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Abstract: Task and group comparisons in functional magnetic resonance imaging (fMRI) studies are often
accomplished through the creation of intersubject average activation maps. Compared with traditional
volume-based intersubject averages, averages made using computational models of the cortical surface have
the potential to increase statistical power because they reduce intersubject variability in cortical folding
patterns. We describe a two-step method for creating intersubject surface averages. In the first step cortical
surface models are created for each subject and the locations of the anterior and posterior commissures (AC
and PC) are aligned. In the second step each surface is standardized to contain the same number of nodes with
identical indexing. An anatomical average from 28 subjects created using the AC–PC technique showed
greater sulcal and gyral definition than the corresponding volume-based average. When applied to an fMRI
dataset, the AC–PC method produced greater maximum, median, and mean t-statistics in the average
activation map than did the volume average and gave a better approximation to the theoretical-ideal average
calculated from individual subjects. The AC–PC method produced average activation maps equivalent to
those produced with surface-averaging methods that use high-dimensional morphing. In comparison with
morphing methods, the AC–PC technique does not require selection of a template brain and does not
introduce deformations of sulcal and gyral patterns, allowing for group analysis within the original folded
topology of each individual subject. The tools for performing AC–PC surface averaging are implemented and
freely available in the SUMA software package. Hum Brain Mapp 27:14–27, 2006. © 2005 Wiley-Liss, Inc.

Key words: fMRI; group analysis; AC–PC surface averaging; SUMA software; surface model; intersubject
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INTRODUCTION

The human cerebral cortex consists of a large, continu-
ous sheet of tissue that is folded with deep involutions to
fit inside the skull. While functionally the cortex is orga-

nized along its two-dimensional (2-D) surface, common
noninvasive methods for examining cortex, such as MRI,
produce 3-D data. In order to bridge this dimensional gap,
models of the cortical surface can be constructed from
anatomical MRI data. These models are useful as a frame-
work for the visualization and analysis of functional prop-
erties of cortex obtain with fMRI.

fMRI studies commonly use intersubject average activa-
tion maps created not on the surface but in the 3-D volume.
Each subject’s brain is standardized, often to a template
related to that of Talairach and Tournoux [1988], and aver-
ages are computed at each location in standard volumetric
space. While volume-averaging techniques are simple and
reliable [Collins et al., 1994], they suffer from a key limita-
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tion. Functional brain regions, such as core areas of auditory
cortex, are tied to locations on the cortical surface, such as
Heschl’s gyrus on the planum temporale. Because of inter-
subject variability in cortical folding patterns, these anatom-
ical landmarks do not occupy the same location in standard
volumetric space across subjects. Conversely, anatomical
regions that are distant on the cortical surface (such as
superior temporal gyrus and inferior frontal cortex) may
occupy the same location in volumetric space. When aver-
aging of functional data is performed in volumetric space,
this anatomical variability results in decreased statistical
power and poor quality averages.

A number of methods have been developed to apply
information about cortical folding from surface models to
the problem of intersubject averaging. For intersubject func-
tional averages, several groups have proposed hybrid meth-
ods that combine volume averaging with information from
a single canonical surface model, such as the Visible Man
brain [Van Essen and Drury, 1997] or the Colin brain
[Holmes et al., 1998]. Intersubject volume averages can be
created, registered to the canonical surface model, and then
visualized on the surface or compared with other datasets
[Van Essen, 2002]. Kiebel and Friston [2002] proposed the
use of anatomical priors based on the canonical surface
model to apply different smoothing kernels to different lo-
cations in standard space during the volume-averaging pro-
cess. These approaches are valuable because they do not
require the creation of a cortical surface model for each
individual subject. Ultimately, they suffer from many of the
same problems as volume averaging because the assump-
tion is made that each individual’s cortical surface is approx-
imated by the canonical surface model. Because of the large
individual differences in folding patterns, it is beneficial to
construct a cortical surface model for each individual. For-
tunately, there have been a number of recent advances in
techniques underlying surface creation, including skull-
stripping [Segonne et al., 2004], topology correction [Fischl
et al., 2001; Han et al., 2002; Kriegeskorte and Goebel, 2001;
Shattuck and Leahy, 2001], extraction of the surfaces [Dale et
al., 1999; MacDonald et al., 2000; Thompson et al., 2003], and
unfolding [Drury et al., 1996; Fischl et al., 1999a; Wandell et
al., 2000]. These advances have resulted in the availability of
a number of software packages, including FreeSurfer (online
at http://surfer.nmr.mgh.harvard.edu/) [Dale et al., 1999;
Dale and Sereno, 1993; Fischl et al., 1999a], SureFit [Van
Essen et al., 2001], BrainVoyager (http://www.brainvoyag-
er.com) BrainSuite [Shattuck and Leahy, 2002], and CRUISE
[Han et al., 2004] that allow rapid creation of topologically
correct surfaces from T1-weighted MR images, making it
feasible to construct surface models for each individual sub-
ject in an fMRI study.

