesses.ccccceevivveeennnenn. 83
Figure 5.5. Access sharing pattern at the page bes=d on number of sharers per

0220 [P PPPT 84
Figure 5.6. Effectiveness of the first-touch dicggtplacement policy....................c.. 89
Figure 5.7. Distribution of directory entries faages across tiles under the first-touch

PlACEMENT POIICY. .o e e e e e e e e e e e 90

10

Figure 5.8. On-chip network energy savings obtaimgtlock-grain and page-grain

Figure 5.9. Reduction of network control messagesreed by PAD with respect to

BaS NG .. e 93

Figure 5.10. Speedup of PAD over the baseline wiXJCA architecture................. 94

11

Table of Tables

Table 3.1. Nominal ando3variation values for each source of process vanat

[aToT6 =1 [=To [T PP PP UPPRRPP 46
Table 3.2. Increase in revenue for various SC gomfitionSccccevvvveeeeeeeeeeenn. 56.
Table 3.3. Increase in batch performance for varmache-architectures..................... 58
Table 5.1. Description of WOrkloads.ccceeeuviiiiiiiiiiiiiiee e 79

Table 5.2. System parameters for the simulateddvemrk.ccceeeviiviiiiiininnnn, 79

12

Chapter 1

Introduction

As the number of transistors on a chip doublesyegghteen months according to
Moore’s Law, power and reliability of has become thost important concern for the
microprocessor designers. The reason is two-foidst, f the shrinking process
technology (32nm and beyond) has caused what iedcalrocess variations or
fluctuations in manufacturing process parameteesaBse of such process variations, a
chip can have high latency or excessive leakageepalgsipation, which can lead to
yield loss. Secondly, because of frequency scahlitly every technology generation,
the power (both leakage and dynamic) dissipaticregses exponentially and gives rise
to the phenomenon called ‘power wall’. Technologglg produces no more benefits
at this point. To handle this problem chip manufeets have started fabricating
multiple processing cores on the same silicon anel hence these are known as chip
multi-processors or CMPs. Furthermore to ensurectffe communication between
multiple communicating cores an on-chip interconioecnetwork is used. However,

recent work shows that such an interconnectionidatan dissipate up to 23% of the

13

chip power [39]. Thus, optimizing on-chip intercection power can contribute to the
lowering of the overall processor power budget.
In this thesis we cover both these problem nambit bf reliability and power.
Particularly, we focus on process variation-toleramd power-aware multi-core
architectures. The following paragraphs discussati/e mentioned problems in detail
and propose microarchitectural and system leveiti®ois which try to solve each.
Reliability and Process Variations: As transistors are reduced in size, it
becomes harder to control variations in device ipatars such as channel length, gate
width, oxide thickness, and device threshold vatabhese fluctuations in the process
parameter distributions or simply process varigiaause increased variability in
circuit performance and are likely to be more daminn sub-90 nm domain. Even in a
relatively mature technology like 130 nm, theseiataons are known to result in as
much as 30% decrease in maximum frequency and 5086Péase in leakage power
[18]. For newer technologies, these variations lsareven higher: 20-fold increases in
leakage have been reported for 90nm [9]. Procesatims consist of With-in-Die
(WID) and Inter-Die or Die-to-Die (D2D) parameteanations. As a direct impact of
this, a chip may under-perform or turn out to bakier than a certain threshold and
hence may be eventually dropped resulting in affecgield loss. A common practice
to remedy the effects of process variations is dijieening (Figure 3.Error!

eference source not found. Speed-binning is usually performed by testinghea

14

manufactured chip separately over a range of freqyuéevels until it fails. As a result
of the inherent process variations, the differaoicpssors fall into separate speed bins,
where they are rated and marketed differently. phigess helps the chip manufacturer
create a complete product line from a single design

In contrast to speed-binning, architectural changesde for performance
enhancements are generally analyzed by considé@sngffects on high-level metrics
such as instructions-per-cycle (IPC) and/or cyrteet However, because of the effects
of process variations, different chips can havderght post-fabrication frequencies
irrespective of the changes made. Hence IPC aruk dgcle are not enough to judge
the effects of an architectural modification on tmerformance of a whole batch of
chips. As a result, we need to establish new ngetiben the process variations are
considered. Chip yield is one obvious metric, as ¢bntinuing downward scaling of
transistor feature sizes has made fabrication dereably more difficult and expensive
[46, 49, 52]. However, an approach that optimizdslg for yield, would not take into
account the fact that CPUs concurrently manufadtursing a single process are
routinely sold at different speed ratings and wideor example, from a manufacturer’'s
perspective, having a 20% yield where the chipstad GHz frequency may be more
desirable than having a 50% vyield where the pracedsave 1.0 GHz maximum clock
frequency. In this thesis, we show that changireylimning distribution can actually

impact the revenue of a company and add to thetgbdity of the chip manufacturer.

15

We also propose a new metric called batch-perfocemdBP) that corresponds to the
average performance of the batch of chips manuledtusing a given architecture,
therefore captures the distribution of chips ad aglthe chip yield. The first part of the
thesis proposes several microarchitectural schéhatoptimizes for both revenue and
BP and draw a comparison between the two.

Impact on power dissipation in CMPs: CMPs arelditest trend in chip industry. With
process technology advancements, multiple coredastedown on the same die to
exploit parallelism in applications and providetieg performance. Just like their single
processor counterparts, CMPs are no exceptions wipect to D2D and WID
variations. In fact, in CMPs, the problem of paréeneariability is more acute because
rampant WID variations may result in core-to-co@2C) variations [28]. As a result,
the performance of some cores drop beyond the &eghézvel and a nominal frequency
of operation is chosen to be equal to the frequaridire slowest core. Besides, D2D
variations also cause chips to differ from eaclentbinder such circumstances, having
a single vdd level for all the manufactured chipgpower-inefficient, since there are
significant variations between chips manufacturethe same batch. Intuitively, power
savings can be achieved by setting a customizedfddeach chip, or a set of cores in a
chip thus forming one or more voltage islands. Thissis report covers schemes that

can result in dynamic power savings under procasations in CMPs.

16

Power due to on-chip interconnects in CMPs: With aggressive technology
scaling the core-count within a single die increaseading to increase the last-level on-
chip cache (LLC). With increasing cache size tbgetwith increasing input data size
the cache access latency increases exponentiadlyremedy this latency problem
multicore designers have proposed non-uniform cachkitectures (NUCA) whereby
the LLC is distributed and each core has a loceheaslice which it can access with
lower latency compared to a remote cache slicecadsd with another core. To
maintain data coherence for such a private NUCAheagrganization a chip-wide
global directory is maintained to keep track of twherence information. Hence any
request by a tile to access a block of shared iddtawarded to this chip-wide global
directory, which for most cases is located in aotmnitile. Such a request messages to a
remote tile will generate on-chip network traffitih in turn contributes to the overall
active power dissipation.

In this work we analyze such data access pattemshfared and private data in
such a tiled architecture. We observe a largeimaaif the on-chip interconnect power
is spent on the control messages sent to the digebbr data coherence, which is a
consequence of the static dependence of the diyelctcation on the physical address
of a block. Moreover, this work proposewer-Aware Directory Placement (PAD)
scheme that tries to reduce the network messages-lcating a directory slice with

the requesting core or one of the cores which @pdies in data sharing. Results from

17

trace and timing simulations show considerable sdop reducing the total number of
network messages, which has an impact on the dwhigl power. The implementation
and evaluation of the proposed scheme are presentied latter half of the thesis.

The rest of the Ph.D. thesis is organized as falo@hapter 2 discusses the
background and related work in the areas of powwt eeliability in processor
architecture. The cache-resizing and cache-reduydachemes for efficient speed-
binning and batch-performance and revenue optimizadre described in Chapter 1.
Chapter 1 discusses voltage-island schemes for mpawduction in multicore
processors. Chapter 1 describes the Power-WaeetDiy co-location scheme on-chip
interconnection power reduction. Finally, Chaptecahcludes the thesis and suggests

research directions which can be pursued in thedut

18

Chapter 2

Background and Related Work

Power and variability in integrate circuits has hextensively studied. In this
chapter, we present brief overviews of the priorkgothat are proposed to mitigate
effects of parameter variations and reduce on-guwer dissipation, ranging from
architectural to circuit-level techniques.

Cache Redundancy schemes for increasing reliability

Several cache redundancy schemes have been profddse82, 48, 66, 68].
These techniques have been/could be used to reteceritical delay of a cache.
Victim caches [32] are extra level of caches usedidld blocks evicted from a CPU
cache due to a conflict or capacity miss. A subtgtitache storing the slower blocks of
the cache is orthogonal to a victim cache, whicinest blocks evicted from the cache.
Sohi [68] shows that cache redundancy can be wspeevent yield loss, using a similar
concept to our proposed SC. Shivakumar et al. iGBpduce a new yield metric and
propose the utilization of redundant structurestvease it. Similarly, techniques like
sparing DRAMS and Chipkill are used in Sun’s UliP#8RC T1 processor [10]. Cache

redundancy is also present in commercial procedgasitanium, which uses extra

19

banks to improve fault tolerance [48]. Finally, Rmmescu et al. [60] propose
prefetching data into fast buffers to address F®a4riations in L1 caches as well as
prioritizing critical instructions to utilize fastegisters/functional units. Compared to
these alternatives, our SC scheme introduces amadily lower cost in terms of area
and latency.

Circuit level techniques:

Previous works show that several circuit-level teghes could be adopted to
counter the negative effects of process variatjend5, 18, 54, 58, 68]. The inter- and
intra-die process variations and their effects moud leakage is studied in detail by
Rao et al. [57]. In another work, Rao et al. [56algze the impact of process variations
on circuit leakage and propose methods to reduaa.tMost of these techniques focus
on analyzing the design statistically or by usingtis timing analysis, and then
modifying the parts of the circuits that are massceptible to variations. Liang et al.
have proposed a variation-tolerant 3 transistatjotle on-chip dynamic memory as a
substitute for the traditional 6 transistor SRAM J4Many gate-sizing strategies have
been used on the critical or near-critical regiofighe circuit in order to reduce the
effective latency [17, 79]. Although these techmiguncrease the overall yield, no
analysis of the impact on binning has been done.

Performance binning has also been discussed aamsifa increasing yield [9, 18, 58].

Datta et al. [18] propose a novel approach of cimanthe effective speed-binning by

20

gate sizing, and thus increasing the profit. Unkike schemes, most of their analyses
are based on statistical estimations of yield, #red optimizations are for high-level
synthesis. Kim et al. [37] have studied the effedtsache size on leakage and analyzed
the tradeoff on access time when multiple threshvoltages are used for L1 and L2
caches. In contrast, we perform the replicatiomhivitthe cache and also present a
detailed implementation.

Variation-tolerant architectural schemes:

Ozdemir et al. [52] present microarchitectural sebe that improve the overall
chip yield under process variations to as much78.9The authors have shown how
powering down sections of the cache can increaseffiective yield. Our work, on the
other hand encompasses extra redundancy in L1 €dohcilitate efficient binning
and profit maximization. Besides, our model inckidiee entire processor pipeline, as
opposed to only L1 caches. Techniques for mitigatire effects of process variations
by using variable latency register files and executinits have been proposed by Liang
et al. [40]. In a recent work, Liang et al. [42]vkastudied the effectiveness of post
fabrication techniques like voltage interpolatioasd variable latency in different
pipeline loops. Besides, Agarwal et al. [2] propascheme that prevents yield loss due
to failures in the SRAM cells of the cache. Thgp®mach is mostly based on Built-In
Self-Test (BIST) circuitry and the cache optimigas are concentrated towards yield

maximization. Teodorescu et al. [73] use variaovare instruction scheduling and

21

power management to reduce the overall energy gelauct and increase throughput
of chip multiprocessors. Tiwari et al. [75], on tbhéher hand, propose ReCycle to
balance the delay variations between differentlpipestages due to process variations
by utilizing a skewed clock. This way, they achievprocessor clock frequency that is
equivalent to the average frequency of all pipekt&ges instead of the lowest one.
They also propose a method to convert the slatksier stages into power savings. Lee
et al. [38] discusses a new metric involving yigltea, and performance for evaluating
the tradeoff between vyield and performance in cache comparison to the
abovementioned works, our efforts are directed tdsv@fficient binning and revenue
optimization for set associative caches. In addjtimost of the previous techniques
listed above have performance implications, i.gfei@nt chips in a frequency bin may
exhibit varying performance levels (due to a vaiatin the IPC). However, our SC
scheme provides the same performance (constantft? @]l the chips in a frequency
bin.

Other works on reliability:

There has been plethora of studies analyzing ceedieing for different goals
such as minimizing power consumption or increagiegformance. Selective Cache
Ways by Albonesi [3] is one of the first works iache resizing and optimizing energy
dissipation of the cache. Flautner et al. [23] hpraposed a drowsy cache architecture,

which takes into account the state of a cachedimecorrespondingly changes its mode.

22

The concept of cache decay, on the other handpigxphe usage information of each
cache line in order to turn them off when they@oein use to save leakage power [34].
Yang et al. [80] have analyzed the effects of wsiacache resizing schemes on
reducing the energy-delay of deep submicron pracessPowell et al. [53] have
introduced the Gated-Vdd approach, by which theupoltage is turned off in the
unused SRAM cells to save leakage energy. Findlpdas and Chakrabarti have
developed a scheme in which the adjacent microksloaf a cache are resized
depending on the hit and miss rate [71].

Power-aware voltage/frequency scaling in multicorarchitectures:

Variable Voltage/Frequency Islands (VFI's) haverbpesviously used by other
researchers [16, 43-44]. Marculescu et al. [43]stimt VFI-based latency-constrained
system are more likely to meet timing constraihent Single Clock, Single Frequency
(SSV) based systems. In another work, Marculesal. §#4] have suggested a GALS
like architecture with multiple voltage islands fenergy awareness under parameter
variations. Dhar et al. [19] have designed a cdletrdbased adaptive supply voltage
scaling (AVS) mechanism for standard cell ASICsyddi et al. [51] have addressed
the issue of using multiple VFIs for energy optiatian in media and signal processing
applications. These works, although important amebwsng the advantages of
customized voltage islands, do not study the CM&sdoncentrate on application-

specific processors. In a recent work, Humenayl.g28] have studied the effects of

23

core-to-core (C2C) variations on power dissipatimmd yield of chip multicore
processors. The authors have investigated theteftdécsystematic variations on dense
and distributed floorplans of a CMP, and used Aapt/oltage Scaling (AVS)
techniques to boost the performance of slow co@@as work on the other hand
emphasizes on the importance of multiple voltadgends in CMPs, to reduce power
dissipation, and performs a detailed analysis ef déldvantages for various voltage
island formations.

