
Policy Adaptation through Tactile Correction
Brenna D. Argall and Eric L. Sauser and Aude G. Billard 1

Abstract. Behavior adaptation based on execution experience can
be a practical tool to increase the robustness of a robot behavior
learned from demonstration. While demonstration learning is a pow-
erful technique for the development of robot behaviors, in general de-
velopment remains a challenge. This work presents an approach for
policy improvement through a tactile interface located on the body
of the robot. We introduce the Tactile Policy Correction (TPC) al-
gorithm, that employs tactile feedback for the adaptation of a policy
learned from demonstration. We provide an initial validation of re-
finement under the TPC algorithm on humanoid robot performing a
grasp positioning task, and policy performance is found to improve
with tactile corrections. We additionally show different modalities,
namely teleoperation and tactile corrections, to provide information
about allowable variability in the target behavior in different areas of
the state space.

1 Introduction
Motion control is fundamental to many robotics applications, yet the
development of paradigms for control remains a challenge. Difficul-
ties such as noisy sensors and inaccurate world models, for example,
often confound the development of control policies, that map world
state to robot actions. Moreover, many of the challenges associated
with policy development only grow with domain and robot complex-
ity, for example high degree of freedom humanoids.

Policy development therefore typically involves a significant mea-
sure of expertise and effort, prompting the advancement of tech-
niques to reduce the requirements placed on a developer. One option
is to increase policy robustness through adaptation in response to ex-
ecution experience. Some development effort also might be mitigated
if a new policy is built by bootstrapping from an existing policy. The
approach to policy development taken in this work is founded on
both ideas, of policy refinement and reuse. The policy modifications
furthermore are guided by human teacher feedback, a fundamental
characteristic of this work.

We present Tactile Policy Correction (TPC) as an algorithm that
incorporates human feedback in the form of tactile corrections for
the purposes of policy adaptation (Fig. 1). Policy corrections are indi-
cated through the touch of a human teacher, and the teacher provides
corrections in order to accomplish both policy refinement and reuse.
More specifically, our approach initially derives a policy via Learn-
ing from Demonstration (LfD) techniques. Under LfD, the robot gen-
eralizes a policy from data recorded during demonstration execu-
tions by a task expert. Our generalization formulation additionally
produces policies that reflect the inherent variability seen within the
teacher demonstrations, allowing for greater flexibility in the result-

1 Learning Algorithms and Systems Laboratory (LASA), École Polytech-
nique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, email: [bren-
nadee.argall, eric.sauser, aude.billard]@epfl.ch

ing behavior during learner reproduction. Policy corrections from a
human teacher then are provided through a tactile interface. The pol-
icy predictions provide target poses for the robot body, and when a
correction is indicated, the robot immediately modifies its pose to ac-
commodate the adjustment. The resulting execution then is treated as
new demonstration data for the policy.

Figure 1. Our approach of policy adaptation via corrections provided
through a tactile interface on the body of the robot. Black arrows indicate

robot motion and white arrows human hand movement.

We provide results from a preliminary validation of policy re-
finement under TPC, with a humanoid robot performing a grasp-
positioning task. We show the policies produced under our approach
to both be flexible with respect to teacher demonstration variability,
as well as to improve in performance when provided with tactile cor-
rections. We additionally find that different teaching modalities (i.e.
task demonstration, tactile correction) provide information about the
allowable variability in task execution within different areas of the
execution state space.

The following section provides related literature and motivation
for our approach. The TPC algorithm is detailed in Section 3, along
with our approach for preserving demonstration variability in the
learned policy. Initial validation results on humanoid robot and dis-
cussion are presented in Section 4, and in Section 5 we conclude.

2 Background and Motivation
This section begins with a discussion of policy development and re-
finement under Learning from Demonstration (LfD), proposes the
use of tactile corrections for refinement and then delineates the mo-
tivating factors for our approach.