Once surface models for each subject are available, the key
issue becomes selecting a method for intersubject averaging.
Surface morphometry methods detect anatomical changes in
surfaces that occur over time or between patient populations
[Chung et al., 2001, 2003; Liu et al., 2004; Shen et al., 2002;

Thompson and Toga, 2002]. Some of these techniques rely
on manual identification of sulci and gyri that are then
warped to a template [Liu et al., 2004; Thompson et al., 2003,
2004; Van Essen et al., 2001]. A widely used surface-averag-
ing technique applied to functional data was proposed by
Fischl et al. [1999b]. In this method the anatomical folding
pattern of each surface is used to morph that surface to a
template brain. Functional data from the individually mor-
phed brains are then averaged in a standard spherical (2-D)
space. These surface-based averages were reported to yield
intersubject averages superior to those obtained from tradi-
tional volume averages. However, morphing methods like
those proposed by Fischl and similar methods [Chung et al.,
2003; Liu et al., 2004; Thompson et al., 2003] have some
disadvantages. First, the morphing algorithms are complex,
high-dimensional operations that are computationally inten-
sive. They require the selection of a template brain, to which
all individual subjects are mapped. If the template is not a
good match to the individual subjects (for instance, in de-
velopmental studies or clinical populations) or if the param-
eters for the morph are not optimized, morphing methods
may produce unexpected results, such as heavily distorted
sulcal and gyral patterns.

We describe a method that combines the simplicity of
volume-based normalization with the advantages of purely
surface-based averages in a two-step process. First, a cortical
surface model is created for each individual subject and
aligned along the anterior and posterior commissure (AC–
PC) axis, as in the first step of the traditional Talairach
transformation. Second, each individual surface is standard-
ized to contain the same number of surface nodes with
identical node indexing. This occurs by unfolding the sur-
face to a sphere, resampling to a projected standard icosa-
hedron, and refolding the icosahedron to the original space
of the cortical surface model. The result of this regularization
is that any given node index corresponds to the same (or
nearby) cortical location on each surface. Intersubject aver-
aging is then a simple matter of comparing values at every
node index in the original folded conformation of each
brain.

The method proposed here has some conceptual similar-
ity to a technique described for anatomical comparisons
[Chung et al., 2003; MacDonald et al., 2000] in which a
standard mesh is created first, then warped to fit the cortical
anatomy of each individual subject. The result is similar, in
that a given node (or point on the mesh) corresponds to a
similar anatomical location in each subject. However, accu-
rate warping of a standard mesh to the complex and deep
folding pattern of human cortex can be difficult. From a
practical standpoint, it is simpler and more flexible to con-
vert an already created whole-brain cortical surface models
(available from a variety of sources) to a standard indexing
system via icosahedral tessellation.

The results of applying this AC–PC technique to anatom-
ical and functional datasets are illustrated. A large increase
in statistical power, compared with volume-based averaging
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applied to the same dataset, was observed. Surprisingly, the
results from the simple AC–PC method were similar to those
obtained with more complex morphing methods. Because
the AC–PC technique is simple and does not require the
choice of a template brain or the distortion of anatomical
features, it may help to promote the use of intersubject
surface averages in fMRI studies.

SUBJECTS AND METHODS

Human Subjects and MR Data Collection

Twenty-eight subjects underwent a complete physical ex-
amination and provided informed consent. Subjects were
compensated for participation in the study and anatomical
MR scans were screened by the NIH Clinical Center Depart-
ment of Radiology in accordance with the NIMH-IRP hu-
man subjects committee. MR data were collected on a Gen-
eral Electric 3 T scanner.

Surface Creation

Surface models were analyzed in SUMA [Saad et al.,
2004], a component of the AFNI package (online at http://
afni.nimh.nih.gov). SUMA does not create cortical surface
models but can process surfaces generated by several pack-
ages, including SureFit, FreeSurfer, and BrainVoyager. All
surfaces in this study were created from an average of one to
five high-resolution MP-RAGE anatomical scans using Free-
Surfer [Dale et al., 1999; MacDonald et al., 2000; Thompson
et al., 2003].

Surface Standardization

In order to prepare the surfaces for intersubject averaging
a two-step standardization process was performed. The pro-
grams developed to perform the standardization are now
freely available in the AFNI distribution and their usage is
described in the online documentation.

In the first step, each subject’s surface was aligned (Fig.
1A). Markers were manually placed on both the AC and PC
and in the mid-sagittal plane in the subject’s anatomical
volume dataset. The brain volume was then translated and
rotated so that the subject’s AC and PC aligned with the
AC–PC line in canonical Talairach space [Talairach and
Tournoux, 1988]. While this step required minimal human
interaction (�5 min per subject), automated procedures for
AC–PC alignment are also available. The AC–PC transfor-
mation was then applied to the subject’s surface (in both
folded and spherical forms) to create an AC–PC aligned
cortical surface model. Although this step aligned the sur-
faces, raw surface models have several properties that make
them unsuitable for cross-subject averaging. Raw surfaces
vary greatly in the number of nodes (surface elements) for
each subject, and the correspondence between node index
and physical location in the cortex can be highly irregular.
This often occurs during the topology-fixing stage of surface
creation, in which small errors in the surface are corrected

by the insertion of new nodes whose indices differ greatly
from adjacent nodes.