CMP cache and memory management schemes:

To mitigate the access latency of large on-chigheacKimet al. propose Non-
Uniform Cache Architectures (NUCA) [35], showing@tta network of cache banks can
be used to reduce average access latency. NUCAgaeid directory management in
chip multiprocessors (CMPs) have been explorecelbgral researchers in the past.

To improve cache performance, Dynamic NUCA [35ja&ts cache blocks to
the requesting cores, but requires complex lookgprithms. CMP-NuRAPID [14]
decouples the physical placement of a cache black the cache’s logical organization
to allow the migration and replication of blocks & NUCA design, but requires
expensive hardware pointers for lookup, and coloereprotocol modifications.
Cooperative Caching [12] proposes the statistibatation of cache blocks in the local
cache to strike a balance between capacity andsa&meed, but requires centralized

structures that do not scale, and the allocatias & statically defined by the user for

24

each workload. ASR [8] allows the allocation biasadapt to workload behavior, but
requires complex hardware tables and protocol noadibns. R-NUCA [26] avoids
cache block migration in favor of intelligent bloghacement, but distributes shared
data across the entire die. Huh advocates NUCAnarghons with static block-
mapping and a small sharing degree [27], but theping is based on the block’s
address and is oblivious to the data access patkandemir proposes migration
algorithms for the placement of cache blocks [33§l &icci proposes smart lookup
mechanisms for migrating blocks in NUCA caches gi8ioom filters [59]. PDAY81]
and SP-NUCA [45] propose coarse-grain approachepldfing the cache into private
and shared slices. However, none of these worksnzat for power and energy.
Nahalal [25] builds separate shared and privatéonsgof the cache, but the block
placement in the shared cache is statically detexthby the block’s address. Finally,
Page-NUCA [13] dynamically migrates data pages ifterént nodes whenever the
system deems it necessary, but requires hundred8 a6 MB of extra storage which
scales linearly to the number of cores and cachikdyaand complicated hardware
mechanisms and protocols. Overall, all these schamtece data blocks and optimize
for performance; PAD places directories and optamitor power and energy. Thus,
PAD is orthogonal to them and can be used synargilst Moreover, PAD does not

require complex protocols or hardware.

25

OS-driven cache placement has been studied in ®ewaoh contexts. Sherwood
proposes to guide cache placement in software Fifgjgesting the use of the TLB to
map addresses to cache regions. Tam uses simdani¢eles to reduce destructive
interference for multi-programmed workloads [72hdCadvocates the use of the OS to
control partitioning and cache placement in a ShivnedCA cache [31]. PAD leverages
these works to guide the placement of director&agiOS mechanisms, but, unlike
prior proposals, places directories orthogonalltheplacement of data.

Several proposals suggest novel coherence mechanesnmcrease the cache
performance. Dico-CMP [61] extends the cache tagskdep sharer information.
Zebchuk proposes a bloom-filter mechanism for na@mimg tagless cache coherency
[82]. These proposals are orthogonal to PAD, whioHocates the directory with a
sharer, as opposed to changing the cache cohepestogol.

Zhangobserves that different classes of accesses bémefiteither a private or
shared system organization [84] in multi-chip npriticessors. Reactive NUMA [22]
dynamically switches between private and sharedhecaorganizations at page
granularity. Marchetti proposes first-touch pagacpiment to reduce the cost of cache
fills in DSM systems [36]. Overall, these techniguaptimize performance in DSM
systems. In contrast, PAD introduces a mechanisah decouples a block’s address
from its directory location, allowing the directotp be placed anywhere on chip,

without space or performance overhead, and witlcoatplicating lookup. PAD uses

26

this mechanism to minimize power and energy in CMPisally, the first-touch
directory placement policy is only used becausés isimple and effective, and is
orthogonal to the PAD mechanism.

Power-aware on-chip interconnection networks for CMPs:

Several studies optimize power for on-chip interemts. Balfour optimizes
router concentration for higher energy efficien@). [Wang proposes circuit-level
techniques to improve the power efficiency of thek|circuitry and the router
microarchitecture [76]. Shang proposes dynamicagatand frequency scaling of
interconnection links [62], dynamic power manageim@&6, 63], and thermal-aware
routing [64] to lower the power and thermal envelaf on-chip interconnects. All
these techniques are orthogonal to PAD, which feeuwmn reducing the overall hop
count and number of network messages by changengitectory placement. PAD can
work synergistically with prior proposals to lowpower and enhance the energy

efficiency even further.

27

Chapter 3

Mitigating the Effects of Process Variations:

Profitability

We investigate the effects of cache resizing sclsemmebatch-performance and
revenue, and then propose a novel scheme callestititd Cache (SC) that aim at
improving overall binning distribution with postdacation modifications. Next, we
study the impact of two resizing schemes namelye-®fay Sizing (OWS) and Multi-
Way Sizing (MWS). OWS disables selected cache wimeks with critical or near-
critical delay. By disabling the high-latency wolithes after manufacturing, this
approach improves the yield at the low end of tregjdency distribution, and also
increases the likelihood that any valid chip wid placed in a higher-frequency bin.
MWS extends this idea to a word line as it spankiphe sets in the cache, working off
the theory that a high-latency word line in a stnghche set would also likely be a
critical path in the other sets. In addition tostheschemes, we also propose the SC
scheme, in which the level 1 (L1) cache is augnentgh a small substitute cache

storing the most critical cache words. With thephef minimal control logic, the

28

processor can fetch data from SC instead of the wohatia array whenever a read/write

access is made to these critical words. Hence sidatcy is minimized with no extra

cache misses.

ield g0 lBin1|Bin2|Bin3|Bina| Y'€d
loss

loss
Y

chips lost

chips

lost for for high
high leakage
delay

of chips

A\

Frequency

Figure 3.1. Speed binning in modern processors.

Distribution of Critical Paths

l RegFile

‘ 18%

e Ny
S

Figure 3.2. Distribution of processor critical patts to modeled architectural units.

The reason why we emphasize on caches is becausachgs are likely to be

the critical path under process variations. Figdiillustrates the latency distributions

of various architectural units; for a set of 200thdated chips (the details of the

29

modeling framework are described in Chapter 3.8 @&nalysis reveals that 58.9% of
the critical paths lie in the L1 cache. Therefarethis work, we focus on the level 1

cache.

3.1 The Substitute Cache Scheme

In this section, we describe our proposed cachanehcy technique called
Substitute Cache (SC), which masks the effectsadgss variations by including extra
storage in the L1 cache. Particularly, in this scbeeach way of the L1 cache is
augmented with a fully associative data array, Whitores the most critical lines as a
result of process variations. Once the SC hold$-Ugjay words, they are never
accessed from the main array, allowing the L1 caocheun at higher frequencies. In
addition to shifting more chips towards high-pridsds, this scheme also reduces yield
losses due to delay violations.

The core idea behind the architecture of SC isutpreent each cache way with
extra storage that will be used if certain locasian the main cache exhibit long
latencies. In such cases, the data will be reaah fitee SC, and chips from the lower
frequency bins can now be placed in higher frequdris, because the high latency
lines are not used. Moreover, some of the chips wrald have failed due to high

access latencies will be added to the overall yield

30

The anatomy of the proposed cache architecturbawss in Figure 3.3. SC is
highlighted within the dashed block. For the sakelarity, we detail the use of SC on a
single cache way; however, each cache way hasilsi®C associated with it. SC is
similar to a fully-associative cache structure.our study, its size is either 4 or 8
entries. As opposed to the L1 cache, SC has sni@éesizes. Particularly, it consists
of only 64-bit entries, because it stores wordghefmain data array. Instead of storing
the whole cache line, only the critical word in fivee is stored in the SC, because our
study reveals that the words with maximum acceesnty are always the ones that are
furthest from the decoder. As a result, by justistpthese words, we obtain the same
improvement in cache frequency while keeping the §£& small. However, if
necessary, words in other locations can also bee@lanto the SC. An SC is divided
into 2 components: an index table and a data aMate that the SC uses the column
multiplexers and output drivers of the main arfdhenever a cache word is placed in
the data array of the SC, index bits of its addredsch is equal to the sum of the row
and column addresses (10 bits in our architectre)placed in the index table of the
SC. For example, if we decide to place the wordhwitlex value 0x044 to the SC, we
will have an entry in the index table with valueD@4. Note that this word would have
resided in the row with index 0x8 in the main amvéth the column address being equal
to Ox4. In case of a data access, the index tabtdhecked with the index bits of the

address. A match implies that the data will be rizath the SC instead of the main

31

array. Specifically, if the index of the addressfasind in the SC index table, the

contents of the corresponding data array row angdiaed to the column multiplexers

of the main array. The additional control logic wimoin Figure 3.3 will then set the

column multiplexers correctly. If the index of theldress does not match any index
table entries, the main array will be accessedeNuwat, even if there is a match in the
index table, the access can still miss in the catliee corresponding tag does not
match. However, the tag structure is not affectgthle addition of the SC. If there is a
miss due to tag mismatch, we will still output theta, which will be ignored because
the tag will indicate the miss. Overall, the tagtchdmismatch is independent of the SC
design. We only care whether the correspondingspafrthe address match with the
values stored in the index table so that we camdeshether to supply the data from

the main array or the SC.

32

Substitute 10 Row
Cache 7 Address L1 Data Banks

| [1 e .

" Data arra
16b|16b|16b|16 b

|
|
|
|
| Table
|
|
|

Row Decoder

Column
Address

Select

/{ 64-bit Data Word

DataSelect
(Index match)

Figure 3.3. One cache way of a 32KB 4-way set aswgdive L1 cache with Substitute Cache.
Column muxes are shaded as they select data fromirfputs as opposed to 8 inputs.

Now let us consider a typical read operation inrtien array. The row address
part of the index field selects the appropriate fiavthe data array through the row
decoder. The appropriate word is then chosen bgahenn multiplexers with the help
of the column address bits of the index. One ofkiag observations is the difference
between the times taken by each of these stepscutarly, the inputs to the column
multiplexers are available at the same time theodec is accessed. However, the

signals provided to the decoders will traverseuflothe decoder logic, the word lines,

33

the memory cell, the bit lines, and the sense dmagdibefore it will reach the column
multiplexers. We utilize this imbalance to operatg SC structure. As soon as the
address is available, we start accessing the Sé&xitable. If a hit is recorded, we
change the input to the column multiplexers tonOother words, we forward the output
of the SC as the output of the cache. If, on themhand, there is no match in the index
table, we will set the column multiplexer to thegaral position indicated by the
column address. If the time to check the indexetaiblthe SC is less than the delay of
the data array (the sum of the delays of the decadsrd line, memory cell, bit line,
and sense amplifier), then, this operation doescaase any delay overhead on the
cache, because while the data array is accessedapuld have already determined the
hit/miss in the SC index table. Hence, the addibbrthe SC structure does not cause
any significant increase in the critical path latgof the cache.

Similar to a read operation, a write access (eithestore operation or write
operation during the replacement of a cache lincss the appropriate index using the
row and column addresses and updates the selectedinvthe cache way selected by
the way-select logic. For L1 caches augmented ®@h the index of the data word to
be written is searched within the SC index talfl¢hére is a match, the new data word
is loaded in the data array of the SC. We mustaddge that the addition of the SC does

not impact the tag (and any related operation gholy snoop requests).

34

3.2 Cache Resizing Schemes

The main idea in these schemes is to analyze thigrdef the cache, determine
the word lines that can cause a delay violation thed modify the architecture of the
cache such that these word lines may be disahtethel core of these ideas lies one
common characteristic: if a path is found to beitical path in the cache, it will be the
critical path in a large number of chips. In geher@hen process variations are
considered, it is hard to determine a single pla# is the critical path. Therefore, each
path is associated with a probability of being iéical path. If this probability is X%,
the corresponding path is expected to be the akipath in X% of the manufactured
chips. In our cache model, we have observed tlesetiprobabilities can be very high.
Particularly, our analysis of the cache architexztmd the process variation simulations
reveal that one particular word line is the critipath in 67.3% of the 1000 caches we
have studied. The reasons for this phenomenomardaid. First, cache architectures
are regular; most paths exhibit the same charatiteyi Second, because of spatial
correlation in process variations, all the worde$inare affected similarly. The
consequence of this phenomenon is crucial: if wecsa word line to be the critical
path during the design process, it will be theiaalt path in many chips and hence
disabling it may reduce the overall cache delay.

One-Way Sizing (OWS): As the name suggests, One-Biang (OWS) refers

to the cache resizing scheme when resizing isicesdrto a single cache way. The main

35

idea in OWS is to disable word lines that are {ikel generate cache delay violations or
cause the chip to be placed in the lower bins. Tekeexample the 4-way set
associative cache described in Chapter 1, Sect@nlf3due to the effects of process
variations the incurred extra delay makes the caarg slow, then turning off the
delay-intensive line will be helpful in decreasithg cache latency. As a result, the chip
can be placed in a higher-frequency bin. Our OW& e is based on this concept.
Particularly, we first analyze the cache architeetand determine the critical paths.
Each critical or near-critical path correspondsatword line. Then, we select n such
paths and change their word line select bit logialtow the designer to disable them
(i.e., turn them off). The number of cache rowsvord lines to be disabled depends on
the cost and overhead the designer is willing towal For example, OWS-4 refers to
disabling the 4 most critical word lines of the ltacNote that, to simplify the process
of disabling, we do not allow each line to be tario@/off individually. On the contrary,
all the selected lines are enabled/disabled togeltteclarify the process, consider the
process of developing the OWS-8 scheme. For OW&:8ijrst analyze the delay of all
word lines in a cache way. In our cache architegttivere are 128 such lines; hence, we
order them according to their expected latency.nTlvee choose the topmost 8 and
change their word line select logic. This can bégremed by adding an additional input
to the AND gates that activate the local word keéect signals. This additional input is

used for the enable signal. The enable signalalfdhe 8 word lines are connected to

36

the same “resize enable” signal. After the manufaeg, using this enable signal, the
designer can choose to disable all the selectev8:rlf one of these word lines is the
critical path, the total delay of the cache will teeluced. As a result, the chip may be
placed in a higher bin.