2.1 Learning from Demonstration
Under LfD, teacher executions of a desired behavior are recorded
and a policy is derived from the resultant dataset. LfD has seen suc-
cess on a variety of robotics applications, and has the attractive char-
acteristics of being an intuitive means for human teacher to robot

learner knowledge transfer, as well as being an accessible policy de-
velopment technique for those who are not robotics-experts. There
are many design decisions to consider when building a LfD system.
These range from who executes the demonstrations and how they
are recorded, to the technique used for policy derivation. Here we
overview only those decisions specific to our particular system, and
refer the reader to [2] and [5] for a full review of robot LfD.

When recording and executing demonstrations the issue of corre-
spondence is key, where teacher demonstrations do not directly map
to the robot learner due to differences in sensing or motion [13].
Correspondence issues are minimized when the learner records di-
rectly from its own sensors while under the control of the teacher.
For example, under teleoperation the teacher remotely controls the
robot platform (e.g. [18]), while under kinesthetic demonstration the
teacher touches the robot for control (e.g. [7]). Teleoperation requires
an interface for direct robot control, and possibly also a translation
by the teacher to the body of the robot; kinesthetic teaching requires
a (passive or active) responsiveness to human touch. Both techniques
are employed in our work.

Policy derivation then amounts to building a predictor that repro-
duces the demonstrated behavior. Many approaches exist within LfD
to derive a policy from the demonstration data [2], the most pop-
ular of which either directly approximate the underlying function
mapping observations to actions, or approximate a state transition
model and then derive a policy using techniques such as Reinforce-
ment Learning (RL). Our work derives a policy under a variant of the
first approach, where probabilistic regression techniques are used to
predict a target robot pose based on world state, and a controller ex-
ternal to the algorithm selects an action able to accomplish this target
pose. Our reason for splitting policy prediction into these two steps
is tied to the mechanism by which the algorithm responds to teacher
feedback, discussed in Section 3.1.

2.2 Policy Refinement and Reuse

Even with the advantages secured through demonstration, policy de-
velopment typically is still a non-trivial task. Here we consider two
techniques to assist the policy development process, or equivalently
to reduce the strain on the policy developer: policy refinement and
policy reuse. To have a robot learn from its execution performance,
or experience, is a valuable policy improvement tool for any devel-
opment technique, and execution experience may be used to refine a
policy. The ability to reuse existing policies, designed to address re-
lated tasks, is also a practical feature for any policy learning system.

Within the context of LfD specifically, execution experience can
be used to overcome limitations in the demonstration dataset. One
typical limitation is dataset sparsity, since demonstration from every
world state is infeasible in all but the simplest domains. Other limi-
tations include the issue of correspondence between the teacher and
learner or deficiencies in the performance of the teacher, who may in
fact provide suboptimal or ambiguous demonstrations. Overcoming
potential dataset limitations is key to good policy performance, since
a LfD policy depends heavily on the quality of the demonstration
data from which it is derived.

Under LfD, a variety of approaches incorporate information gath-
ered from experience in order to refine a policy. For example, execu-
tion experience is used to update reward-determined state values [17]
and learned state transition models [1]. Other approaches provide
more demonstration data, driven by more teacher-initiated demon-
strations [7] as well as by learner requests for more data [8, 9]. In this
work, we also provide more data, but through a different mechanism

than that which provides the initial teacher demonstrations. Policy
reuse under LfD occurs most frequently with behavior primitives,
or simpler policies that contribute to the execution of a more com-
plex policy. Hand-coded behavior primitives are used within tasks
learned from demonstration [14], demonstrated primitives are com-
bined into a new policy by a human [16] or automatically by the
algorithm [2], and demonstrated tasks are decomposed into a library
of primitives [4]. The focus of our approach is instead on adapting
an existing policy to accomplish a different task, rather than incorpo-
rating the existing behavior as a subcomponent of a larger task.2

2.3 Tactile Corrections

A fundamental consideration in our work is the mechanism used to
provide feedback to the learner; for example, feedback provided ver-
bally to indicate successful task completion [11]. The feedback form
we explore is this work is that of tactile corrections.

To correct poor policy predictions is a particularly direct approach
to addressing potential LfD limitations. In comparison to overall per-
formance evaluations or state rewards, that can provide an indication
of the quality of a policy prediction, corrections furthermore provide
guidance on what might have been a more suitable alternate predic-
tion. While more teacher demonstration can populate sparse datasets
or provide an improved behavior example, it also requires visiting
the state in which the policy requires improvement, which can be
impractical for real world domains.