To fix these problems and to reduce intersubject variabil-
ity in folding patterns, in the second step of standardization
the number of nodes (and node numbering scheme) in each
subject’s surface was standardized using icosahedral tessel-
lation and projection (Fig. 1B). Each individual surface was
unfolded and inflated to a sphere using the FreeSurfer mris-
_sphere routine [Dale et al., 1999; Fischl et al., 1999a]. Then
an icosahedron was created and tessellated to a linear depth
of 125 (each edge had 125 divisions, and therefore contained
126 parts) resulting in 156,252 nodes in the entire icosahe-
dron. The tessellated icosahedron was then inflated to a
sphere. Next, the spherical icosahedron was projected onto
the unfolded, spherical representation of the subject’s
AC–PC aligned cortical surface. For each node on the in-
flated icosahedron, nearby nodes on the inflated spherical
surface were selected. Finally, the coordinates of these sur-
face nodes on the original (folded) brain were interpolated
using a barycentric (area-weighted) coordinate scheme and
assigned to the icosahedral node [Saad et al., 2004]. This
resulted in a surface with the same number of nodes as the
icosahedron but with a folded spatial configuration. The
standardized surfaces closely matched the original surfaces,
with a mean distance between the original and standardized
surfaces of 2 � 10-5 mm [Saad et al., 2004]. All intersubject
averaging was done on the standardized nodes in the orig-
inal folded cortical configuration of each subject, not in the
inflated (or otherwise distorted by morphing) spherical sur-
face model.

fMRI Experiment

In eight subjects, gradient-recalled-echo echo-planar vol-
umes were acquired with echo time (TE) of 30 ms, repetition
time (TR) of 3 s, and 3.75 mm in-plane resolution. Each
volume contained 24 axial slices (slice thickness of 4.5 or 5.0
mm as necessary to cover the entire cortex) with 132 vol-
umes per scan series and 8 to 10 scan series per subject.
Stimuli for the fMRI experiment consisted of video clips of
moving manipulable objects (e.g., a hammering hammer),
auditory recordings of these objects (e.g., “bang-bang-
bang”), or simultaneously presented videos and recordings.
An event-related design was used, with each trial containing
distinct sensory stimulation and behavioral response ep-
ochs, allowing separate estimation of the response to the
stimulus and response in each voxel using AFNI 2.50 [Cox,
1996]. The first two volumes in each scan series, collected
before equilibrium magnetization was reached, were dis-
carded. Then all volumes were registered to the volume
collected nearest in time to the high-resolution anatomy.
Next, a spatial filter with a root-mean-square width of 4 mm
was applied to each echo-planar volume. The response to
each stimulus category was estimated using a deconvolution
method which made no assumptions about the shape of the
hemodynamic response. Individual subject activation maps
were created by using the overall experimental-effect (all
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Figure 1.

-

Figure 2.
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regressors of interest) to find voxels showing a response to
any type of stimulus at a threshold of P � 10-6 to correct for
the multiple comparisons produced by 20,000–25,000 intra-
cranial functional voxels. A more liberal threshold of P
� 0.05 was used to isolate individual ROIs (see below). For
more details on the fMRI experiment, please see Beauchamp
et al. [2004b].

Intersubject Surface Averaging

After the standardization process each individual subject
cortical surface contained the same number of nodes. In
addition, these nodes were in approximate spatial align-
ment, so that each node with a given index (in the range of
1–156,252) corresponded, insofar as the surfaces were
brought into alignment by the method, to a similar brain
location in each subject. Therefore, intersubject averaging
could be performed by simply averaging the values of in-
terest across subjects at each node index.

To average structural data, the spatial xyz coordinates
associated with a given node index were averaged across
subjects (Fig. 2, right). To average functional data, individual
surface functional maps were created using an intersection

algorithm in SUMA. For each subject, each node on the
surface was assigned the t-statistic corresponding to the
original (uninterpolated) functional voxel which it inter-
sected. Then the t-statistic at each node index was averaged
across subjects (Fig. 3B, right).

Volume Data Averaging

Each subject’s anatomical dataset was converted to stan-
dard space using stereotactic normalization [Talairach and
Tournoux, 1988] with 1 mm3 resolution in AFNI. To average
anatomical data, the intensity at each location in Talairach
space was averaged (Fig. 2 left). To average functional data,
the t-statistic at each location in standard space was aver-
aged (Fig. 3B, left).

Spherical Morphing

As an additional source of comparison, intersubject aver-
aging was performed using the MGH FreeSurfer tools [Dale
et al., 1999; Fischl et al., 1999a]. Using the mris_register
[Fischl et al., 1999b] routine, each individual subject’s sur-
face was registered to the FreeSurfer average7 template
prior to node number standardization. Standardization and
averaging were then performed on the surfaces as described
above.

Region of Interest (ROI) Creation

Because the fMRI dataset contained auditory, motor, and
visual components, ROIs were created in auditory, motor,
and visual cortex. Benchmark ROIs were first created in the
average volume dataset, then applied to each individual
subject, giving measurements from roughly the same brain
area in each subject [Buckner et al., 2000]. While it is possible
to create separate ROIs for the surface and volume, this
complicates comparisons between surface and volume be-
cause of possible confounds (for instance, if surface ROIs
were systematically smaller or larger than volume ROIs, the
comparison between surface and volume might be biased).