Note that, in OWS, each cache way has a separedezérenable” signal. As a
result, the speed-binning process after the mahufag needs to be changed to test the
overall delay while each of these signals is asderlthough it is possible to control
each enable signal (and hence the cache way) dudilly, the number of possible
combinations can be large. In addition, if sevaratd lines corresponding to the same
index are disabled, the associativity for thoseexe$ may decrease, potentially
resulting in a large number of cache misses. Thezefwe allow at most one set of
disabled words lines. In other words, only selest®dd lines from one cache way can
be disabled at a given time. To implement this,heaesize enable” signal will be
asserted sequentially during the testing stageocaedsignal will be allowed to remain
high if this changes the outcome of the speed-honi

Multi-Way Sizing (MWS): OWS aims to locate the likecritical paths in a
cache and embed enable/disable signals for thenthatothese word lines can be
disabled. However, if a word line is the criticatlp in one of the cache ways, it is very
likely to be the critical path in the remaining wayAs a result, although OWS can

disable one of these paths, the remaining onesstilillbe enabled and cause a long

37

cache access delay. Another drawback of the OWé&nsehs the increased complexity
due to the “resize enable” signals in each way. N#éi-Way Sizing (MWS) technique
aims at attacking these limitations. ParticulaMWS disables all the chosen critical
word lines from all the cache ways instead of disglthe word lines in a single cache
way as done in OWS. To explain the idea, consiurword line N is determined to be
the most likely critical path. Then, similar to t@VS scheme, MWS will change the
AND gates on word line N to allow it to be disahlétbwever, unlike OWS, MWS will
allow the designer to disable all word line N’srfrall the cache ways simultaneously.
If the word line N is the critical path in all theache ways, this will eliminate the
longest path in each way and cause a significahtateon in the cache delay. Because
of the spatial correlation of process variatiortse probability that the same index
remains the critical path in different cache wagy/éigh; in these cases MWS improves
upon OWS.

A second advantage of the MWS scheme is the reduati the number of
enable/disable signals. Since the decision of eamgldisabling is done for the whole
cache, the cache will implement a single “resizabéai signal as opposed to one for
each way in the case of OWS. This will reduce thamlexity of the control circuitry.

For MWS, similar to OWS, the designer has to sdlleetnumber of rows that

will implement the enable/disable signals. If 4 &dmes from each cache way are

38

connected to the “resize enable” signal, the schsnmalled MWS-4. Note that, this

corresponds to disabling 16 word lines simultanioias a 4-way cache.

Resize Enable

line 0 line 2 line O line 0
line 1 line 3 line 1 line 1
777|097 5 e
line 3 line 4 line 2 line 2
line 4 line 5 line 5 line 3
77577 7R AT e
line 6 line 6 line 6 line 4
line 7 line 7 line 7 line 5

Mapping of rows Mapping of rows Mapping of rows Mapping of rows
for way O for way 1 for way 2 for way 3

Figure 3.4. The mapping of indexes to word lines fAMWS.
Straddled blocks show the lines disabled by the “s#ze enable”
signal.

A problem with the MWS technique is that when aheatine is disabled across
all the ways, that index loses its address spametheé above-presented example, if we
decide to disable all the word lines N, then angrasses with the corresponding index
will miss in the cache. To tackle this issue, thieertations of the decoder lines are
changed in such a manner that no identical indareslisabled in two different ways.
To be precise, we modify the mapping of indexewaod lines in each cache way such
that each index can be disabled at most once. &iguf presents the change of the

mapping for a 4-way, 32-entry cache (8-entriesefach way). The initial word lines to

39

be disabled are found using the delay analysisumexample, these are lines 2 and 5.
Then, for the remaining cache ways, the rows talibabled are found by considering
the lowest row number that has not yet been plateda disabled line. In our example,
these are lines 0 and 1 for cache way 1, linesd34dior cache way 2, and lines 6 and 7
for cache way 3. The remaining rows are mappeeérntaming index numbers in order.
As a result of this reordering, when the cachesized, the associativity for each index
reduces by at most one. Particularly, for our eXangrchitecture, each index has
exactly 3 enabled rows; hence, the cache missaifitbe identical to that of a 3-way

associative cache with 24 total entries.

ibﬁ Wwo oo
P wo oo ! —5;} w2 oo P o w0 U —
m—ﬁﬂ,—ﬁﬁ,—jii— L s 5r» - j | v 5b—
W1 oo
W3 on i—
s —j)d Wb Oy s i —5% WL o1 L L
T 5 T T T N Y Y —jb_‘
WL6 110
i = —t—
— —jb—‘ w2 oo | weo oo e —jb—< W o s s in
L 3] + =+ =+ N ST Y -5%
WL2 010
—jb_‘ W3 oy —5 W4 100 —qu w2 a0 s i)
T iy e th s H 5 s K T T T
P s
P wa 10 N —j W5 100 e ws o A— W3 o
s — s s s " U i 5%
—jb“ W5 101 —jpd W1 0oL —jb~ wa 00 W7 1
s il ' LS S i s s
—jb“ W6 110 Ebﬁ W6 110 —jb— —5b—< wa 1o
l We 1m0
s s T il = ——s 1 [t 1y el
5?"‘ W7 11 —jbﬁ W7 11 —5b—< —5pq
. w7 W5 101
s s LN K e ' et s Atk
o 2 A A 0N ax v oROA A NN o RN A A ak oA A AN A &

Figure 3.5. Post-decoder implementation for changinthe index to word-line mapping.

This remapping of the indexes to word lines cannpglemented by changing
the post-decoders that are implemented in highepmdnce caches. Particularly, the
decoders in modern caches work in two stages: @grede and a post-decode stage.
The pre-decode stage generates a number of signadlbroadcasts them to each word

line, where the post-decoders are waiting for aetambinations. The new mapping of

40

the indexes to word lines can be implemented bylirdhanging these combinations.
The post-decoder implementations for the cacheitantbre shown in Figure 3.4 are
depicted in Figure 3.5. The signals A0, A0, Al,,A42, and A2' are produced by the
pre-decoder. The select logic (i.e., transistorsr@word line select logic) for each
word line corresponds to the post-decoder stageshssvn in the figure, by simply
reordering the locations of these transistors, wldexe the desired reordering. Note
that this change does not incur any penalty orléiay of the cache.

Complexity of Resizing: Both our MWS and OWS schemes have design overheads
Note that we implement the enable signals on thiearpaths of the cache; hence any
change, due to our schemes, increases the cadne @bk particular modification we
make to the cache is to change the 2-input AND teeenables the word line select
signal to a 3-input AND gate. We found that theagiedverhead for this extra circuitry
is 0.75% on average. This increase in delay hampact on the binning of the chips.
However, we must note this overhead is not appicéd MWS when these lines are
disabled. To be precise, when the selected woes lare disabled, they will never be
used throughout the lifetime of the chip. Therefdhe delays of these lines are not
considered during the critical path analysis, hetheeoverall delay is not affected for
MWS. For OWS, on the other hand, this increaseelaydmay have an impact on the

cache delay. Since OWS disables word lines in onby of the cache ways, the delay of

41

the word lines in the remaining cache ways mayease, which in turn will increase
the critical path delay.

Effects of MWS and OWS on Cycles-per-Instruction (®I): Since we are
performing cache resizing, our schemes may increadee miss rates, which will result
in performance degradation. We analyze how our reeBechange the cycles-per-
instruction (CPI) for the SPEC2000 applicationanfeScalar 3.0 [67] simulator is
used to measure the effects of our proposed cadieng techniques. The necessary
modifications have been implemented on the baselator to model selective cache
replay, the buses between caches, and port cameati caches. Changes were also
made to SimpleScalar to implement the cache ragigamemes, which disable certain
indexes from corresponding cache ways. The bassgsor is a 4-way processor with
an issue queue of 128 entries and a ROB of 256esnifhe simulated processor has
disjoint level 1 data and instruction caches: lelyalata cache is a 32 KB, 4-way set
associative cache with block size of 64-bytes aenkcy of 4 cycles, and the level 1
instruction cache is a 32 KB 4-way set associataehe with block size of 32-bytes and
latency of 2 cycles. The level 2 cache is a unifie@4 KB, 8-way set associative are
cache with 128 byte block size and 20 cycle lateiitee memory access delay is set to
350 cycles. We have performed our simulations u&ihdloating point and 12 integer

benchmarks from the SPEC2000 benchmarking suife [69

42

O OWS-4 m OWS-8
0.4
0.3
g
a
)
£02
[}
@
(]
S
£
0.1
0 m ‘ d
. & & S & & 3 S & o 9 > S
?;o\\bee},e@efoo\@é&\e&,&éé&_@ooe,%,q&a&e%
F S L ¥ S & KK & @ & & F N G F O &
NN Q®$°Q &9 QQ'{\ R QS\QQ S N < (»;\.\‘ A\
Benchmarks

Figure 3.6. Performance results for OWS schemes fahe SPEC2000 applications.

OoMWS-4 m MWS-8 0.55
0.4
0.3 1
s
o
o
£0.2
(]
8
(]
S
£
0.1
0,
. \ $ SIS & [S 3 9L - >
® S L PSSP SR S S L @R AN S
S FHTE & & & IEETE T TG ¢ &

Benchmarks

Figure 3.7. Performance results of MWS schemes féhe SPEC2000 applications.

Figure 3.6 and Figure 3.7 present the increasePhf@ the MWS and OWS
schemes, respectively. The average increase i@Rhés 0.08% for MWS-8 and 0.02%

for OWS-8 schemes. Among the studied applicationyy two exhibit an increase in

43

CPI exceeding 0.3%: gzip and apsi. For these agdpits, the increases in CPI for the
MWS-8 scheme are 0.55% and 0.32%, respectively.

Note that the schemes disable sporadic indexes,hande different indexes
have varying associativity, creating heterogenewache architecture. Therefore, the
increase in the CPI for these two applicationsiisatly caused by their usage of the

disabled indexes.

3.3 Modeling Process Variation and Speed Binning
Methodology

This section presents a detailed description off@mework, which consists of
the processor model, process variations model aodels for generating a speed-
binning distribution. Each one is described belowletail.

Processor Model: To model a processor core, we taken into account the 7-
stage pipeline in the Alpha-21264 (EV6) architegturhe main critical components of
our processor are the Fetch Unit, the Rename U, Issue Queue, the Integer
Execution Unit, the Register File, and the L1 Desmhe. All these components are
modeled in SPICE using the 45nm BPTM technology el®d11]. The fetch and
rename units are modeled as a combination of 1-@d&of four (FO4) gates. The issue
gueue is based on that of the Alpha EV6 and hasn®@es. The register file is an 80-

entry structure with 4 read and 2 write ports. Titeger execution unit is modeled

44

using the net list generated after synthesizingctireesponding component in the Sun
OpenSPARC code [70]. Our L1 cache is a 32 KB 4-waly associative cache, the
model of which is based on the architecture desdrtly Amrutur and Horowitz [4].
Figure 3.8 highlights a cache way for our base eanbdel. Each of the 4 ways
is divided into 4 banks. Each bank has 128x12& aw@llstorage bits. Thus, each bank
has exactly 128 rows (i.e., lines) and can holdBRd¢ data. The bit line delays are
reduced by partitioning the bit line into two. Weush note that our SPICE models are
based on highly optimized circuit descriptions (etfpe cache model is based on
CACTI 3.2). To account for the effects of submicteshnologies on circuit behavior,
we added coupling capacitances at three placdseirtdche: between the lines in the
address bus from the driver, between parallel wirdbe decoder, and between bit-line
and bit-line bar. Furthermore, these lines as wasliglobal and local word lines are
replaced by distributed RC ladders representingdbal interconnect wires inside the
cache. Although the L2 cache is another SRAM stinectwvithin the processor core
where process variations can have a significanaghpccording to the FMAX theory,
we omitted this component in our study becausedsd't lie on the processor critical
path (and is not a part of the processor pipekoedpther techniques like high-threshold
transistors or NUCA caches can be utilized to rategthe effects of process variations

on them.

45

Simulating Process Variations: Process variatioms statistical variations in
circuit parameters like gate-oxide thickness, clehmength, Random Doping Effects
(RDE) etc., due to the shrinking process geomeféieS0]. They mainly consist of die-
to-die (D2D) and within-die (WID) variations. D20anation refers to the variation in
process parameters across dies and wafers, whatEayariation is the variation in
device features within a single die, causing notfleam characteristics inside a chip.
Independent of their type, process variations galyerfall into two categories:
spatially-correlated variations where devices cldee each other have a higher
probability of observing a similar variation levednd random variations causing

random differences between devices within a die.

128 cells

—>
Y

64 cells

local word line F global word line Q

128
cells

| bitline partition

decoder

16 () ()

address D

o7

Figure 3.8. A single cache way for a 4-way set as#ative L1 cache.

46

Table 3.1. Nominal and @ variation values for each source of process vari@ns modeled

Gate Threshol Metal Metal ILD
Length d Voltage Width Thickness Thickness
(Lgate) (Vin) (W) (H)
Nominal | 45 im | 220mV | 0.25um | 0.55um | 0.15um
Value
30 -
Variation +10 +18 33 +33 +35
[%]

To measure the impact of process variations ondtlay and leakage of our

cache model, we considered 5 most important varigbarameters. These are metal

thickness (T),

inter-layer dielectric thickness BILor H), line-width (W) on

interconnects, gate length (Lgate) and thresholge (Vth) for the MOS devices. The

statistical distributions of these parameters aset on limits given by Nassif [49] and

their statistical distribution (mean and variati@ang listed in Table 3.1.

1000 Chips

Profit
Analysis

Parameter
Generation

R-tool

Frequency

Binning

Parameter
Extraction

=

Scripts

Architect
rc Mlozce:l :re ? Floorplan

45nm tech

Figure 3.9. Monte Carlo SPICE simulation framework.

a7

We model both systematic and random process vamgtior our processor
model. To take into account the spatial correlati@nuse a range factap)(in the two
dimensional layout of the chip. Thus, each progesameter can be expressed as a
function of its mean), variation 6), and the rangeo] values. For the sake of

simplicity we use the following inverse linear ftion to minimize computational time.
G=1-+= 1)

Equation 1 describes the spatial correlation fumctve used for our framework.
If two points, x and y on a 2D plane are separated by a distanctheh the spatial
correlation factor Cbetween them can be thought of as an inverserlifwgeaction
involving ¢ and ¢l Note that there is no correlation between twdiappoints which
areo units or more apart.