Within LfD, policy correction has seen limited attention. In most
approaches a human teacher indicates the correct prediction from a
discrete set of actions with significant time duration [8, 14]. Even
fewer provide corrections within continuous state-action spaces sam-
pled at a rapid rate: both characteristics of low-level motion control,
which is the target application domain for our work. To accommodate
these constraints, our approach translates feedback from a tactile sen-
sor into continuous-valued modifications on the current pose as the
robot executes. In contrast to other works with continuous-valued
corrections [2], here corrective feedback is offered online, instead of
post-execution, and through a tactile interface, instead of a high-level
corrective language.

We posit that tactile feedback furthers many of the strengths of
demonstration-based learning. Namely, humans use touch to instruct
other humans in certain contexts, for example when demonstrating a
pose or motion that requires a particular position or trajectory in 3-D
space, like a ballet posture or tennis swing. To augment demonstra-
tion learning with tactile feedback therefore is one natural extension
to the idea of teaching robots as humans teach other humans. Another
attractive feature of demonstration-based policy development is ac-
cessibility to those who are not robotics experts. Policy development
by non-experts furthermore strongly suggests robot operation around
humans, in which case the detection of tactile interactions can be cru-
cial for safe robot operation. Tactile sensing thus gains importance on
a very fundamental level, and the detected tactile interactions may be
exploited further for knowledge transfer from human to robot.

Within the field of Human-Robot Interactions (HRI), a handful of
works utilize human touch for the development of robot behaviors.
For example, during humanoid behavior learning, tactile feedback
is detected in order to minimize the support forces provided by a

2 We emphasize that the initial validation of TPC provided in this paper ad-
dresses policy refinement only. When used for reuse instead of refinement,
however, the algorithm remains unchanged. Rather, it is only the intent of
the teacher that changes, who guides the learner motion to exhibit a differ-
ent behavior from that which was demonstrated.

teacher [12], and during interactions between a robotic pet-surrogate
and elderly patients, tactile reward signals are used within RL to
adapt behavior selection [19].

2.4 Motivation for our Approach
In summary, the approach presented in this paper employs tactile
corrections to modify a policy learned through demonstration, for
the purposes of policy refinement and reuse. The factors motivating
this approach include the following.

The first factor is our target application domain: low-level mo-
tion control for high DoF robots. Policy development for high DoF
robots is difficult. To specify a target behavior for each joint is com-
plicated, and systems typically are under-constrained, resulting in
many joint configurations mapping to a single end-effector pose.
Demonstration-based policy development thus has many advantages.
Correspondence differences motivate the use of teleoperation for
demonstration, though we note that from an implementation stand-
point teleoperation becomes more challenging when many degrees
of freedom must be controlled.

The second factor is to overcome potential limitations in the
demonstration dataset. For example, suboptimal behavior examples
can result from a poor interface for controlling a demonstration, and
other potential drawbacks include dataset sparsity. We aim to over-
come dataset limitations through policy refinement. To accomplish
policy refinement, the approach presented in this paper provides new
behavior examples. The source for these examples, however, is not
more teacher demonstration. Instead, we have the student respond
online to corrections indicated by a teacher, and the resultant trajec-
tory is treated as new training data for the policy.

The final factor is how to indicate the policy corrections that re-
sult in the new behavior examples. Our approach provides correc-
tions through a tactile interface. We argue that information transfer
through human touch is a natural extension of human demonstration
as an intuitive and effective mechanism for the transfer of knowl-
edge from human to robot, that furthermore is relatively unaddressed
within the LfD literature to date.

3 The Tactile Policy Correction Algorithm
We introduce Tactile Policy Correction (TPC) as an algorithm for
the refinement and reuse of motion policies, accomplished via tactile
feedback from a human teacher.