The benchmark auditory cortex ROI was created by find-
ing active voxels in and near Heschl’s gyrus, the location of
core areas of auditory cortex [Hackett et al., 2001]. More
precisely, the ROI contained all contiguous voxels in the
functional average volume dataset (Fig. 3B, left) that showed
a significant overall experimental effect (F � 8.23, P � 10-6)
and a significant (P � 0.05) preference for auditory com-
pared with visual stimuli. The benchmark motor cortex ROI
was created by selecting all contiguous voxels in the region
of the left central sulcus that showed a significant experi-
mental effect (F � 8.23, P � 10-6) and a significant (P � 0.05)
preference for the response epoch of the trial compared with
the visual epoch. The benchmark visual cortex ROI con-
tained all contiguous voxels in left occipital lobe (Talairach
z, –20 � z � 35) that showed an experimental effect and a
significant preference (P � 0.05) for the visual compared
with the auditory stimulus epochs.

Figure 1.
Two-step process for creating standard individual subject surfaces.
A: Spatial orientation is standardized by aligning the anterior and
posterior commissures (AC and PC) to the center of standard
space by translating and rotating the surface. An additional mid-
sagittal point (not shown) is used to define the plane. B: Node
number is standardized by resampling to a projected standard
icosahedron and refolding to the original space of the cortical
surface model. When initially created, surface models contain
variable numbers of nodes across subjects (left bottom). An ico-
sahedron is tessellated to a standard number of nodes (left top).
The icosahedron and the AC–PC aligned surface model are in-
flated to spheres (middle). The unfolded spherical representation
of the surface model is mapped onto the inflated icosahedron,
which is then refolded, resulting in a representation of the brain
surface in its original state with a standard number of nodes (right).

Figure 2.
Comparison of volume (A) and surface (B) intersubject averaging
techniques with anatomical MR data. A: Whole-brain anatomical
scans from 28 subjects (top row) were transformed into standard
space and the intensity was averaged in each voxel, creating a
volume-averaged anatomical dataset (middle row). A volume ren-
derer was used to create a lateral view of the average left hemi-
sphere, a top-view of both hemispheres, and a lateral view of the
right hemisphere (bottom row). Orange dashed lines indicate the
approximate location of central sulcus and superior temporal
sulcus. B: For the surface average, the same anatomical datasets
were used to create cortical surface models (middle row). Each
surface was then standardized (see Fig. 1) and the position of each
node was averaged in space to create a surface-average anatomical
dataset (bottom row).
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Figure 3.
Comparison of volume (left column) and surface (right column)
intersubject averaging techniques on BOLD fMRI data from audi-
tory cortex. fMRI data (in color, overlaid on anatomical data,
shown in gray scale) represents the t-statistic of the contrast of the
response to auditory vs. visual stimulation. Auditory cortex, in the
planum temporale, shows a strong positive value for this contrast
(red color, color scale shown at bottom of figure). A: Left:
Functional datasets from each individual subject (n � 8) were
Talairach transformed (slices shown at z � 10 mm). Right: Cortical
surface models were created for each individual subject and func-
tional data was mapped from the volume to the surface. B: Left:
The average volume dataset was created by averaging the t-
statistic (for functional) or intensity (for anatomical) values at each

location in Talairach space across subjects. Right: The average
surface dataset was created by averaging the t-statistic at each
standardized node (displayed on an individual subject surface). C:
A region of interest (ROI) for auditory cortex was created from
the functional intersubject average volume and surface datasets.
D: The auditory cortex ROI was applied to average volume (left)
and surface (right) datasets. E: Alternative ROIs for comparison.
Left: More conservative volume ROI created by surface gray-white
intersection algorithm. Middle: More conservative volume ROI
created by cortical shell intersection algorithm. Right: Liberal
surface ROI created by selecting all nodes intersecting the volume
ROI in any of the individual subjects.
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These benchmark volume ROIs (shown for auditory cor-
tex in Fig. 3C, left) became the reference on which all other
individual and average ROIs were based. For each region
(auditory, motor, or visual) the volume ROI was intersected
with each subject’s standardized cortical surface, producing
a list of nodes for each subject. Surface nodes that were
present in every subject were used to create the surface ROI
(Fig. 3C, right). Finally, these ROIs were applied to the
functional datasets (Fig. 3B) to create functional volume and
surface ROIs (Fig. 3D, left and right).

Alternative ROIs

This procedure was relatively straightforward and similar
to that used in previous studies. However, due to the lack of
a one-to-one correspondence between volume and surface
elements, there are many equally reasonable ways to con-
struct corresponding volume and surface ROIs. If a typical
fMRI activation profile is assumed (in which a few voxels
with very high significance are surrounded by voxels with
less significance) ROI creation methods that are more liberal
(include more elements) will give lower mean/median sta-
tistics, while ROI creation methods that are more conserva-
tive (include fewer elements) will give higher mean/median
statistics. To determine the dependence of surface vs. vol-
ume comparisons on the method used to create ROIs, sta-
tistics were calculated for liberal auditory cortex surface
ROIs and conservative auditory cortex volume ROIs. While
in the initial surface analysis only those nodes found in
every subject were included in the ROI, for the liberal sur-
face ROI nodes found in any subject were included in the
ROI (Fig. 3E, right). In the initial volume analysis, all voxels
in the volume ROI were included. For the first conservative
volume ROI, only those voxels intersected by the surface
ROI in at least one subject volume were included (Fig. 3E,
left). For the second conservative volume ROI, an additional
restricted volume ROI was created that included only those
voxels intersected by the cortical shell ROI (the surface ROI
applied across gray matter, from gray-white boundary to
pial surface) in at least 3 of 8 subjects (Fig. 3E, middle).
Additional ROIs were also created by varying this “x of 8”
intersection criterion, with similar results. Only the data
with the “3 of 8” criterion is reported because it produced an
ROI whose volume most closely matched the volume of the
mean of the individual subject cortical shell ROIs.