With this background, we have generated a spatea of various parameter
values using the R statistical tool [74]. This sgganap indicates thag is a measure of
randomness; a higher will mean higher correlation and vice versa. Tdrast the
parameter values corresponding to the differenttfanal units, we use the floorplan of
Alpha EV6 processor. In other words, the processatran values for the chip were
generated first, followed by the extraction of ttedues that correspond to the particular
positions of the studied components from this medlethip. Note that all our
components consist of other smaller componentsekample, to model the cache, we

pick different process variation values for the atkar, each cache line, pre-charge

48

logic, etc. In addition to the spatial variatione wlso model random variations in the
process parameters. To model them, we chose prpegameters randomly from a
uniform distribution. Since spatially correlatedopess variations are found to be the
dominating factor [24], our framework assumes ahéigpercentage of spatially
correlated variation compared to random variatide.set this ratio as 70% to 30% for
correlated and random variation, respectively. f@g3.9 shows the Monte Carlo
simulation framework used in our parameter genamadnd extraction experiments.
Modeling Speed Binning: In order to effectively estimate the binning
distribution and demonstrate the effect of proocemsations on it, we chose a set of
1000 chips for our analysis. Using the processmatars mentioned above, their delay
and leakage current values are obtained from SRi@tlations for the cases when
¢=0.3 andp=0.5, which in turn are used to determine the Inigrand yield loss. The
cut-off for delay has been set to be the sum ohtkan () and standard deviatiow)(
of the delay of the simulated chips (i,e.+ c), whereas the leakage cut-off has been set
to be three times the mean leakage value. Theseffclitnits are based on previous

studies [56].

49

12
!
o 0 |
10
<
o |
1 o o |
<&
g o% < Leakage Loss
2L 61 o © < |
3 © o3
N <><> <<>>
® X |
£ 4 © & O
S <
z _I_
- Binning Range ' - - T = =7
2
0

Sigma variation in delay

Figure 3.10. Normalized leakage and delay distribin scatter plot for simulated chips showing the
binning for 5-bin strategy. BO through B4 representthe bin numbers from lowest to highest
frequency.

Most processor families are available in discreteqdency intervals. For
example, the frequency for the Intel Pentium 4 essor family starts with 3.0 GHz and
reaches 3.8 GHz with equal intervals of 0.2 GHZz].[3@oreover, most commercial
processors are marketed with 5 or 6 different femgy ratings. Similarly, our binning
methodology assumes equal binning intervals. Titexval is chosen depending on the
number of bins to be generated. Regardless of uh&ar of bins, any chip that has a
delay greater than the “+ ¢’ limit is referred to as a delay loss. Chips thatisfy this

criterion are used for binning into discrete biterting from the slowest to the fastest

50

bin. Within each bin, the chips that are lost doeexcessive leakage (exceeding the
limit of 3x mean leakage) are referred to as ttekdge loss. Figure 3.10 shows the
distribution of the normalized leakage power congtiom versus the distribution of
processor latencies for the base case (i.e., withoy architectural optimizations) for
the 1000 simulated chips forvalue of 0.5. It also shows the binning for atstgg that
generates 5 distinct bins. In this case, the cthips lie within u + ¢’ and ‘u + 0.5’
delay values are put into BinO (denoted by BO iguFe 3.10). These correspond to the
slowest chips. Similarly, chips with latencies withy + 0.5’ and ‘W’ are assigned to
Binl. The intervals for the remaining bins are fedéfowing the same ‘0.& interval.
Note that the highest bin consists of the chipf wilay values less thap ~o’. Using

a similar methodology, we model a strategy thategaies 6 bins. In this case, we
reduce the binning interval to ‘&4 Hence, Bin0 consists of chips that fall betwégn

+ ¢’ and ‘u + 0.65, Binl consists of chips that fall betwean+ 0.65" and ‘u + 0.%,

and likewise.

3.4 Experimental Results

In this section, we describe the analysis of ooppsed schemes.
Binning Results: Since our binning schemes areddiiinto two categories,
namely 5-bin and 6-bin strategies, we describe teeparately. For both 5-bin and 6-

bin strategies, the proposed MWS, OWS, and SC sebeme applied and the resulting

51

changes in the number of chips in each bin aredotin find how the chips are placed
into different bins, we first analyze our architeet with the base cache and find the
mean and standard deviation of the 1000 cache sleldnen, based on these values, the
boundaries for each bin are set. We then applyvt\e&s, OWS, and SC to find the new
delays for each chip and find the correspondingdmstribution.

Figure 3.11 and Figure 3.12 show the binning redoit 5-bin strategy for MWS
and OWS, respectively. The results for the 6-hiategyy were similar and hence are not
presented in detail. To understand the figuressiden the leftmost bar for each bin.
This bar corresponds to the number of chips in birafor the base cache architecture.
The bars next to it (i.e., the ones in the midddpyresent the number of chips in that bin
when MWS-4 or OWS-4 schemes are applied. The bght represent the number of
chips in the corresponding bin for the MWS-8 or O8/Schemes. In general, we see
that our schemes can successfully increase the ewaftchips in the higher bins. For
example, in the 5-bin strategy, the number of cimpbe highest bin (Bin4) is increased
by 8.2% using MWS-8. Figure 3.13 depicts the bigmesults for the SC scheme. In
case of the SC, the chip yield is catapulted targer extent (14.4%). Like MWS and

OWS, it also shows a sharp increase in the chtpeofast bin for the 5-bin strategy.

300

250

200 4

150

100

50

300

bin0 bin1 bin2 bin3 bin4

Figure 3.11. Binning with 5-bin strategy for MWS.

250

200

150

100

50

300

bin0 binl bin2 bin3 bin4

Figure 3.12. Binning with 5-bin strategy for OWS.

250

200

150

100 -

50

binO binl bin2 bin3 bin4a
| mBASE msca oscs|

Figure 3.13. Binning with 5-bin strategy for SC.

O BASE
= MWS4
oMws8

DBASE
mOWS4|
O OWSS8|

52

53

It is misleading to draw any conclusion about higdguency chip yield by simply
considering the chips in the highest bin. The gairthe highest bins for all the 3
schemes are accompanied by a reduction in the nuofbehips in the lower bins.
However, we must note that the total yield is iased using these schemes.
Specifically, the total yield increases by 4.595%.and 9.7% using the MWS-8, OWS-
8, and SC-8 schemes, respectively (¢0.5). Although there are no additional chips
lost due to leakage for the resizing schemes, tGeisSassociated with a power
overhead. The SC-4 and SC-8 schemes cause anoadti®i.1% and 11.7% loss of
chips, respectively. In spite of that, the totalgiincreases for SC, because it converts a
high number of delay loss chips into yield. Eveouth the total number of chips
increases, the schemes tend to move a larger nushlobips towards the higher bins.
As a result, the chip counts in the lower bins tendecrease.

One of the reasons for the significant change elygain from MWS-4 to MWS-
8, OWS-4 to OWS-8, and SC-4 and SC-8 is the fixedt ®f implementing the
schemes. As described in Section 3.2, implemeniiegesizing scheme incurs a circuit
delay of 0.75% over the base cache architectureen/itne “resize enable” signal is off,
this overhead in delay is added to the criticahpathereas when it is on it does not
affect the critical delay in the MWS scheme. Theref MWS has a more profound

impact on the speed-binning outcome. In case of OIS overhead may cause other

54

cache ways to become the critical path, limiting dverall impact. For SC, this
overhead is even lower and hence it achieves Hatieng results than MWS.

Revenue and Batch Performance (BP) Estimation: gduisdescribes the analysis
of the total revenue and the implications on BP @mg revenue. It is important to note
that, in all the following studies a simplistic rkat supply/demand model is assumed
where all fabricated chips can be sold at prediptedetermined price levels according
to their clock frequencies. Since a real-life dechamodel would depend on various
other factors, the resulting numbers given hereulshdwe considered as potential
increase in revenue or profit. The binning datasied in revenue calculation. The chips
that fall in the higher/faster bins after testimg aold with higher prices than those lying
in the lower/slower bins. To have an estimate @f thcreased revenue, we use the
model that provides the highest accuracy amongrbéels studied. Our architectural
configuration is fed into our price models to fitieé relative prices of the chips in each
bin. These relative prices are found to be 1, 11083, 1.39, and 2.84, for the Bin0O
through Bin4 for the 5-bin strategy and 1, 1.0991.1.23, 1.63, and 4.00, for the Bin0O
through Bin5 for the 6-bin strategy. Then, the nembf chips in different bins for the
base case is multiplied with their respective itte calculate the revenue for the base
case. Using the same methodology, the revenue @# &nd SC-8 schemes are
calculated based on their new binning distributiofise relative change in revenue is

then calculated with respect to the revenue obtse case.

55

Table 3.2 presents the increase in revenue obtaisieg different SC schemes.
For ¢=0.5, the SC-8 scheme increases the revenue by 1p.60% and 13.14% for the
5-bin and 6-bin strategies, respectively. Note ,thie SC scheme has power
consumption overhead and hence causes some pdatedrgield losses. However,
despite the increase in the power consumption, neeobserving that the SC scheme
tends to provide better revenues because it istabigenerate an elevated number of
chips in higher bins. We must note that the inaaasevenue is smaller compared to
the increase in the number of chips in the highestTake for example the 6-bin case.
For SC-8, a 15.0% increase in the number of chmpbe highest (i.e., highest-priced)
bin results in an increase of the total revenuetly 11.4%. The main reason behind
this can be explained as follows. Due to the nordistribution nature of the binning
curve, the yield in the next-highest bin is highBnis bin also has a high price gradient
and hence it constitutes a large fraction of theral revenue. We observe that the
number of chips in this bin either reduces or staygghly constant. As a result, the

increase in total revenue is limited by a modepateentage.

Table 3.2 presents the increase in revenue obtaisied different SC schemes.
For ¢=0.5, the SC-8 scheme increases the revenue by 1p.60% and 13.14% for the
5-bin and 6-bin strategies, respectively. Note ,thie SC scheme has power
consumption overhead and hence causes some pdatedrgield losses. However,

despite the increase in the power consumption, meobserving that the SC scheme

56

tends to provide better revenues because it is tabignerate an elevated number of
chips in higher bins. We must note that the inaaagevenue is smaller compared to
the increase in the number of chips in the higbastTake for example the 6-bin case.
For SC-8, a 15.0% increase in the number of cmphe highest (i.e., highest-priced)
bin results in an increase of the total revenuemly 11.4%. The main reason behind
this can be explained as follows. Due to the nordistribution nature of the binning

curve, the yield in the next-highest bin is highBnis bin also has a high price gradient
and hence it constitutes a large fraction of theral revenue. We observe that the
number of chips in this bin either reduces or staygyhly constant. As a result, the

increase in total revenue is limited by a modepateentage.

Table 3.2. Increase in revenue for various SC cogfirations

Increase in revenue with respect to the base architecture
Range factor (¢) Binning strategy [%]
SC-4 SC-8

5-bin 5.03 12.60
0.5

6-bin 3.90 11.41

5-bin 6.98 12.00
0.3

6-bin 5.54 13.14

Using the same revenue results, we can also estipnafit. Let's assume that the
cost per chip is identical, which equals to 80%tlué selling price of the lowest

frequency chip. This means, the cost of each &ip.8 in terms of our relative price.

57

Therefore, the total cost for 1000 chips (note thagn the chips that do not meet delay
or leakage constraints contributes to cost) is 808.can then subtract this amount from
the total revenues and find the profit. If we apilig methodology, we find that the SC-
8 increases the profit in the 5-bin strategy by6%&. For a chip company, which invests
billions of dollars in the manufacturing procedsstextra revenue can prove to be a
considerable margin. It should be noted we areeatiglg the extra testing costs needed

for the new cache design.

Comparison with Performance: To compare the effects of our architectural
scheme on profit and performance of the whole bafathips, we use another metric
called batch performance (BP). Batch performanamlsulated using the frequency of
each speed-bin and the chip yield (humber of chips)that bin. Thus, batch
performance corresponds to the overall performaffi¢kee chips obtained from a single
batch of microprocessors. The BP metric is similarutility metric defined by
Romanescu et al. [60]. If there are k differengjfrency bins having frequency ratings
f1, f2, ..., f with each of them having yields,m,,...,n; the total batch-performance is
given by:

BP = 2 (fi x i) (@)
This BP formula can be extended in two ways. Fifsan architectural scheme

has an impact on the CPI, the change can be cdphyancorporating it into the

58

equation. Specifically, if a scheme achieves an dP{z, i, ..., ik for each bin, the new
batch performance will be calculated by:
BP = 2y (fi x ni X i) ®)
Finally, to find the average performance, this ssndivided to the number of
manufactured chips. We have calculated the aveB&jfor the base cache architecture
and our proposed schemes based on Equation 3. Iabl@mesents the increase in BP

with different SC schemes.

Table 3.3. Increase in batch performance for variosi cache-architectures

Increase in Batch Performance with respect to
Range factor (¢) Binning Strategy the base architecture [%]
sc-4 sc-8

5-bin 5.88 11.50
0.5

6-bin 5.58 11.19

5-bin 6.18 10.51
0.3

6-bin 6.10 11.59

A close look at Table 3.3 implies that the increasebatch performance is
roughly linear with respect to the size of the $However, when the SC-4 and SC-8
architectures are compared, we see that the pagenmmprovement in revenue can
increase by over 2.9x (Table 3.2). These resulbsvdhat optimizing for performance

alone may lead to different conclusions when comgb&o optimizing for revenue/profit

59

along with performance. Hence, these results migitlee use of revenue/profit when

making architectural decisions.

3.5Summary

Efficient binning under process variations has bee@ significant challenge for
chip manufacturers. A considerable amount of effotieing made to save chips from
excessive delay and market them properly to iner¢las profit margin. In this work,
we evaluated cache resizing schemes and like OneSkag (OWS) and Multi-Way
Sizing (MWS). The extra circuitry needed for thes#emes is very small and the
newly resized cache causes minimal reduction inrteguction-per-cycle (IPC) rates:
0.02% and 0.08% on average for the most aggre€8iVv8 and MWS, respectively. As
an alternative to these resizing schemes we intexdia new cache architecture called
the Substitute Cache (SC), which is aimed at mangithe revenue obtained from a
particular line of chips with the same process etbgy. Our scheme has no
performance overhead and works by storing criti@ids of the data array in a separate
structure. Extra circuitry needed for this techmigs minimal and the modified L1
cache augmented with SC has no impact on the syptformance. Moreover, to
evaluate our architectural technique in the contéxtrofit, we introduced models for

estimating the price of processors from their dedtural configurations and showed

60

that the estimation error rates are below 2% onamee Based on these models, we

showed that the most aggressive SC scheme increflsipagvenue by 13.1%.

61

Chapter 4

Mitigating the Effects of Process Variations:

Power in CMPs

In this chapter of the thesis, we try to invesigte impact of process variations on

CMPs and mitigate the power inefficiencies by usimgle/multiple voltage islands.

Particularly, we make the following contributions:

We develop an extensive model, which encompassegss variations for a
CMP using statistical estimations and the detdi®at plan for Alpha EV7-like
cores.

We develop a variation-aware scheme for power apétion using
single/multiple voltage islands across differentesan a CMP.