Under TPC, a policy is initially derived from demonstrations of
a task by a teacher. We formally define the world to consist of ac-
tions A ∈ R` and observations Z ∈ R(m+n) of world state. An
observation z ∈ Z consists of two components, z = (zϕ,z¬ϕ),
where zϕ ∈ Rm describes the robot pose, and z¬ϕ ∈ Rn de-
scribes any other observables that are of interest to the policy.3 We
define a demonstration to consist of a sequence of observations
{zj}τj=1, recorded during teacher execution of the task. The col-
lected set D = {zj}Nj=1 of demonstrations is then provided to the
robot learner. From this set a policy π : Z → A is derived, that en-
ables the selection of an appropriate action given the observed state.

Following demonstration and policy derivation, the robot exe-
cutes with its policy and receives tactile corrections from the human
teacher. Tactile corrections are used within two capacities, either to
refine the existing policy or to build a new policy bootstrapped on

3 Pose information is necessary for the TPC algorithm, and so zϕ 6= ∅.
The presence of additional observation information however is application-
dependent, and possibly absent such that z¬ϕ = ∅.

the demonstrated policy. Pseudo-code for this approach is provided
in Algorithm 1.

Algorithm 1 Tactile Policy Correction
1: Given D
2: initialize δ0 ← 0
3: derive π ← policyDerivation(D)
4: while correcting do
5: Policy π execution:
6: predict ẑtϕ ← regression

(
zt−1

)
7: execute ztϕ ← controller

(
ẑtϕ + δt

)
8: if detect touch then
9: map δtε ← M (touch)

10: correct ztϕ ← controller
(
ztϕ + δtε

)
11: record δt+1 ← δt + δtε
12: end if
13: set wt

14: record D ← D ∪
(
zt, wt

)
15: end while
16: rederive π ← policyDerivation(D)
17: return π

3.1 Algorithm Execution
The first phase of the TPC algorithm consists of task demonstration
by the teacher, producing datasetD from which the learner derives an
initial policy π. The second phase of the algorithm involves learner
execution with the policy π, and corrective tactile feedback which is
used to update π. This execution-correction-update cycle continues
to the satisfaction of the teacher.

A single execution-correction-update cycle is presented in lines 4-
16 of Algorithm 1. Policy execution (lines 5-7) at timestep t consists
of two phases: prediction of a target pose ẑtϕ, and the selection of
an action to accomplish that pose. Pose prediction is accomplished
via regression techniques, based on state observation zt−1 (line 6).
Action selection is accomplished via a robot-specific controller, and
its execution results in a new robot pose ztϕ (line 7).

The human teacher may choose to offer a tactile correction at any
timestep of an execution. If detected, the robot learner translates the
tactile feedback into an incremental shift δtε ∈ Rm in the robot pose,
according to mapping M (line 9). Note that the form taken by the
tactile feedback is platform-specific, depending both on the tactile
sensors employed to detect human touch and how the sensor feed-
back is processed.

The robot controller is then passed the new adjusted pose, for
which the incremental shift δtε is added to the current robot pose ztϕ
(line 10). The influence of this incremental shift is maintained over
multiple timesteps, through an offset parameter δt ∈ Rm that main-
tains a sum of all adjustments seen during the execution (line 11) and
is added to the pose prediction at each execution timestep (line 7).

The timestep concludes with the recording of observation zt,
along with a weight wt ∈ [0, 1] for the new datapoint (details in
Sec. 3.3.2), into the set D (line 14). The tactile correction thus also
is recorded, since the current pose has been corrected by tactile feed-
back and is recorded into observation zt through component ztϕ.
Upon completion of the entire execution, policy π is rederived from
demonstration setD (lines 16); the corrected execution thus is treated
as new data for the policy.

Important to note is that the TPC algorithm is agnostic to the tech-
niques used for pose prediction (regression) and action selection

Figure 2. a) Demonstration data and resulting GMR regression mean and covariance envelope. b,c) Illustration of our offset formulation for GMR that allows
for deviation from the regression mean, showing adaptability with respect to perturbations (b, dotted lines) and starting position (c, bold line). d) Our weight

function formulation, as a function of covariance envelope size. e,f) Illustration of an example weight function and the resulting shift in regression signal.

(controller) during policy execution, as well as to the technique
that translates tactile feedback into a pose adjustment (mapping M).
The following sections describe the particular techniques we employ
for the implementation of the TPC algorithm within this work.