RESULTS

Intersubject Averaging of Anatomical Data:
Surface vs. Volume

Using the AC–PC standardization method, 28 individual
subject cortical surface models were created and averaged to
produce an average surface dataset. For comparison, ana-
tomical volumes from the same subjects were Talairach
transformed and averaged to produce an average volume
dataset. To give a qualitative impression of the differences

between surface and volume intersubject averages, the two
were visualized (Fig. 2). Anatomical features in the 28-sub-
ject average volume dataset were markedly blurred, with
only the lateral sulcus (Sylvian fissure) clearly visible in the
volume rendering. In contrast, most major sulci and gyri
were visible in the average surface dataset, including the
central sulcus and the superior temporal sulcus.

Intersubject Averaging of Functional Data:
Surface vs. Volume

An auditory cortex ROI was applied to the surface and
volume average functional datasets and activation statistics
were calculated (Fig. 4A). The mean t-statistic from the
surface average (t � 7.00, 99% confidence interval 6.58–7.42)
was significantly greater than the mean t-statistic from the
volume average (t � 2.92, 2.68–3.17, P � 10�10). The surface
average also produced significantly better results as mea-
sured by the maximum and median statistics (surface vs.
volume maximum t � 12.62 vs. 9.50, surface vs. volume
median t � 6.96 vs. 2.64).

While more significance is notable, one might ask what the
true average should be. While there is no “gold standard” or
perfect method for intersubject averaging, the results of an
ideal averaging method can be estimated. If intersubject align-
ment were perfect (and activation patterns identical across
subjects) the voxels showing maximum activation within the
ROIs would align perfectly and the maximum value of the
average dataset ROI would be the same as the average of the
maximums of the individual subject ROIs. Therefore, the dif-
ference between the maximum in the average dataset and the
mean of the individual subject maximums provides one mea-
sure of the accuracy of the intersubject alignment (maximum
value in average dataset much lower than average of individ-
ual maximums � poor alignment, similar values � good align-
ment). To assess this difference, ROIs from the average surface
and volume datasets were applied to each individual surface
and volume datasets (Fig. 4B). As expected, the average of the
maximums in the individual surface and volume datasets (the
theoretically perfect method) was higher than the maximum in
the average datasets. However, the intersubject surface average
was a closer approximation to the average of the individual
surface ROIs (intersubject vs. individual maximum t � 12.62
vs. 17.35) than the intersubject volume average was to the
average of the individual volume ROIs (intersubject vs. indi-
vidual maximum t � 9.50 vs. 17.78). This suggests that aver-
aging on the surface more closely aligns functionally similar
regions across subjects.

The same comparison can be performed for the median
and mean statistics. The intersubject surface average values
were similar to the values obtained by averaging across the
individual subject ROIs (intersubject vs. individual median t
� 6.96 vs. 6.72, intersubject vs. individual mean t � 7.00 vs.
7.00), while the volume intersubject ROI was considerably
lower than the individual subject volume ROIs (intersubject
vs. individual median t � 2.64 vs. 4.18, intersubject vs.
individual mean t � 2.92 vs. 4.67). These results also suggest

� Argall et al. �

� 20 �



Figure 4.
Statistical comparisons on functional data averaged with three
different methods. A: The auditory cortex ROI was applied to
surface and volume average datasets (see Fig. 3) and the maximum,
median, and mean t-statistics were calculated. The variability of
each estimate was low: SD less than or equal to the thickness of
each bar. Green symbols show the result of the AC–PC surface
averaging method. Light blue symbols show the result of the
mris_register surface averaging method [Fischl et al., 1999b]. Dark
blue symbols show the volume average results. B: The surface

average ROI was applied to each individual surface, and the volume
average ROI was applied to each individual volume, generating
maximum, median, and mean t-statistics for each subject (same
color scale as A). The average of these individual values (thick
bars) provides an estimate of the ideal average value (assuming
perfect intersubject alignment). This ideal value can be compared
with the actual value obtained from surface and volume averages
taken from A (shown with “x” symbols).

Figure 5.
Correspondence of ROI constituents across subjects for surface (A)
and volume (B) averages. A: The auditory cortex volume ROI (Fig.
3C, left) was intersected with the surface models from eight subjects,
creating eight distinct surface ROIs. The proportion of nodes found in
multiple individual subjects was tallied (100% of nodes found in at least
one subject, 22% of nodes found in all eight subjects). B: The auditory
cortex surface ROI (Fig. 3C, right) was intersected with the volume

datasets of eight subjects, creating eight distinct volume ROIs. The
proportion of Talairach locations found in multiple individual subjects
was tallied. Volume ROIs calculated with a gray-white matter inter-
section algorithm (blue circles) and a cortical shell intersection algo-
rithm (blue squares). Surface ROI from A shown for comparison
(dashed green line).
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that intersubject surface averaging more closely aligns func-
tionally homologous regions and provides a more accurate
approximation to individual subject activation maps.