We analyze varying voltage island granularities simolw that depending on the
technology, even a single voltage island can retlue@ower consumption
significantly.

Finally, we formulate an analytical model that tenused to estimate the

advantages of voltage islands for different manuf&tg processes. Overall, our

62

results show that the multiple voltage island sobheesults in up to 36.2%
power reduction in our target architectures. A Engltage island, on the other

hand, can save up to 31.5% of the dynamic power.

4.1 Multiple Voltage Island Scheme: Methodology

This section presents an overview of the power-awaultiple voltage islands
scheme for CMPs. When processors are manufacttireg,operate at a voltage level
set during the design of the processor. This veltagel called the nominal voltage is
usually chosen at the design time. However, undecgss variations setting a constant
level for all the manufactured chips is consideyabéfficient. First, different chips will
have different latency slacks, which can be takdwaatage of by customizing the
voltage level for each chip. In addition, if we sater C2C variations, different cores
will tend to have different latencies. In such cagbe operating frequency of the whole
chip is determined by the maximum latency acro$scailes. It is known that the

dependency of delay (D) or latency on the suppliage is given by:

vdd
(Vdd—Vth)®

(4)
where \f, is the threshold voltage amdis technology constant varying between 1 and
2. Equation 4 implies that cores which have latdowyer than that of the slowest core

(nominal delay), can increase their latencies lalisg down the ¥y in steps till they

reach some minimum value. We refer to this voltagethe minimum stable supply

63

voltage (\opy). Beyond this point the circuit operation failsn @e other hand, nominal
supply voltage can be defined as the voltage sehglulesign time which gives the
desired latency for the set of manufactured ch@pst experiments indicate that for
most cases the supply of one or more cores caredieced below the nominalgy
value. This optimization can significantly cut dowstatic and dynamic power
dissipation, hence lowering the energy of the wisgem. Thus, in a multicore system
a single core or a group of cores can be clusterethe basis of critical latencies and
assigned a custom supply voltage. Such clusters avitustomized ¥4 can be referred
to as a voltage islands. In general, if there kawltage islands in a system having a
nominal clock frequency of;f and a corresponding supply voltaggs,\Mhe dynamic
and leakage power savings can be denoted by:

APgynamic = Cioaa - fek - 2?:1(‘/«%(1 - sz) (5)

APgiaris = Yie=1leak;, - Vaa — Vi) (6)
Wherel,q,i, and Goag represents the average leakage current and Igetitance for
each voltage island. Since our target CMP inclddesores, k can take values from 1 to
16. In the former case, the entire multicore syst@erates on a customizedqgvVwhile
in the latter case each core has a different supply

Since voltage islands can contain a single cor@ avllection of cores, we divide

the possible variable voltage islands into theolwlihg cases. On one extreme, each

core can be allocated an individualg\and thus the chip will have 16 different voltage

64

islands. On the other extreme, the chip can beg@adi a single customizedyyto
optimize for power, thus having one voltage islaitde other possibilities can be to
divide the chip into 2, 4 and 8 islands. Figure depicts some possible voltage island
schemes for our 16-core CMP model. Note that forarl 8 voltage island
configurations, we have two options. The cores btan selected horizontally or
vertically to form the islands. For example, foe thislands case, the upper 8 and lower
8 cores can form the 2 islands (2-horizontal) er [#ft and right 8 cores can form the
voltage island (2-vertical). In Section 4.3, we ganet results with both types of

orientations.

vag

a1 wid2 vt i
frei wazt vz

(a) 2 islands (hor- (b) 4islands (c) 8 islands (ver-
izontal) tical)

Figure 4.1. Various voltage island schemes.

One way of implementing the multiple-voltage-islasdheme is to have a
configurable DC-DC voltage converter in each vadtagland. Once the chip has been
tested the voltage levels for each island will B¢ ance; in that way a dynamic

adjustment can be avoided. Besides, several sa&twanls allow user-level voltage

65

control to change the supply particularly in moljileocessors [1]. This concept can
similarly be extended to multicore systems. Thaaxtverhead is going to be in the
form of a supply voltage table keeping the voltagecifications for each island or core.
The kernel is going to use this table during thethaperation. Alternatively, hardware

mechanisms like [19-21] can be easily adaptedhisrgurpose.

1000

9C0 A

60 A

TCO A

600 1*
5C0 A

4C0 A

Optimal Vdd (mV)

300 A

200 A

400 « opl_vod_rzal = opt_vdd_model

0 T T T T T T T
0 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8
Normalized [atency

Figure 4.2. Optimum voltage for different voltage slands given as a function (h) of latency.

cutoff
latency

Probability of Latency

Y

Latency ()

Figure 4.3. An example latency distribution curve ¢(1)).

66

4.2 Modeling Power Optimization

In this section, we develop a model that can ptatie amount of power savings
for a given manufacturing technology. In the cof¢he model lies the observation that
latency and voltage levels are correlated. For g@mf a circuit operates at 8ns and
our frequency requires 10ns operation, we can eedbe supply voltage until the
latency is 10ns. Thus for a particular initial tatg value (1), a corresponding minimum
stable voltage (henceforth called optimal suppltage V) level exists that
guarantees correct operation and results in thémalrpower consumption. Since this
metric depends on the latency, we first have toaekthe relation between the latency
and optimal supply voltage: oM = h(l). Note that this function is circuit-specificoF
our target architecture, we have first plottedl#tiency (I) versus the correspondingyV

values as shown in Figure 4.2. Then using cuntmdittechniques the functioh is

found to be:
615 if 1<218ns
h(l) = {66.81> —566.8] — 1202.2 if 218ns < I < leyrofy
900 otherwise
(7)

There are two important aspects of functlonFirst, our analysis of our circuit
revealed that it does not work below 615mV (notat tthe nominal voltage level is
900mV). In addition, functiorh depends on the cutoff point set by the designeis Th

cutoff point corresponds to the frequency thatpghecessor will run at and will be set

67

by the designer. Thus using functibnve can compute the value ofy Since dynamic
power is proportional to the square of the suppitage, from Equation 5 we get

dynamic power savings for a chip with lateh@s:

APaynanie = 1= [rmd—]' ®)

We also need the latency distribution for the baitithips manufactured to be
able to understand the advantages of a voltagadistgtheme. Assuming that this
distribution is Gaussian (Figure 4.3), we can fdateithe probability of a chip having

a certain latency bg such that:

-(1-pw?

g = —=e 2 (©)

wherep ando are the mean and standard deviation of the lat@hclystribution. Note
that these values can be estimated for a given faetoming technology. Thus the
average dynamic power dissipatid?) for a batch of chips with latency distributigf)

can be given as:

P o [T gy)2 al (10)
Hence, givenn ando of a distribution, Equation 10 can be used asratytcal

model to compute dynamic power consumption with.\In Section 4.3, we show that

this model is highly accurate to estimate the ot power consumption levels for

our studied manufacturing technologies. Note thagafdifferent technology, this model

can be used by only providing theo, and cutoff values, which are easily available.

68

4.3 Experimental Results

40.00 40.00

35.00

3500 1

30.00 4 30000 1

2500 1 25.00

20.00 1 2000 4

15.00 + 15.00 1

10.00 - 10.00 4

Improvement in dynamic power [%]
Improvement in dynamic power [%]

5.00 4 500 1

000 - 0.00 4

40.00

3500

30.00

2500

20.00

15.00

10.00

Improvement in dynamic power [%)]

5.00

0.00

(c)
Figure 4.4. Power savings for 1, 2, 4, 8 and 16 vaje islands for (a)p = 0.3, (b)e = 0.5 and
(c)p=0.7.

In this section we present the power optimizatieauits for different voltage
island schemes and also analyze how accuratelytlwarpower consumption with
voltage islands be predicted using our model. Wedaoted SPICE simulations on the
circuit model described in Chapter 1, Section 3i8ce the randomness of a parameter

changes withp, we evaluate 7 different voltage islands schenmes @0 multicore

69

chips each witlp values of 0.3, 0.5, and 0.7. The voltage islaradsl@ave a granularity
of 1, 2, 4, 8, and 16 cores.

Figure 4.4 illustrates the power savings for défervoltage island schemes with
different amounts of randomness in variation. lbves the percentage of the power
saving compared to the processor that uses nomatigge (900mV) in all its cores.
For a highly random case & 0.3), the dynamic power improvement can lie leemv
13.5% and 35.1%. For the highest correlated vanatfp = 0.7), on the other hand, the
improvements range between 31.5% and 36.2%. Fas th€.5 model, we see that the
dynamic power reduction is between 30.5% and 36\28.can reach two important
conclusions from these results. First, customizegply voltage levels can be an
attractive mean to reduce the power consumptio@MPs under process variations.
Particularly, we see that the dynamic power consgiommf the chip can be reduced by
as much as 36.2% on average, which is achieved waeh core is individually
controlled (16 voltage islands). Second, dependinghe manufacturing technology,
even a single customized voltage for the whole chip reduce the power consumption
significantly. Particularly, for thep = 0.5 ande = 0.7 models, we see that a single
customized voltage level can reduce the power copson by 30.5% and 31.5%,
respectively. Only when the spatial correlationdisinishing ¢ = 0.3), we need

individual control of the cores: for the = 0.3 model, a scheme that uses 16 voltage

70

islands can save 35.1% of the dynamic power whiedingle voltage island scheme
reduces the power consumption by only 13.5%.

Another interesting trend we observe in the resslthat voltage islands having
the same number of cores have almost same enevgygsaFor example, 2-vertical
and 2- horizontal voltage islands have similar posaings.

Accuracy of the model: We compare the results abthifrom the analytical
model (Equation 10) with the empirical data front exyperiments. The average error in
P for ¢ values 0.3, 0.5, and 0.7 are found to be 0.01389%, and 0.44%, respectively.

Thus our model gives highly accurate estimationthefdynamic power consumption.

4.4 Summary

In this work we analyzed the effects of parametmiations on CMPs with an
emphasis on the power dissipation. We presentettiation modeling technique which
involves five different variation parameters affsttby both systematic and random
variations. We have first described an accurateahtitht can be used to estimate the
advantages of forming voltage islands. Our simotetiindicate that a custom supply
voltage is more effective than a predetermined namiVyy for the entire chip.
Particularly, application of multiple voltage istésgrwith a latency constraint cuts the

power dissipation of CMPs by as much as 36.2%. e ahow that for most

71

manufacturing technologies, even a single custainszgply voltage for the whole chip

can reduce the power consumption substantially.

72

Chapter 5

Power due to On-chip Interconnect:

Advances in process technology enable exponentrallye cores on a single die
with each new process generation, leading to a camsarate increase in cache sizes to
supply all these cores with data. To combat theeeing on-chip wire delays as the
core counts and cache sizes grow, future multiacrkitectures become distributed: the
last-level on-chip cache (LLC) is divided into mplé cache slices, which are
distributed across the die area along with the<{®26, 83]. To facilitate data transfers
and communication among the cores, such processoqdoy elaborate on-chip
interconnection networks. Theon-chip interconnectietworks are typically optimized
to deliver high bandwidth and low latency.

However, such on-chip interconnects come at a stesp Recent studies show that
on-chip networks consume between 20% to 36% ofptwer of a multicore chip[36,
47]and significantly raise the chip temperature][&Rading to hot spots, thermal
emergencies, and degraded performance. As coreascoaintinue to scale, the impact of
the on-chip interconnect is expected to grow eughéer in the future.

The flurry of recent research to minimize the poveensumption of on-chip

interconnects is indicative of the importance @& groblem. Circuit-level techniques to

73

improve the power efficiency of the link circuitand the router microarchitecture [76],
dynamic voltage scaling [62] and power managem&6t B3], and thermal-aware
routing [64] promise to offer a respite, at thetcokextensive re-engineering of the
interconnect circuitry and routing protocols. Yedrior works miss one crucial
observation: a large fraction of the on-chip inteneect traffic stems from packets sent
to enforce data coherence, rather than from paeketsiutely required to facilitate data
sharing.

The coherence requirement is a consequence ofrpenice optimizations for on-
chip data. To allow for fast data accesses, thtiloised cache slices are typically
treated as private caches to the nearby core2[&83],forming tiles with a core and a
cache slice in each tile [5, 26]. Private cachdswalhe replication of shared data,
which, in turn, require a mechanism to keep thea daiherent in the presence of
updates. To allow scaling to high core counts amcllifate coherent data sharing,
modern multicores employ a directory structure,clihis typically address-interleaved
among the tiles [8, 26, 83].

However, address interleaving is oblivious to tlsadaccess and sharing patterns; it
is often the case that a cache block maps to atdmein a tile physically located far
away from the accessing cores. To share a caclek,bilbe sharing cores need to
traverse the on-chip interconnect multiple timesctanmunicate with the directory,
instead of communicating directly between them.sEhennecessary network traversals

increase traffic, consume power, and raise theatip@al temperature with detrimental

74

consequences. Ideally, from a power-optimizati@mdpoint, the directory entry for a
cache block would be co-located with the most acsikiaring core of the block, rather
than a seemingly random one.

In this chapter, we observe that a large fractibthe on-chip interconnect traffic
stems from the data-access-oblivious placementirectory entries. Based on this
observation, we propose a distributed cache anthie that cooperates with the
operating system to place directory entries clas¢hé most active requestors of the
corresponding cache blocks, eliminating unnecessaiwork traversals and conserving
energy and power. The mechanisms we propose exhteddy existing hardware and
operating system structures and events, have rggligverhead, they are easy and
practical to implement, and can even slightly inygrgperformance.ln summary, the
contributions of this paper are:

* We observe that a large fraction of the on-chignrinnect traffic stems
from the data-access-oblivious placement of dimyctotries.

* We propose Power-Aware Directory placement (PADnechanism to co-
locate directory entries with the most active rexjoes of the corresponding
cache blocks, eliminating unnecessary network teale and conserving
energy and power.

* Through trace-driven and cycle-accurate simulatibfarge scale multicore
processors running a range of scientific [78] andpNReduce [55]

workloads, we show that PAD reduces the interconeeergy and power by

75

up to 37% (22% on average for the scientific waoakl® and 8% on average

for Map-Reduce) with a 1.4%performance improvenoenaverage.

5.1 Background on NUCA Caches

We assume a tiled multicore, where each tile ctsmsisa processing core, a private
split I/D first-level cache (L1), a slice of thecemd-level cache (L2), and a slice of the
distributed directory. Figure 5.1 depicts a typi¢cdéd multicore architecture. We
assume a private NUCA organization of the distelut2 cache [26], where each L2
slice is treated as a private L2 cache to the loced within the tile.