3.2 Policy Execution
This section describes the specific techniques used for policy
execution under our implementation of the TPC algorithm. For
pose prediction, the GMM-GMR regression technique is employed
(Sec. 3.2.1), with a modification to allow for variability in the re-
sulting policy (Sec. 3.2.2). For action selection we use an inverse
kinematic controller (Sec. 3.2.3).

3.2.1 Pose Prediction

Target poses are predicted through the GMM-GMR algorithm [7],
which first encodes demonstrations in a Gaussian Mixture Model
(GMM) and then predicts a target pose through Gaussian Mix-
ture Regression (GMR). The recorded demonstrations are modeled
probabilistically in a GMM, whose parameters are trained under a
weighted version of the Expectation-Maximization (EM) algorithm
(details in Sec. 3.3.2). Our implementation defines observation com-
ponent zϕ as Cartesian position x ∈ R3 and orientation q ∈ R4 (as
a quaternion, ‖q‖ = 1) of the end-effector in a robot-centric refer-
ence frame. Thus zϕ ≡ [x, q] ∈ R7. We further define component
z¬ϕ ≡ t ∈ R as the timestep of recorded observation. The GMM
thus models the joint probability of the temporal and spatial aspects
of the demonstrations. To make a pose prediction, GMR estimates
the conditional expectation of zϕ given z¬ϕ, i.e. p (x, q|t).

3.2.2 Deviating from the Mean Trajectory

We additionally take advantage of the probabilistic nature of the re-
gression to generate variability, and thus flexibility, in the predicted
trajectory. Under GMR, a target pose ẑtϕ is predicted with mean µ̂t

and covariance Σ̂
t

(Fig. 2a). We modify the pose prediction by

ẑtϕ = µ̂t + δtλ (1)

and thus apply to the regression mean offset δtλ ∈ Rm

δtλ =

{
∆t
λ if λt ≤ λmax

∆t
λ
λmax
λt otherwise

(2)

∆t
λ = ztϕ − µ̂t , λt = ‖(Σ̂t

)−
1
2 ∆t

λ‖ (3)

where δtλ is defined by the difference between the current robot pose
and regression mean (∆t

λ), and whether the magnitude (λt) of this
difference (inversely scaled by standard deviation (Σ̂t)

1
2) exceeds

a threshold (λmax). Without this offset, the pose predictions fol-
low exactly the mean trajectory. An example where this would not
be desired is if the execution starting position is actually closer to
the target position than is the start of the mean trajectory. Predict-
ing the mean trajectory in this case will cause the learner execution
to backtrack unnecessarily. With our offset, the pose predictions are
no longer constrained to only follow the mean trajectory (Fig. 2b,c,
λmax � 0). Instead, variations are allowed within the constraints of
the regression covariance.

The amount of allowable deviation is dictated in terms of an ac-
ceptable number (λmax) of standard deviations from the regression
mean, where λmax ≥ 0 is a constant parameter set by hand (in our
empirical validation, λmax = 2). For execution points (including
starting positions) within this threshold (i.e. within λmax standard
deviations of the regression mean µ̂t), the execution proceeds with
its current pose (i.e. ẑtϕ = µt + ∆t

λ = ztϕ). Execution points out-
side of this threshold are first projected (e.g. Fig. 2c, zϕ to ẑϕ) to
the envelope (shaded region) defined by λmax standard deviations
around the regression mean. The result is more flexible learner exe-
cutions, that take advantage of the variability present in the teacher
demonstrations.

One gain of this regression formulation, that will be confirmed in
Section 4.2, is allowing the learner execution to choose a more direct
path to the goal, that perhaps deviates from the mean trajectory but is
still within the bounds of what was demonstrated. Another potential
gain in using offset δtλ is online adaptation to external perturbations,
for example a compliant response to a perturbation caused by unex-
pected contact with a human. Consider an external force applied to
the robot arm during execution, (i) to which we would like the robot
to respond (ii) while still attaining the goal (e.g. Fig. 2b). Without

our offset, the learner execution will attain the second objective, but
not the first; that is, the learner will continue to follow the mean tra-
jectory, and thus attain the target position, but will not be responsive
to the force (λmax = 0, dashed lines). With our offset, however, both
objectives are attained (λmax � 0, dotted lines). The offset value
is the execution’s response to the perturbation, and since the off-
set is constrained by the covariance envelope (more specifically, to
keep the execution within λmax standard deviations of the regression
mean), the target position also will be attained.4