Surface vs. Volume Averaging With
Alternative Auditory Cortex ROIs

To ensure that these results were not solely due to the
exact definition of the auditory cortex ROI, the same analy-
ses were carried out with different ROIs. The liberal surface
ROI was much larger (427.2%) than the original surface ROI,
and encompassed many weaker areas of activation outside
the central peak of activity (Fig. 3E). Even so, the maximum
and mean statistics were still greater than the volume ROI
(liberal surface vs. volume maximum t � 12.62 vs. 9.50,
liberal surface vs. volume mean t � 3.32 vs. 2.92) and the
median was similar to the volume ROI (liberal surface vs.
volume median t � 2.62 vs. 2.64). For the conservative
volume ROIs, information about the individual subject sur-
face geometry was used to constrain the voxels contributing
to the intersubject volume average, eliminating weaker ac-
tivations (see Subjects and Methods). However, both conser-
vative volume ROIs still had lower maximum, median, and
mean statistics than those of the surface ROI (first conserva-
tive volume ROI: surface vs. volume maximum t � 12.62 vs.
9.50, surface vs. volume median t � 6.96 vs. 3.31, surface vs.
volume mean t � 7.00 vs. 3.41; second conservative volume
ROI: surface vs. shell volume maximum t � 12.62 vs. 9.50,
surface vs. shell volume median t � 6.96 vs. 3.97, surface vs.
shell volume mean t � 7.00 vs. 4.09).

Comparisons Using Motor and Visual ROIs

The relative statistical power of surface and volume aver-
aging methods was examined in two additional ROIs lo-
cated in visual and motor cortices. The maximum, median,
and mean statistics were greater for surface compared with
volume averages in both visual cortex (surface vs. volume
maximum t � 15.6 vs. 10.0, surface vs. volume median t
� 7.0 vs. 3.2, surface vs. volume mean t � 8.2 vs. 3.2) and
motor cortex (surface vs. volume maximum t � 10.8 vs. 8.5,
surface vs. volume median t � 7.7 vs. 6.1, surface vs. volume
mean t � 7.8 vs. 5.9).

Node and Voxel Correspondence Across Subjects

One reason for the superiority of surface vs. volume in-
tersubject averaging is better alignment of anatomical ele-
ments across subjects. In order to quantify this advantage,
an intersection comparison was performed between surface
and volume mapping to determine how often correspond-
ing elements were found in different individual subjects
(Fig. 5). Each individual surface ROI contained different
numbers of nodes and different node spatial placements,
depending on the cortical geometry of that subject. Due to
the one-to-one correspondence of node index across sub-
jects, the total number of node indices present in one or more
individual subject ROIs was summed and used as the de-

nominator in the intersection fraction (total node-count).
Then, for each of these node indices the number of individ-
ual surface ROIs that contained it was counted (subject-
count). The intersection fraction was calculated as the num-
ber of nodes with a given subject-count, divided by the total
node-count. As shown in Figure 5A, this fraction decreases
as the subject-count increases. By definition, all nodes are
found in at least one subject ROI, for an intersection fraction
of 100%, while only 22% of the nodes were found in all eight
subject ROIs. More than 50% of the total nodes were found
in five subject ROIs.

The same comparison was performed for the volume av-
erage by mapping the average surface ROI to the volume in
each individual subject, creating eight distinct volume ROIs.
These ROIs contained different numbers of voxels and dif-
ferent voxel locations, depending on the cortical geometry of
each subject. The total number of locations present in one or
more individual subject ROIs was summed and used as the
denominator in the intersection fraction. In contrast to the
surface intersection curve, which showed an approximately
linear decrease with increasing subject number, the volume
intersection fell off sharply with increasing subject number
(Fig. 5B). More than 50% of the total locations were found in
only one subject, and no corresponding locations were
found for a subject-count greater than 4.

This low correspondence was in part due to the fact that
volume-to-surface mapping was performed using the corti-
cal surface created from the gray/white matter boundary.
This means that any given surface ROI maps to a thin shell
of voxels in the volume, which are unlikely to intersect
across subjects. To circumvent this problem, an alternative
surface-to-volume mapping was performed using a thick-
ened shell surface model that spanned gray matter from the
gray/white boundary to the pial surface. This mapping
improved intersubject correspondence, but most locations
were still found in only two of eight subjects (Fig. 5B).
Surface node correspondence was much better than volume
correspondence using either method.

Intersubject Averaging of Functional Data:
Different Surface Methods

In the simplified AC–PC surface averaging method, no
explicit steps were performed to ensure anatomical or func-
tional correspondence between nodes with the same node
index in different subjects. Methods to align cortical surfaces
[Thompson et al., 1996; Van Essen et al., 1998] usually in-
volve fluid deformation or morphing of individual surfaces.
In order to compare the AC–PC method to these more
complex algorithms, the FreeSurfer program mris_register
[used in Fischl et al., 1999b] was used to morph the cortical
surface models to a predefined template, and these morphed
surface models were then used to create a morphed surface
average. Maximum, median, and mean statistics were cal-
culated using the auditory cortex ROI for AC–PC and mris-
_register surface averages (Fig. 4A). Compared to the large
differences between AC–PC surface and volume averages,
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the AC–PC and mris_register surface averages gave very
similar results. The AC–PC average had slightly lower max-
imum values (AC–PC vs. mris_register maximum t � 12.62
vs. 12.70) but slightly higher median and mean values (me-
dian t � 6.95 vs. 6.46, mean t � 7.00 vs. 6.58). As was done
with the volume average, theoretical-ideal averages were
calculated using ROI values from individual subjects that
had undergone AC–PC or mris_register standardization
(Fig. 4B). Again, the AC–PC and mris_register results were
nearly identical. The similarity is apparent in a cortical sur-
face rendering of the entire auditory cortex ROI (Fig. 6A).
Motor and visual cortex ROIs averaged using AC–PC and
mris_register were also very similar, both qualitatively (Fig.
6B,C) and quantitatively (motor cortex: AC–PC vs. mris_reg-
ister maximum t � 10.9 vs. 11.6, median t � 7.7 vs. 7.5, mean
t � 7.8 vs. 7.7; visual cortex: maximum t � 15.6 vs. 13.0,
median t � 7.9 vs. 7.9, mean t � 8.2 vs. 7.9).