On-chip distributed caches in tiled multicores tglly use a directory-based
mechanism to maintain coherence [8, 26, 83]. Ttedoahigh core counts, the directory
is also distributed among the tiles in an addressieaved fashion (i.e., the address of
a block modulo the number of tiles determines tinectbry location for this block). In
the ideal case, the directory has the capacityotd boherence information for all the
cache blocks across all the tiles in all cases @.éull-map directory). Techniques like
sparse directories reduce the capacity requiremanfsll-map ones. However, the
investigation of directory capacity-management naectms is beyond the scope of this
paper. Without loss of generality, and similarlynmst relevant works, we assume a
full-map directory for the baseline and PAD arctiitges. In general, PAD uses the

same directory mechanisms as the baseline aralmiéect

76

ol o8| O
Bl =/ [E==d|l§ p1g | €Ore
P8 P9 P10 P
= el e 1S:|- DS
| | i:-:-:-:-:-i_E ______________
= |.-.".-. . Directory. .- .-~
P12 P13 P | [Pl Ty
e on] A o R e R

Figure 5.1.Baseline tiled architecture of a 16-core CMP. Eactile has core, split I/D L1, L2 and
directory slice.

Address interleaving does not require a lookupxtoaet the directory location; all
nodes can independently calculate it using only address of the requested block.
However, address-interleaved placement staticaByributes the directories without
regards to the location of the accessing coresifdgado unnecessary on-chip
interconnect traversals. Figure 5.2-a shows an phkamof the drawbacks of static
address-interleaved directory placement. Tile Testp a data block, currently owned
by Tile 1, with its directory entry located at Tile as determined by address
interleaving. To access the block, Tile 7 first kmaccess the directory at Tile 5, which
forwards the request to the owner Tile 1, whichntsends the data to Tile 7. As the
directory placement is oblivious to the locationtleé sharing cores, most on-chip data
transfers will require similar 3-hop messages. llgethe directory would be co-located

with the sharer at Tile 1 (Figure 5.2-b), which Wbieliminate two unnecessary

77

network messages and result in reduced power cgigumand faster data access.
Such placement is the goal of PAD.

A similar message sequence is generated upon teqtlemn result in off-chip
misses. In such a case, even if the accessed dafaigate, the requesting core first
contacts the corresponding directory, which thendsea message to the memory
controller. When the data is available, the memmmtroller sends a message to the
directory node and the data to the requestor. df directory is co-located with the
requesting core using PAD, one or two messageselarenated (in an aggressive
design, the data and directory replies may be coetbinto a single message, as they

both go to the same destination tile).

Data

E a Response

DataRequest

Data
Response

Forward
Request

Data

Request Ack

Off-Chip ~ Off-chip Miss

Figure 5.2. (a) Sequence of on-chip network messag®llowing a request by tile 7 for a block

owned by tile 1, with its directory at tile 5. (b)The same when the owner tile 1 also holds the
directory entry.

The fewer the sharers of a block, the higher thpath of intelligent directory
placement. A block that is private to a core ansl itedirectory entry within the same

tile can be accessed without any intermediate wirgeodes participating in resolving

78

local cache misses. A block with a couple of stsagard its directory co-located with
one of them can be shared through direct commuaicamong the sharers, also
without the need to access an intermediate nodeheMar end of the sharing spectrum,
a universally-shared block that all cores accesh similar frequency cannot benefit
from the intelligent placement of its directory sntbecause any location is as good as
any other. Thus, applications with a large fractafrdata with one sharer (private) or
with few sharers (2-4) will benefit the most fromAP. In Section 5.2 we show that
there is a considerable fraction of accesses tkblwith one or few sharers in a variety
of parallel applications, rendering traditional eeks-interleaved directory placement

inefficient.

Note that in arN-tile multicore with address-interleaved distribditdirectory, the
probability of a particular tile holding the direcy entry for a block i4/N. This is the
probability with which a requesting core can acaesBrectory within its own tile. As
the number of tiles increases, the probability ofifg a local directory diminishes.
Thus, traditional address-interleaved directory cplaent becomes increasingly
inefficient in future technologies, as the core msugrow. This has a twofold impact,
both on the power and the performance of the chihe extra hops to a remote
directory increase the on-chip network power usagd,the extra hop latency increases
the access penalty for a block that missed locallyr proposal,Power-Aware

Directory placement (PAD) promises to mitigate both effects.

Table 5.1.Description of workloads.

79

Benchmark Application Description
unstructured Computational fluid dynamics application
ocean Simulates large-scale ocean movements based oraaddy
boundary currents
dsmc Simulates the movement and collision of gas particles
appbt Solves multiple independent systems of equations
SPLASH-2 watersp Simulates the interactions of a system of water molecules
moldyn Molecular dynamics simulation
barnes Barnes-Hut hierarchical N-body simulation
tomcatv A parallelized mesh generation program
Simulates particle interactions using the Adaptive Fast Multipole
fmm Method
Ireg Linear regression to find best fit line for a set of points
hist Histogram plot over a bitmap image file
K-Means clustering over random cluster points and cluster
Phoenix kmeans centers
pca Principal component analysis over a 2D-matrix
smatch String matching in a large text file
wcount Word count in a large text file

Table 5.2.System parameters for the simulated framework.

CMP Size | 16 cores

Processing Cores | UltraSPARC Il ISA; 2GHz, in-order cores, 8-stage pipeline, 4-way
superscalar

L1 Caches | split I/D, 16KB 2-way set-associative, 2-cycle load-to-use, 3 ports
64-byte blocks, 32 MSHRs, 16-entry victim cache

L2 NUCA Cache | private 512KB per core, 16-way set-associative, 14-cycle hit

Main Memory | 4 GB memory, 8KB pages, 45 ns access latency

Memory Controllers | one controller per 4 cores, round-robin page interleaving

Interconnect | 2D folded torus [8,28], 32-byte links, 1-cycle link latency, 2-cycle
router

Cache Coherence | Four-state MOSI modeled after Piranha [7]

Protocol

80

5.2 Overview of Power-Aware Directory Placement (PAD)

At a high level, PAD utilizes the virtual addresanslation mechanism to assign
directories to tiles at page granularity. The fiiste a page is accessed, the tile of the
accessing core becomes the owner of the directfmni¢bat page (directory information
is still maintained at cache block granularity;yotiie placement of the entries to tiles is
done at the page level). This information is starethe page table and propagated to
the TLB. If another core accesses the same pageditectory location is provided
along with the physical address of the page. Theeefa second core accessing the
same page can directly contact the directory enfoeblocks in that page. Thus, PAD
decouples the address of a block from the phy&cation of its directory, allowing the
directory to be placed anywhere on chip without pboating lookup. In the remainder
of this section, we motivate the deployment of Pthibbugh an analysis of the sharing

patterns of SPLASH-2 and Phoenix Map-Reduce apjms

5.2.1Experimental Methodology

We evaluate PAD on two different benchmark sui&RBlLASH-2 [78] and Phoenix
[55], which are described in more detail in Tablé. SPLASH-2 consists of a mixture
of compute-intensive applications and computatideshels. Phoenix consists of data-
intensive applications that use Map-Reduce.

We analyze the data sharing patterns across ouicafpn suite by collecting

execution traces of each workload using SimFleX,[&7full-system cycle-accurate

81

simulator of multicores with distributed non-unifioicaches. The traces cover the entire
execution of the Map phase for Phoenix applicatigvisich constitutes the majority of
execution time) and threecomplete iterations forLAFH-2 applications. The
workloads execute on a 16-core tiled CMP suppdried 2D folded torus interconnect
similar to [26]. The architectural parameters far baseline configuration are depicted

in Table 5.2.

5.2.2Analysis of Sharing Patterns

A core first searches for data in its local L2 aachi it misses, then a directory
access for the corresponding block follows. Foreaorkload, Figure 5.3 shows the
percentage of local L2 misses (i.e., directory ases) on blocks that are accessed by
only one core during the execution of the prograrsH, i.e., private blocks), accessed
by few cores (2-4 shr), accessed by a large numibeores (5-15 shr), and blocks that
are universally shared (16 shr).

As described in Section 5.3, placing the directoirprivate blocks in the same tile
with the core accessing these blocks will elimirtate control messages for every local
L2 miss.In contrast, conventional address-inteeadirectory placement will co-locate
the directory and the requestor only a small foactf the time. For the cases where the
accesses are to blocks with afew sharers (2-4paaiing the directory with one of the
requesting cores will significantly increase thelability that the directory and the

requester are in the same tile, which will alsalleathe elimination of two messages.

82

As the number of sharers increases, this probgluiétreases; in the case of universal
sharing (16 shr), conventional address-interleadiegttory placement will always co-
locate the directory with one of the sharers, henaeproposed scheme will provide no

additional benefit.

m16shr =5-15shr ®m2-4shr ®1shr (private)
100% [B - - o ~———
90% -1 - - - - 1
80% -1
70% 1

3 609
Y 60%
%50%*
~ 40%
-
04
753“’
g 20%
- 10%
0% -
58 2 g5 § % B 8 g ozl g glg ¢
aQ g 8 I % 3 IS 3 o T 3 — e < o
< | 5 g/ 0 o 5|8 £ =S
Flz] = < o=
7]
c
S
Splash Phoenix

Figure 5.3. Access sharing pattern at the block ley based on number of sharers per block.

Figure 5.3 shows that Phoenix and SPLASH-2 appbioatexhibit a significant
fraction of directory accesses for blocks that@reate or have a few sharers. Averaged
across all 15 workloads, 35% of the directory asessare for private data and 33% of
the accesses are for data shared among 2-4 cavesvir, there are some exceptions
to this behaviorpca exhibits a large fraction of universally sharedadd@evertheless,

our analysis suggests that in a large majority ppliaations,the most accessed

83

directoriesare either for private data or for daiidn a few sharers, motivating the use of

PAD.

On-Chip B Off-Chip

00 e R R I E e e R il e I e R T
90% T . . . 8 8 8 - ------- - -
80% . 8 8 8 - - - -

70% + 1 . . - -------

60% -] . . .]] . R ke

50% - . . . R]] . - -------

40% - . . .]]] ; -

30% -]]]]]]] kR ke

20% - . 8 R R]]] -

10% -]]]]]]] kR

0% -

Local L2 Misses

Tomcat
Wcount

Unstructured
Kmeans

Splash Phoenix

Figure 5.4. Accesses breakdown by off-chip and oriip accesses.

Figure 5.4 illustrates the breakdown of local LXseis based on whether the access
is made to an off-chip block or to a block thatides in some remote tile on chip. Both
types of accesses have to access the directotylfirthe case of an off-chip miss, the
directory sends a message to the memory contmletth the block. In an aggressive
protocol, the memory controller sends the datactlyeo the requestor, and a reply
acknowledgement to the directory. In a conservapiraocol, the memory controller
sends the data to the directory, which then forardo the requestor. In either case,

the directory is informed about the cache filltHé requestor and the directory entry are

84

in different tiles, four messages are generated) RAuld eliminate two of them, by

placing the directory entry together with the regjoe

®m16shr

100%
90% -+
80%
70% +
60%
50%
40% T
30% T
20%
10% T

0% -

Local L2 Misses

= [%] (8] c

2/ ¢ £ E|3

o — i -

< © [a) o

m =
Splash

Figure 5.5. Access sharing pattern at the page leveased on number of sharers per page.

= 5-15shr

Ocean

Tomcat

Unstructured

m2-4shr

Watersp

Hist

Kmeans

m 1 shr (private)

=} ©
(] (]
2

= o
Phoenix

Smatch

Wcount

In the case of a local miss to a block that resoleschip, the directory sends a

request to the owner of the block, which then sahdsdata to the requestor and an

acknowledgement to the directory, so that it cadatg the coherence state of the block

and finalize the transaction. Hence, for cacheache transfers, a total of four

messages are generated (one of which will be agiafdiae directory resides with the

requesting core, and two will be avoided if theediory resides with the owner of the

block).

PAD determines the placement of a directory atpghge granularity (i.e., all the

directory entries for the blocks within in a page bcated in the same tile). Hence, the

85

sharing pattern at the page granularity determiies overall performance of our
scheme. Similar to Figure 5.3, Figure 5.5 showspreentage of local L2 misses (i.e.,
directory accesses) on blocks that are within pagesssed by some number of cores
during the execution of the workload. Averaged sasrall 15 applications, 23% of the
accesses are on pages that are private and 13P® @aictesses are on pages with 2-4
sharers. Thus, although working at the page grahuletroduces false sharing, the

change is not drastic as compared to block graityilar

5.3 Power-Aware Directory Placement: In Detall

Power-Aware Directory placement (PAD) reduces thenegessary on-chip
interconnect traffic by placing directory entries tiles with cores that share the
corresponding data. To achieve this, for every p&fd designates an owner of the
directory entries for the blocks in that page, atates the owner ID in the page table.
By utilizing the already existing virtual-to-physicaddress translation mechanism,
PAD propagates the directory owner location tocalles touching the page. There are
three important aspects of this scheme: the clea8dn of pages by the OS, the
directory placement mechanism, and the distributibdirectory owners among cores.

We investigate these aspects in the following easti

86

5.3.10perating System Support

To categorize pages and communicate their diredtmgtion to the cores, PAD
piggybacks on the virtual-to-physical address i1 mechanism. In modern
systems, almost all L2 caches are physically aeceschus, for all data and instruction
accesses, a core translates the virtual addresphysical one through the TLB before
accessing L2. Upon a TLB miss (e.g., the first timeore accesses a page, or if the
TLB entry has been evicted) the system locatesoineesponding OS page table entry
and loads the address translation into the TLB.

We implement PAD by slightly modifying this prose$Vhen a page is accessed for
the first time ever by any of the cores, the fastessor becomes the owner of the
corresponding directory entries (this is calfegt-touch directory placemerdand we
discuss its effects in the next section). Thisiimfation is stored in the page table. Upon
a TLB fill, the OS (or the hardware page walk metbka) provide this owner
information to the core along with the translatiamd store it in its TLB. Thus, any
subsequent accessor of the page is also notifi¢gkeodlirectory location for the blocks
in the page. This mechanism guarantees that tlketdry is co-located with one of the
sharers of the page. If the page is privately ammbsthe tile of the accessing core will

hold the directory entries for all the blocks ie fhage.

87

5.3.2Discussion

Directory placement can be done at different gramigs. For example, instead of
designating one tile as the owner for the direcemiries of all the blocks in the page,
we could designate different owners for the directntry of each block individually
(or any granularity in between). Such a fine-gialecement would require considerable
changes in the overall system operation. Firsth BB entry would have to store
multiple directory owners (one per placement-graim) turn, this would require a
separate TLB trap for each sub-section of the phgeé is accessed to extract the
directory location for it. Our results indicate tlhilae system behaves well enough at the
page granularity that employing finer-grain techugg is unjustified. Nevertheless, in
the next section, we provide hypothetical energyings of such an approach; our
results indicate that, for most applications, figeanularity provides negligible benefits.