3.2.3 Action Selection

Given a target pose ẑϕ, action selection is accomplished via an in-
verse kinematic controller. Our action space A consists of velocities
θ̇ ∈ R7 for the joint angles of a robot arm. The manipulator of our
implementation (Sec. 4.1) is redundant, as the number of degrees
of freedom (7) exceeds the number of constraints (6, position and
orientation). We therefore compute desired joint angle velocities θ̇
according to the distance between the target pose ẑϕ and the current
robot pose zϕ by using a pseudo-inverse method that both avoids
joint limits and is robust to singularities [3].

3.3 Tactile Corrections

The tactile interface consists of five Ergonomic Touchpads located
on the manipulator arm. The pads detect contact presence and rela-
tive motion, which we map to a change in end-effector position and
orientation (Sec. 3.3.1). The movement that results is recorded into
the dataset and incorporated into a policy update (Sec. 3.3.2).

3.3.1 Online Modification of Policy Execution

Four touchpads, T0 · · ·T3, encircle the lower forearm of the robot
arm (near the wrist), and one, T4, is located on the back of the robot
hand (Fig. 3a,b). In practice, we decompose the mappingM into two
distinct parts, that operate separately on the wrist (end-effector) and
on the hand of the robot arm, which seemed a more intuitive mapping
for the experimenters providing corrections.5

The first part of the mapping operates on the first 5-DoF lead-
ing to the wrist of our 7-DoF manipulator. The pads T{0..3} can be
seen as an interface for controlling the manipulator along the 6-DoF
Cartesian space (position and orientation). Sliding the fingers along
two opposite touchpads can either lead to a translational or rotational
motion command, depending on whether the sliding directions agree
or not (Figure 3c,d). When motion is detected on the touchpads, the
commands are mapped to a target velocity for the end-effector in
Cartesian space, and then resolved to target joint velocities by an in-
verse kinematic controller [3]. The second part of the mapping relates
to the final 2-DoF controlling the robot hand. Since the last pad has
2-DoF as well, here the mapping to motion commands is one to one.

4 With a reasonably-sized factor λmax (i.e. reasonably small, such as
λmax = 2), attaining the target position with our formulation depends pri-
marily on the covariance envelope being small at the target position, which
the unmodified formulation of GMR relies on as well.

5 Touchpad feedback is somewhat limited in comparison to more sophisti-
cated tactile sensors, for example that provide force information or a finer
spatial resolution. In practice corrective repositioning is not always as re-
sponsive as the teacher requires, and so we pause policy execution such that
psuedo-code lines 9-10 loop until repositioning is complete. Note that this
limitation results from a deficiency in hardware, not the algorithm, and val-
idation with a more sophisticated tactile sensor is a target for future work.

Figure 3. a,b) Schematic of the touch pads controlling the robot wrist and
hand. c,d) Fingers sliding on opposite pads produces rotational (c) or

translational (d) motions.

3.3.2 Incorporation into a Policy Update

Upon completion of an execution corrected with tactile feedback,
new data is incorporated into the policy. To incorporate feedback,
the policy is rederived taking into account the new datapoints. Policy
execution within the TPC algorithm consists of a pose prediction via
regression techniques, followed by action selection by a controller.
Under our implementation the controller is statically defined, and so
policy derivation consists of regression parameter estimation only.
Policy rederivation thus consists of re-estimating the regression pa-
rameters, which is accomplished through a weighted version of the
EM algorithm (details in Tbl. 1).