Intersubject Averaging of Anatomical Data

To assess the AC–PC averaging method on purely ana-
tomical data, an average brain was constructed from 28
AC–PC aligned brains (Fig. 7A). For every node position the
standard deviation of the distance between each individual
subject and the average brain was calculated (Fig. 7B). The
standard deviation was relatively small (averaged across
nodes, 3.9 � 0.9 mm SD). The largest standard deviation was
observed in regions far from the AC–PC landmarks used in
the alignment, such as the vertex.

An average of the same 28 brains was constructed using
mris_register (Fig. 7C). To quantify the difference between the

AC–PC and mris_register averages, anatomical landmarks
were selected in each subject and their position was measured
after alignment. The frontal, temporal, and occipital poles were
chosen because of their unambiguous location. The position of
the poles was measured in spherical coordinates on the tem-
plate sphere (for the mris_register average) or on the spheri-
calized icosahedron (for the AC–PC average) as shown in
Figure 7D. Given spherical coordinates (r, theta, phi) of a
landmark for each subject, the standard deviation (SD) of theta
and phi measure the variance of the landmark and provides an
estimate of the intersubject variability that remains following
intersubject alignment (the value of the radius, r, is fixed and
depends arbitrarily on the inflation parameters, while the ab-
solute values of theta and phi depend on the orientation of the
mris_register template sphere). For the mris_register average,
the SD of theta of the (temporal, frontal, occipital) poles was
(5.8°, 6.0°, 6.4°), averaged across left and right hemispheres,
and the SD of phi was (3.7, 5.5, 5.4). For the AC–PC average, the
SD of theta was (9.0, 3.3, 4.2) and of phi was (3.6, 5.2, 4.4). A
paired t-test across poles and hemispheres did not show a
significant different between the two averages for either theta
(P � 0.8) or phi (P � 0.2).

DISCUSSION

We describe a simple two-step method for aligning and
standardizing surface models from different individual sub-
jects. Anatomical averages using this AC–PC method were
qualitatively superior to Talairach volume averages. This
improvement was also observed for a functional dataset.
Auditory, visual, and motor cortex ROIs showed higher test

Figure 6.
Auditory (A), motor (B), and visual (C) cortex ROIs applied
to functional averages created with two surface-averaging
techniques, AC–PC and mris_register. A: Surface ROIs for
auditory cortex generated with AC–PC alignment (left) and
mris_register morphing (right). Colors represent t-statistic
of functional contrast (color bar at right, same for A, B, C).
B: Surface ROIs for motor cortex. C: Surface ROIs for visual
cortex.
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statistics for surface compared with volume averages. These
results are consistent with those of Fischl et al. [1999b], who
found improvements over volume averages for surface av-
erages created using the mris_register morphing algorithm.

Reasons for the Superiority of Surface Averaging

For a variety of surface and volume ROIs, better results
were observed for surface than volume averaging, suggest-

ing that surface averaging provides better alignment across
subjects (accounting for anatomical variability) than does
volume averaging, resulting in better average functional
maps.

Even in individual subjects, the mean and median t-sta-
tistic from the surface ROI was higher than the mean and
median from the volume ROI. An obvious explanation for
this is that the volume ROI includes both parenchyma, con-

Figure 7.
Comparisons of anatomical averages created with two surface
averaging techniques, AC–PC and mris_register. A: An average
surface was created by averaging the location of each node across
28 subjects following AC–PC standardization. From left to right,
left hemisphere (lateral and medial), right hemisphere (medial and
lateral). B: The standard deviation between individual subjects and
the average surface was calculated at each location on the surface
and mapped to the average surface (color scale shows distance).

C: Average surface created by averaging the same 28 subjects
using mris_register standardization. D: Location of cortical poles
following AC–PC (left) and mris_register (right) alignment. Tem-
poral poles (green), occipital poles (red), and frontal poles (blue)
were manually selected in each individual subject. The standard
node index of each pole following registration is plotted on a
spherical left hemisphere. Each spike (shown projecting normal to
the surface for visibility) represents an individual subject.
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taining active neurons, and white matter, inactive in BOLD
fMRI. In contrast, the mapping process used to create the
individual subject functional surface datasets ensures that
primarily gray matter voxels are mapped to the surface. On
average, only 26.3 � 1.5% of the voxels in each subject’s
volume ROI intersected the surface (and therefore were
likely to be active in BOLD fMRI).