Directory placement could be achieved by simplydgg the selection of physical
addresses for each virtual page (i.e., some bitshef physical address will also
designate the directory owner). However, such hrtiggie would couple the memory
allocation with the directory placement. As a rgsiadrcing the use of specific address
ranges could lead to address space fragmentatitn detrimental consequences in
performance, and may complicate other optimizati@ng., page coloring for L1) that
pose conflicting address translation requests. RADIds these problems by fully

decoupling page allocation from directory placement

88

While pathological cases are possible, we didréta®y in our workloads, and we
don't expect to see any in commercial workload$eeit their data are typically
universally shared with finely interleaved acceqd2€§, so the pages should distribute
evenly. It is important to note here that it is plento turn off PAD in pathological
cases: one bit per page could indicate whetheetbatries are managed by PAD or a
traditional method. Finally, in the case of heavitigrating threads, the corresponding
directory entries could either stay in the origitild and be accessed remotely by the
migrating thread (similar to the baseline), or maeng with it, or we could simply
turn off PAD as described above. While dynamic awey migration is possible under
our scheme, the complexities it entails may ovetshaits benefits. Hence, we leave

the investigation of on-chip directory migratiorhemes to future work.

5.4 Experimental Results

5.4.1Methodology

We evaluate PAD using the SimFlex multiprocessonm@eng methodology [77].
Our samples are drawn over an entire parallel g¢i@tMap phase) of the Phoenix
workloads, and three iterations of the scientifiplecations (SPLASH-2). We launch
measurements from checkpoints with warmed cachliaach predictors, TLBs, on-chip
directories, and OS page tables, then warm quedererconnect state for 100,000
cycles prior to measuring performance for 200,098les. We use the aggregate

number of user instructions committed per cycleoas performance metric, which is

89

proportional to overall system throughput [77]. Thechitectural parameters are

described in Section 5.2.1.

5.4.2First Touch Directory Placement

To evaluate the effectiveness of the first-toucheatory placement policy, we
compute the number of page accesses by the cdravéisathe first ever to access the
page (FirstAcc), and compare it against the aceessied by the most frequent
accessor for the same page (MaxAcc). From a poptanization standpoint and in the
absence of directory migration, MaxAcc would be itheal directory location for that
page. As Figure 5.6 shows, first-access directtaggment is a good approximation of
the ideal scheme: the number of accesses issudltkldfirst accessor are very close to

the maximum accessor’s.

FirstAcc B MaxAcc

D000 === =TT oooooooooooooooooooooooooooo
90% oo oooomoeo e -1 B
80% - M- - B
n T0% [-1 -
O
A 60% | MW B B S
S 50% 7 M- B B
ﬁ 40% T M- 1 B -1 B
E 30% T BEhh REERRERE 1 B -1 - g
3 20% T T 1 - B - B R [l
10% T T - 1 1 - -1 -1 B EEREREREE - T e
0% -
g &1 e E & 8 8¢ ¢ Z0g 8 8 &8 %
Q = 0 L = o £ > 5] o} — © o
< S s} § o o B & £ £ 3]
[3 = ™ n =
17
c
)
Splash ‘ ‘ Phoenix

Figure 5.6. Effectiveness of the first-touch diredry placement policy.

90

5.4.3Distribution of Directory Entries Across Tiles

The first-touch directory placement policy may fesu an imbalanced distribution
of directory entries to tiles, in contrast to tHmast even distribution under traditional
address interleaving. If some tiles are assignstiymore directory entries than others,
they would require a disproportionately large ai@athe directory, or could result in

traffic hotspots that degrade performance.

50%

45%

Private
m Shared

Percent of Pages
3
=

Appbt | Barnes | Dsmc Fmm | Moldyn | Ocean | Tomcat |Unstruct Watersp‘ Hist Kmeans | Lreg Pca Smatch Wcount‘
Splash ‘ Phoenix ‘

Figure 5.7. Distribution of directory entries for pages across tiles under the first-touch placement
policy.

Figure 5.7 presents the distribution of directomtries under the first-touch
placement policy across tiles for private and sthgrages. The red line indicates the
level of a hypothetical uniform distribution. Theaven distribution of directory entries
is an artifact of the first-touch directory placerhpolicy and could be minimized. First,
only the shared pages matter; private data aressedeby only one core so they are

always coherent, obviating the need for a direct®hus, PAD can defer the directory

91

entry allocation until a page is accessed by argkcore, ensuring that directories exist
only for shared pages and conserving directory. k&t the exception of Kmeans and
Fmm, shared entries for the remaining applicatemesmostly evenly distributed (in the
remaining applications, a tile gets at most 18%hef total entries). Second, PAD can
minimize the uneven distribution by utilizing a temd-touch” placement policy (i.e.,
the second sharer being assigned the entries) thlesiirst-touching tile is overloaded.
Third, the uneven distribution of pages is not eedi indicator of increased traffic
hotspots, as some pages are colder than othersthanaseline may also exhibit
imbalanced traffic.

To investigate hotspots, we analyzed the accesseach directory tile under PAD
and baseline Our results indicate that PAD reduces the nunatberetwork messages
for most applications. In some cases, it even th#snumber of control messages by
almost half (appbt, moldyn, ocean, and tomcatv;FSgare 5.9). With the exception of
Kmeans, Fmm and Dsmc, the remaining applicationkibéx a slightly higher
imbalance than baseline, with a tile receiving astri6% more directory accesses from
remote cores (8% more on average). These imbalaneeslatively small and do not
impact the overall performance (Figure 5.10). AppglyPAD on Kmeans, Fmm, and
Dsmc exacerbates already existing traffic imbalanewever, we find that even these
hotspots have a negligible performance impact, tduthe already small fraction of

execution time these applications spend on thelliséd L2 cache.

1 We omit the graph due to space constraints, astéad present our findings in the text.

92

5.4.4Energy Savings

Figure 5.8 presents the fraction of network enesgyed by PAD. For each

application, the left bar indicates the energy sgwiattained by PAD at cache-block

granularity, while the right bar presents PAD f&tB3pages. PAD reduces the network

energy by 20.4% and 16.1% on average for block-@agk-granularity, respectively,

mainly by reducing the network messages. As expdedtee block-granularity shows

higher energy savings compared to the page-gratyuladtowever, as we describe in

Section 5.3.2, such an implementation would corapdiche design considerably (and

will incur performance costs).

Percent Network Energy Savings

40%

35%

30% T

25% +

20% +

15%

10%

5%

0% +

PAD-BLK ®PAD-8K Page
= 7] [¢] I c c > o [=R 5 7] =) © o =
= [T [&] [

< | 8 |° S| o0 E| 8| =8 £ 5 2
[%2]
=
=)

Splash Phoenix

Figure 5.8. On-chip network energy savings obtainety block-grain and page-grain PAD.

In general, we note that the scientific applicadicattain higher energy savings

compared to Phoenix. Phoenix applications exhibltigher fraction of shared data

93

accesses (Section 5.2). As a result, our schemesmare useful for SPLASH-2
applications. In fact, we observe a strong coni@babetween the sharing distribution

(Figure 5.5) and the energy reduction (Figure tBgach of the studied applications.

G0
T
(]
®
£ 50% o [- -~ - -~ == e oo
E
v
0f 0 ~ N e
340&
0o
a
gso% T I e
©
S
£ 20% TR
o
o
-
@ 10% - E B I B B B B
5
a
0% -
= [%] > ° (] = =
2 o] 19} g o 3] <
c = 2 a | 2 S
o = o > -_] o
T 8 E| B E 9
o > %]
-
c
=}
Splash Phoenix

Figure 5.9. Reduction of network control messagestained by PAD with respect to Baseline.

5.4.5Performance Impact

Figure 5.10shows the overall speedup of PAD as compared toselipe private
NUCA architecture. Interestingly enough, we obsetiiat PAD slightly increases
performance in 7 out of 15 applications, and desgegerformance in 2. PAD improves
performance by up to 7%O¢ear), and by 1.3% on average, while the maximum
performance slowdown is 1.3%¢d). The performance is improved due to two

reasons. First, PAD reduces the number of netwakgts which may eliminate

94

congestion and hence reduce the overall latenayetfork operations. Second, data

transfers (on-chip and off-chip) are faster becatseaccess to a remote directory is

eliminated in many cases. Because the workingssarge, PAD’s savings are realized

mostly by off-chip memory accesses. As the off-amg@mory access latency is already

large, saving a small number of cycles does notangthe performance considerably.

0.20
<
S 0.5
2
(]
£ 0.10
2
% 005
(]
3
o 0.00
=]
°
g -0.05 1 1
wv
-0.10
e 5 & & § & E & g2 @ =4 & ® 3
[5 = N~) =
Splash Phoenix

Figure 5.10. Speedup of PAD over the baseline pritet NUCA architecture.

The reason for the slowdown exhibited by a coupka® applications is attributed to

the fact that PAD assigns directories for a whagepto one node. If it fails to reduce

the number of network packets, this assignment carse contention and hotspots.

Especially for universally-shared pages, it islijkihat blocks are accessed by different

cores in nearly consecutive cycles, causing coisienin the directory tile, and

increasing the directory’s response time. On awverag observe that the positive and

95

negative forces cancel each other out, and PAD drdg a negligible overall

performance impact.

5.5 Summary

As processor manufacturers strive to deliver higheformance within the power
and cooling constraints of modern chips, they gfleigo reduce the power and energy
consumption of the most insatiable hardware compisndkecent research shows that
on-chip interconnection networks consume 20% to 38% chip’s power, and their
importance is expected to rise with future proctsshnologies. In this paper, we
observe that a large fraction of the on-chip tcaffiems from placing directory entries
on chip without regards to the data access andinghgratterns. Based on this
observation, we propose Power-Aware Directory ptaae (PAD), a distributed cache
architecture that cooperates with the operatingesyso place directory entries close to
the most active requestors of the correspondingecétocks, eliminating unnecessary
network traversals and conserving energy and poilMee. mechanisms we propose
exploit already existing hardware and operatingtesysstructures and events, have
negligible overhead, and are easy and practicahpbement. Through trace-driven and
cycle-accurate simulation on a range of scientiind Map-Reduce applications, we
show that PAD reduces the power and energy expelgéde on-chip network by up
to 37% (16.4% on average) while attaining a snmfirovement in performance (1.3%

on average). Thus, we believe PAD is an appeadinigrique that shows great promise

96

in reducing the power and energy of the on-chipersdnnect, with negligible

overheads.

97

Chapter 6

Conclusions and Future Work

Future technological trends will intensify the plern of power and reliability in
modern multi-core processors. On one hand devicanpeter variability gives rise to
reliability concerns. On the other hand, the exmpdaé growth of power in chips
necessitates the needs for architectural approdtiasneed to mitigate the power
problem. The goal of this thesis is provide micob@ectural level solutions to these

problems. Particularly this thesis makes the folkmacontributions:

Analyzes the impact of process variations on poaed performance of

processors

* Proposes efficient cache resizing and redundantgnses to optimize the
frequency binning under process variations whicladse to high batch
performance and larger profitability

* Proposes power-aware voltage/frequency island sehémn reduce overall
dynamic power dissipation in multi-core chips

* Propose power-aware directory co-location policyiivate NUCA caches that

effectively reduce network traversals and hence sative power.

While several researchers are studying novel cacitkdirectory management

schemes for future generation architectures tomopéi for power and reliability, this

98

thesis only proposes few architectural solutionghtese problems. Several areas of
future work related to this work can be categorizs=dbut are not limited to the
following:

» Evaluation of directory co-location scheme for mphlogrammed workloads
and other parallel software

* Modeling power dissipation in a multicore platfoand evaluating the power-
savings from directory management schemes as dedabove

» Other schemes such as physical thread assignmemtliicore processors that

can increase spatial data locality and hence camize coherence misses.

In summary, this thesis opens up several interg@gtioblem in the multicore

cache/memory design space.

99

Bibliography

[1]
[2]

[3]
[4]
[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]
[13]

[14]

Notebook Hardware Control, personal editioAvailable: http://www.pbus-
167.com

A. Agarwal, B. C. Paul, H. Mahmoodi, A. Dattand K. Roy, "A Process-
Tolerant Cache Architecture for Improved Yield irambscale Technologies,"
IEEE Trans. Very Large Scale Integrated Systevos, 13, pp. 27-38, 2005
2005.

D. Albonesi, "Selective Cache Ways: On-demarati® Resource Allocation,”
in Intl. Symposium on Microarchitectyrilaifa, Israel, 1999, pp. 248 - 259.

B. S. Amrutur and M. A. Horowitz, "Speed andvww Scaling of SRAM's,"
IEEE Trans. on Solid-State Circuitgl. 35, pp. 175-185, Feb. 2000 Feb. 2000.
M. Azimi, N. Cherukuri, D. Jayasimha, A. KumaP. Kundu, S. Park, I.
Schoinas, and A. Vaidya, "Integration challenged @tade-offs for tera-scale
architectures,ntel Technology Journalol. 11, pp. 173-184, 2007.

J. Balfour and W. Dally, "Design tradeoffs faked CMP on-chip networks,"
2006, p. 198.

L. A. Barroso, K. Gharachorloo, A. Nowatzyk, RIcNamara, R. Stets, S.
Smith, S. Qadeer, B. Sano, and B. Verghese, "ParafitScalable Architecture
Based on Single-Chip Multiprocessing," 2000, p2-282.

B. Beckmann, M. Marty, and D. Wood, "ASR: Adegt selective replication for
CMP caches," 2006, pp. 443-454.

S. Borkar, T. Karnik, S. Narendra, J. TschaAz, Keshavarzi, and V. De,
"Parameter Variations and Impact on Circuits andrbarchitectures,"” ifProc.
of the Design Automation Conferenéamaheim, CA, 2003, pp. 338-342.

W. Bryg and J. Alabado. The UltraSPARC T1 Rssor - Reliability,
Avalilability, and Serviceability.

Y. Cao, T. Sato, D. Sylvester, M. Orshanskyd &. Hu, "New Paradigm of
Predictive MOSFET and Interconnect Modeling for lf£aCircuit Design," in
Custom Integrated Circuits Conferen€grlando, FL, 2000, pp. 201-204.

J. Chang and G. S. Sohi, "Cooperative CachiorgChip Multiprocessors,"
SIGARCH Comput. Archit. Newgl. 34, pp. 264-276, 2006.