Table 1. Weighted Expectation-Maximization (EM)

Our weighted version of the EM algorithm modifies the EM implementation
of [7] to include weight wj . The algorithm loops between the E-step and the
M-step until the overall likelihood

∑K
k=1 Ek is maximized:

E-step:

p
(i+1)
k,j =

γ
(i)
k N

(
zj ;µ

(i)
k ,Σ

(i)
k

)
ΣKik=1γ

(i)
ik
N
(
zj ;µ

(i)
ik
,Σ

(i)
ik

)
E

(i+1)
k = ΣNj=1w

jp
(i+1)
k,j

M-step:

γ
(i+1)
k =

E
(i+1)
k

ΣNj=1w
j

µ
(i+1)
k =

ΣNj=1w
jp

(i+1)
k,j zj

E
(i+1)
k

Σ
(i+1)
k =

ΣNj=1w
jp

(i+1)
k,j

(
zj − µ(i+1)

k

)(
zj − µ(i+1)

k

)T
E

(i+1)
k

Datapoint weights are assigned based on the covariance envelope
of the original GMM derived from the demonstration data. In partic-
ular, we define weight functions for corrected executions wC(t) and

demonstrated executions wD(t) as

wC(t) = 1− |Σ̂t|
1
2

2 · Σmax
, Σmax = max

t
|Σ̂t|

1
2 (4)

wD(t) = 1− wC(t) (5)

where |Σ̂t| is the determinant of the GMR prediction covariance ma-
trix at time t. We then assign weight wj for datapoint zj with func-
tions wD(t) or wC(t), based on whether zj was part of a demon-
strated or corrected execution (respectively) and the time (t ≡ zj¬ϕ)
of the observation recording.

With this weight formulation, we assume that the teacher demon-
strations provide an accurate portrayal of the variability profile of
the task. That is, in areas of low covariance, little variability is al-
lowed (or equivalently, high precision is required) in the target task
behavior, while in areas of high covariance, much variability in the
resulting behavior is acceptable, even expected. With our weight for-
mulation, in areas of low covariance (|Σ̂t|

1
2 � Σmax), corrected

datapoints are given a high weight, and the regression signal ac-
cordingly shifts strongly. By contrast, in areas of high covariance
(|Σ̂t|

1
2 → Σmax), it is not unexpected that executions might differ

from the demonstrated behavior, and so demonstrated and corrected
execution points are given approximately equal weight. This weight
formulation is shown in Figure 2d, followed by an example weight
function (e) and resulting shifted regression signal (f).

4 Empirical Validation
Here we provide initial validation results of TCP on a high DoF hu-
manoid (Sec. 4.1), highlighting in particular the flexibility of our re-
gression formulation (Sec. 4.2) and refinement of the demonstrated
behavior (Sec. 4.3). A discussion of these results, and future research
directions, are also provided (Sec. 4.4).

4.1 Robot Task and Domain
Initial validation of the TPC algorithm is performed with a 57-DoF
humanoid robot, the iCub robot, performing a grasp positioning task.
The task consists of positioning the robot end-effector (7-DoF) to
grasp a cylindrical object. Demonstration is performed via teleoper-
ation, accomplished with a 3D mouse able to control all 6-DoF of
the end-effector position and orientation. Closing the hand for grasp-
ing is handled by a static controller.6 Demonstrations are provided
from multiple starting end-effector positions with respect to the ob-
ject. Tactile corrections are then performed using the touchpad setup
described in Section 3.3.1.

The focus of this validation is two-fold: (i) to explore policy flexi-
bility with respect to the variability present within the teacher demon-
strations and (ii) to confirm the ability of TPC to refine a demon-
strated behavior. The validation of policy reuse is left for future work.
Three policies therefore are developed for comparison:

π : Derived from the demonstration set D using GMR as in [7].

πλ : Derived from the demonstration set D and using our modi-
fied version of GMR with offset δλ.

πλ,c : Produced from tactile correction of Policy πλ using TPC.

6 The focus of the task objective is on end-effector positioning, rather than the
grasp itself, since the iCub hand has no force sensors or tactile feedback.
Note also that if controlling the hand is also a part of the demonstrations,
then the operational space is 15-DoF and a more complex teleoperation
system is required.

4.2 Flexible and More Efficient Policies
Flexibility in the policy execution is enabled through offset factor
δλ. As illustrated in Figure 2c, without this offset the execution tra-
jectory (dashed line) will follow the regression mean (white trajec-
tory), regardless of whether a more appropriate path (e.g. a shorter
path such as demonstration d∗) is contained within the demonstra-
tion set executions. With the offset, however, the learner execution
is free to follow a more direct path to the goal (bold line), providing
this is within λmax standard deviations of the regression mean. The
executions in Figure 4 confirm this behavior with real robot data.