Cortical folding patterns are highly variable across sub-
jects, and so any given anatomical location (such as the
fundus of the STS) is unlikely to align precisely from
subject to subject in the volume. Because intersubject av-
eraging is done on node indices assigned after the brains
are unfolded to a sphere, intersubject differences in the
depths of sulci and the details of folding patterns are
eliminated as a source of variability. This can be also be
examined from the perspective of a reduction in dimen-
sionality. In the 3-D volume, a distance of a few mm in
standard space can traverse very large distances in corti-
cal space (e.g., from anterior temporal cortex to inferior
frontal cortex). Because intersubject alignment is inher-
ently only accurate to several mm, the inevitable result is
that functional data from very different brain regions are
averaged, decreasing statistical power. On the 2-D sur-
face, distances of a few mm traverse only a limited dis-
tance in brain space (e.g., from the fundus of the STS to
the banks of the STS). Even with inaccuracies in intersub-
ject alignment of a few mm, there is a much greater chance
that functionally homologous regions will be averaged.

To gain a better understanding of these effects, the volume
ROI was made more conservative by requiring that voxels in
the ROI be located in gray matter in increasing numbers of
subjects. That is, voxels were included in the ROI only if they
intersected the surface in one of eight, two of eight, to eight
of eight subjects. As the volume ROI grew more and more
restrictive, the activation statistics approached those of the
surface average. At the limit, since the mapping between
standard space locations and surface nodes is known for
each subject, the surface average could be exactly duplicated
in the volume by averaging together those voxels in each
subject that mapped to the same surface node. It should be
noted that this is only possible if a surface model is available
for every subject, and hence is not an argument in favor of
volume vs. surface averaging.

Another reason for the superiority of AC–PC averaging is
that there is no explicit need for brain scaling. Unlike Ta-
lairach normalization, in which different portions of the
brain receive different amounts of affine stretching, the fold-
ing of the standardized icosahedron into the shape of the
original cortical surface model effectively creates a scale-
invariant brain, removing another source of intersubject
variability. There are other advantages to performing fMRI
analysis on the cortical surface as well. For instance, because
many fewer voxels are mapped to the cortical surface than
exist in the volume, the denominator in the Bonferroni cor-
rection is much lower, allowing a lower threshold for the
same statistical significance [Andrade et al., 2001]. In the

present datasets, only 1.86 � 0.10% of the voxels in each
subject’s volume dataset mapped to the cortical surface.

It should be noted that the standard space used to create
the volume average was that of Talairach and Tournoux, a
simple and commonly used transformation. Other methods
of volume normalization that involve higher dimensional
volume warping would likely improve intersubject corre-
spondence in the volume and so reduce the advantage of
surface averaging. However, because these methods do not
take into account cortical folding patterns, it is unlikely that
they could completely match the performance of the surface
average [Thompson and Toga, 2002].

Comparing the AC–PC Method With Other
Surface Averaging Techniques

Both AC–PC and mris_register surface-averaging tech-
niques offered large improvements over volume averages,
but there was little difference between the surface methods.
On practical grounds, morphing techniques such as mris-
_register require a template, which is a concern for clinical
and developmental studies for which an ideal template may
not be available. In contrast, the AC–PC method does not
require a template. In addition, the AC–PC method allows
intersubject statistics to be performed in the original folded
configuration of the brain, preserving any inherent variation
that may be of interest, such as anatomical differences in
sulcal depths between patient populations.

One might expect that a method that actively aligns sulcal
and gyral landmarks (such as mris_register) would produce
better functional averages than the AC–PC method. Surpris-
ingly, we found similar results for the two methods. This
suggests that the most important reason for the superiority
of surface averaging is the reduction in dimensionality from
three dimensions (for volume averaging) to two dimensions
(for surface averaging), with additional alignment based on
anatomical landmarks patterns adding little. This idea is
supported by recent evidence showing that, across species,
aligning only anatomical landmarks does a poor job of align-
ing functionally homologous regions, while adding the lo-
cation of identified areas (such as area MT) gives better
results [Orban et al., 2004; Van Essen, 2004]. In future stud-
ies, it will be important to explore the use of appropriate
fMRI localizers to produce better alignment of functionally
homologous regions and improved intersubject averages.

CONCLUSIONS

The match between the spatial resolution of the technique
and the resolution of intersubject averaging methods will
become even more important as fMRI reaches higher and
higher spatial resolutions [Beauchamp et al., 2004a]. Because
volume-averaging methods are barely adequate for fMRI
studies at standard resolution, they are certain to be a hand-
icap for high-resolution fMRI studies. In contrast, the surface
models used in surface averaging techniques can be created
and aligned with high spatial resolution.
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For the normal population used in the present validation,
the AC–PC method resulted in greater statistical power
compared with traditional volume-based normalization,
and gave results comparable to methods that actively align
major sulci and gyri. It will be interesting to further validate
the method in different clinical populations and in fMRI
studies with different experimental tasks and different num-
bers of subjects, and to study the effect of different tech-
niques for unfolding individual surface models to a sphere.

The software for performing AC–PC averaging is freely
available and is compatible with surfaces created by several
standard packages. Because of the large improvements in
statistical power for surface compared with volume aver-
ages documented in this study and in Fischl et al. [1999b],
the use of surface averages should be considered in fMRI
studies whenever cortical surface models are available.
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