M. Chaudhuri, "PageNUCA: Selected policies fgage-grain locality
management in large shared chip-multiprocessoresatR009, pp. 227-238.

Z. Chishti, M. D. Powell, and T. N. VijaykumalOptimizing Replication,
Communication, and Capacity Allocation in CMPs,"esgnted at the
Proceedings of the 32nd annual international symposon Computer
Architecture, 2005.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

100

S. H. Choi, B. C. Paul, and K. Roy, "Novel &g Algorithm for Yield
Improvement Under Process Variation in Nanometarhmelogy,” inProc. of
the Design Automation Conferenesl San Diego, CA, 2004, pp. 454-4509.

P. Choudhary and D. Marculescu, "Hardware 8dssguency/voltage control of
voltage frequency island systems,"” Hroceedings of the 4th international
conference on Hardware/software codesign and systaynthesis
(CODES+ISSS)New York, NY, 2006.

O. Coudert, "Gate Sizing: A General Purposeti@gation Approach,” in
European Design and Test Conferent@96, p. 214.

A. Datta, S. Bhunia, J. H. Choi, S. Mukhopaajpyand K. Roy, "Speed Binning
Aware Design Methodology to Improve Profit Underdraeter Variations," in
Proc. of the Conf. on Asia South Pacific Designofndtion Yokohama, Japan,
2006, pp. 712-717.

S. Dhar, D. Maksimovi, and B. Kranzen, "Clodedp adaptive voltage scaling
controller for standard-cell asics," IBLPED, New York, NY, 2002, pp. 103-
107.

M. Elgebaly and M. Sachdev, "Efficient adaptivoltage scaling system through
on-chip critical path emulation,” ilnternational Symposium on Low Power
Electronics and Design (ISLPE[3004.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rd?ham, C. Ziesler, D. Blaauw, T.
Austin, K. Flautner, and T. Mudge, "Razor: A LowviRer Pipeline Based on
Circuit-Level Timing Speculation,” inProc. of the Intl. Symposium on
Microarchitecture San Diego, CA, 2003, p. 7.

B. Falsafi and D. Wood, "Reactive NUMA: a dgsifor unifying S-COMA and
CC-NUMA," ACM SIGARCH Computer Architecture News)|. 25, p. 240,
1997.

K. Flautner, N. S. Kim, S. Martin, D. Blaauand T. Mudge, "Drowsy Caches:
Simple Techniques for Reducing Leakage PowerJhiarnational Conference
on Computer Architecture (ISCAAnchorage, Alaska, 2002, pp. 148 - 157.

P. Friedberg, Y. Cao, J. Cain, R. Wang, J.d&gb and C. Spanos, "Modeling
Within-Die Spatial Correlation Effects for Procd3ssign Co-Optimization," in
Proc. of the Intl. Symposium on Quality of Electicobesign San Jose, CA,
2005, pp. 516-521.

Z. Guz, |. Keidar, A. Kolodny, and U. WeisétJtilizing shared data in chip
multiprocessors with the Nahalal architecture,"&Qgp. 1-10.

N. Hardavellas, M. Ferdman, B. Falsafi, and Allamaki, "Reactive NUCA:
near-optimal block placement and replication intribsited caches " in
Proceedings of the 36th annual international symypuos on Computer
architectureAustin, TX, 2009.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

101

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burgemd S. Keckler, "A NUCA
substrate for flexible CMP cache sharintEE transactions on parallel and
distributed systemspl. 18, 2007.

E. Humenay, D. Tarjan, and K. Skadron, "ImpattParameter Variations on
Multi-Core Chips," in Workshop on Architectural Support for Gigascale
Integration 2006.

E. Humenay, D. Tarjan, and K. Skadron, "Thepatt of systematic process
variations on symmetrical performance in chip mpithicessors,” irDesign,
Automation and Test in Europe (DATEDO7.

Intel. (2006, Intel Processor Pricing Available:
http://www.intel.com/intel/finance/pricelist/proce® price list.pdf?iid=InvRel
+pricelist_pdf

L. Jin, H. Lee, and S. Cho, "A flexible datalt2 cache mapping approach for
future multicore processors," 2006, p. 101.

N. P. Jouppi, "Improving direct-mapped cacleefprmance by the addition of a
small fully-associative cache and prefetch buffeACM SIGARCH Computer
Architecture Newsol. 18, pp. 364 - 373, 1990 1990.

M. Kandemir, F. Li, M. Irwin, and S. Son, "Aowuel migration-based NUCA
design for chip multiprocessors," 2008, pp. 1-12.

S. Kaxiras, Z. Hu, and M. Martonosi, "CachecBg Exploiting Generational
Behavior to Reduce Cache Leakage Power,nternational Conference on
Computer Architecture (ISCABOteborg, Sweden, 2001.

C. Kim, D. Burger, and S. W. Keckler, "An Adage, Non-uniform Cache
Structure for Wire-delay Dominated On-chip CachésProc. of the Intl. Conf.
on Architectural Support for Programming Languagesl Operating Systems
San Jose, CA, 2002, pp. 211-222.

J. S. Kim, M. B. Taylor, J. Miller, and D. Wetaff, "Energy characterization of
a tiled architecture processor with on-chip netwgrkin International
Symposium on Low Power Electronics and DeSgaul, Korea 2003.

N. S. Kim, D. Blaauw, and T. Mudge, "Leakagewer Optimization
Techniques for Ultra Deep Sub-Micron Multi-Level cbas," inInternational
Conference on Computer Aided Desigf03, p. 627.

H. Lee, S. Cho, and B. R. Childers, "Explorthg Interplay of Yield, Area, and
Performance in Processor Caches,'International Conference on Computer
Design (ICCD) Lake Tahoe, CA, 2007.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockmd@n M. Tullsen, and N. P. Jouppi,
"McPAT: An Integrated Power, Area, and Timing Madgl Framework for
Multicore and Manycore Architectures,” MICRO 2009 New York City, NY,
2009.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

102

X. Liang and D. Brooks, "Mitigating the Impaeot Process Variations on CPU
Register File and Execution Units,” irdnternational Symposium on
Microarchitecture Orlando, FL, 2006.

X. Liang, R. Canal, G.-Y. Wei, and D. BrooK¥rocess Variation Tolerant
3T1D-Based Cache Architectures,” uhOth International Symposium on
Microarchitecture Chicago, IL, 2007.

X. Liang, G.-Y. Wei, and D. Brooks, "ReVIValLA Variarion-Tolerant
Architecture Using Voltage Interpolation and Vatalkhatency," ininternation
Symposium on Computer ArchitectuBeijing, China, 2008.

D. Marculescu and S. Garg, "System-level pssdeiven variability analysis for
single and multiple voltagefrequency island systéms International
Conference on Computer-Aided Design (ICCAZDO6.

D. Marculescu and E. Talpes, "Variability anenergy awareness: a
microarchitecture-level perspective.,” iRroceedings of the 42nd annual
conference on Design Automation (DASgw York, NY, 2005.

J. Merino, V. Puente, P. Prieto, and J. GriegotSp-nuca: a cost effective
dynamic non-uniform cache architecture ACM SIGARCH Computer
Architecture Newsyol. 36, pp. 64-71, 2008.

M. Miller. (Sep. 2004,Manufacturing-aware Design Helps Boost IC Yield
Available:
http://www.eetimes.com/news/design/features/shoigkecthtml;?articlelD=471
02054

S. Mukherjee, P. Bannon, S. Lang, A. Spinkg &n Webb, "The Alpha 21364
network architecture JEEE micro,vol. 22, pp. 26-35, 2002.

S. Naffziger, G. Colon-Bonet, T. Fischer, Rie®inger, T. Sullivan, and T.
Grutkowski, "The Implementation of the Itanium 2 dvbprocessor,"IEEE
Journal of Solid State Circuitspl. 37, November 2002 2002.

S. R. Nassif, "Modeling and Analysis of Manctiaring Variations," inlEEE
Conference on Custom Integrated Circusan Diego, CA, May 2001, pp. 223-
228.

S. Natarajan, M. A. Breuer, and S. K. GuptBrdtess Variations and their
Impact on Circuit Operation," itnternational Symposium on Defect and Fault
Tolerance in VLSI Systen999, p. 73.

K. Niyogi and D. Marculescu, "Speed and voétagelection for gals systems
based on voltage/frequency islands,'Piroceedings of the 2005 conference on
Asia South Pacific design automation (ASP-DA®w York, NY, 2005.

S. Ozdemir, D. Sinha, G. Memik, J. Adams, &dZhou, "Yield-Aware Cache
Architectures,” ininternational Symposium on Microarchitectu@rlando, FL,
2006.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]

[66]

[67]

103

M. Powell, S.-H. Yang, B. Falsa, K. Roy, and Mijaykumar, "Gated-Vdd: A
Circuit Technique to Reduce Leakage in Deep-Sulmmi€ache Memories,"” in
ACM/IEEE Intl. Symposium on Low Power Electronicsl &esign Rapallo,
Italy, 2000, pp. 90-95.

S. Raj, S. B. K. Vrudhula, and J. Wang, "A Kedology to Improve Timing
Yield in the Presence of Process Variations,Pmoc. of the Conf. on Design
Automation San Diego, CA, 2004, pp. 448-453.

C. Ranger, R. Raghuraman, A. Penmetsa, G. dRrachnd C. Kozyrakis,
"Evaluating mapreduce for multi-core and multiprss@ systems,In HPCA,
vol. 7, pp. 13-24.

R. Rao, D. Blaauw, D. Sylvester, and A. Devgdviodeling and Analysis of
Parametric Yield under Power and Performance Cainss;" IEEE Des. Test,
vol. 22, pp. 376-385, 2005 2005.

R. Rao, A. Srivastava, D. Blaauw, and D. Sgtee, "Statistical Estimation of
Leakage Current Considering Inter- and Intra-DieocBss Variation," in
ISLPED '03 Seoul, Korea, 2003.

A. Raychowdhury, S. Ghosh, S. Bhunia, D. Ghasid K. Roy, "A Novel On-
chip Delay Measurement Hardware for Efficient SpBathing,” inIntl. Online
Testing Symposiunkrance, Jul. 2005.

R. Ricci, S. Barrus, D. Gebhardt, and R. Ballmamonian, "Leveraging bloom
filters for smart search within NUCA caches," 2006.

B. F. Romanescu, M. E. Bauer, D. J. Sorin, 8n@®zev, "A Case for Computer
Architecture Performance Metrics that Reflect Psscé/ariability,” Duke
University, Dept. of ECEMay 2007 2007.

A. Ros, M. Acacio, and J. Garcia, "DiCo-CMPffiient cache coherency in
tiled CMP architectures,” 2008, pp. 1-11.

L. Shang, L.-S. Peh, and N. K. Jha, "Dynammt®ige Scaling with Links for
Power Optimization of Interconnection Networks," Rnoceedings of the 9th
International Symposium on High-Performance Comput&rchitecture
(HPCA), Anaheim, CA, 2003.

L. Shang, L. Peh, and N. Jha, "PowerHerd: dyicasatisfaction of peak power
constraints in interconnection networks,"1@5, 2003, p. 108.

L. Shang, L. Peh, A. Kumar, and N. Jha, "Tharmodeling, characterization
and management of on-chip networks,T&EE MICRQ 2004, pp. 67-78.

T. Sherwood, B. Calder, and J. Emer, "Redu@aghe misses using hardware
and software page placement,” 1999, p. 164.

P. Shivakumar, S. Keckler, C. Moore, and D. rdg@r, "Exploiting
microarchitectural redundancy for defect tolerahcelnternational Conference
on Computer Design (ICCD2003, pp. 481-488.

SimpleScalarLLC, "The SimpleScalar Tool Set; 2001.

[68]

[69]

[70]
[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

104

G. S. Sohi, "Cache Memory Organization to Hwdea the Yield of High
Performance VLSI ProcessordEEE Trans. Computyol. 38, pp. 484-492,
1989.

SPEC, "Spec CPU2000: Performance EvaluatiathenNew Millennium v1.1,"
Dec. 2000.

Sun.OpenSPARC THAvailable:http://opensparc-tl.sunsource.net/index.html
S. H. Tadas and C. Chakrabarti, "Architectuapproaches to reduce leakage
energy in caches," imternational Symposium on Circuits and Systez062.

D. Tam, R. Azimi, L. Soares, and M. Stumm, 'hMging shared L2 caches on
multicore systems in software,” 2007.

R. Teodorescu and J. Torrellas, "Variation-Agv#pplication Scheduling and
Power Management for Chip Multiprocessors,'International Symposium on
Computer Architecture (ISCAeijing, China, 2008.

The_R_Foundation.The R Project for Statistical ComputingAvailable:
http://www.r-project.org/

A. Tiwari, S. R. Sarangi, and J. Torellas, G3ele: Pipeline Adaptation to
Tolerate Process Variation," irdnternational Symposium on Computer
Architecture San Jose, CA, 2007.

L. Wang, A. Nichelatti, H. Schellevis, C. deo&, C. Visser, T. Nguyen, and P.
Sarro, "High aspect ratio through-wafer interconioes for 3D-microsystems,”
in MICRO, 2003, pp. 634-637.

T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailaki, B. Falsafi, and J. Hoe,
"SimFlex: statistical sampling of computer systemuation,” IEEE MICRO,
vol. 26, p. 18, 2006.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singhd &A. Gupta, "The SPLASH-2
programs: characterization and methodological cmnations,” presented at the
Proceedings of the 22nd annual international symposon Computer
architecture, S. Margherita Ligure, Italy, 1995.

S. Yang, M. Powell, B. Falsafi, K. Roy, and N. Vijaykumar, "An integrated
circuit/architecture approach to reducing leakageleep-submicron high-
performance I-caches,” innternational Symposium on High-Performance
Computer Architecture2001, pp. 147-157.

S. Yang, M. D. Powell, B. Falsafi, and T. Nydykumar, "Exploiting choice in
resizable cache design to optimize deep-submicrooegsor energy-delay,” in
International Symposium on High-Performance Compéehitecture 2002,
pp. 151- 161.

T. Yeh and G. Reinman, "Fast and fair: datassh quality of service," 2005, p.
248.

J. Zebchuk, V. Srinivasan, M. Qureshi, andvashovos, "A tagless coherence
directory,” 2009, pp. 423-434.

105

[83] M. Zhang and K. Asanovic, "Victim replicatiofvlaximizing capacity while
hiding wire delay in tiled chip multiprocessorsy'ISCA 2005, pp. 336-345.

[84] Z. Zhang and J. Torrellas, "Reducing remotafloct misses: NUMA with
remote cache versus COMA," 1997, p. 272.