Figure 4. a) Demonstration executions to target position ∗. b,c) Executions
from starting positions s1..s4, performed by policy π (b) and policy πλ (c).

Note that executions by policy πλ proceed directly to the target position,
while those of π first visit the start of the mean trajectory (sr).

Table 2 provides the lengths of the execution trajectories (as frac-
tions of the distance traveled by policy π) from 4 starting positions
(s1..s4) for all policies. Indeed, from all positions the incorporation
of offset δλ allows for execution paths that approach the target posi-
tion more directly, shown through shorter trajectory lengths (πλ vs.
π). The most dramatic improvement is seen with starting position s4,
whose position is such that the execution must travel explicitly away
from the target position (∗) to reach the start of the mean trajectory
(sr). In this case overt backtracking is the result if offset δλ is not
employed (Fig. 4).

Table 2. Execution Length (from multiple starting positions, as a fraction of the
execution length of policy π)

Starting Position π πλ πλ,c
s1 1 0.69 0.66
s2 1 0.88 0.88
s3 1 0.64 0.67
s4 1 0.35 0.27

In the original demonstration set D, variability in the starting po-
sition was present. The task also allows for some variability in the
target position, as the hand may be positioned at various locations
on the cylinder and still successfully grasp the object. Variability in
target position was minimally present in the demonstration set how-
ever, as navigating the end-effector to various grasp locations on the
cylinder required a high level of precision that was difficult to achieve
with the mechanism used for teleoperation (the 3D mouse). Through
tactile corrections, however, the teacher was able to convey variabil-
ity with respect to target position.

As shown in Figure 5, following correction, the covariance enve-
lope at the target position broadened with respect to location on the
cylinder; that is, along the principle axis of the cylinder (dimension
x3). Note further that the envelope by contrast narrowed within the
plane supporting the cylinder (dimensions x1, x2), appropriately in-
dicating less flexibility with respect to the location of the cylinder

Figure 5. Covariance envelope (shaded region) at the target position a)
before tactile corrections (i.e. with policy πλ) and b) after tactile corrections

(i.e. with policy πλ,c).

(i.e. refinement). In general, allowing for additional variability at the
target position resulted in similar execution lengths (Tbl. 2, πλ,c vs.
πλ), which is not unexpected given that the length of the cylinder is
quite small compared to the distances between the starting and target
positions. Rather, the benefit of allowing for variation at the target
position is more flexible placement of the hand on the object. Flex-
ible hand placement has many potential advantages, for example if
part of the object is unreachable due to obstruction by an obstacle.

4.3 Refined and More Successful Behavior

Tactile corrections were able to refine the policy of the demonstrated
behavior, as shown through the adaptation of the regression signal
in response to the tactile feedback. For this validation task, correc-
tions were provided near the end of the task execution, to adjust the
end-effector position once it was close to the cylinder (though in the-
ory corrections may be provided at any point during the execution).
Figure 6 highlights the shift in regression envelope at the target po-
sition (discussed in the previous section), with the callouts showing
the envelope to narrow in dimension x1, to slightly shift in x2 and to
broaden in x3.

Figure 6. Shift in regression signal covariance with corrections.

Policy refinement resulted in improved execution success. Here
success is measured by a score of 1 given to executions that suc-
cessfully pick up the object, 1

2
to those that grasp the object but not

stably enough to prevent slipping as it is picked up, and 0 to those

that are unable to grasp the object (sum of 10 executions from ran-
dom starting positions). One trade-off to not following the regression
mean exactly, and thus to using our offset δλ, is that executions reach
the target position less reliably (Tbl. 3, πλ vs. π). Tactile corrections
are able to buy back some of this lost reliability however, and thus
improve policy performance. The corrected policy achieves the goal
more reliably (Tbl. 3, πλ,c vs. πλ) but with execution trajectories of
similar length (Tbl. 2, πλ,c vs. πλ), and thus without sacrificing the
execution flexibility gained through offset δλ.

Table 3. Execution Success

π πλ πλ,c
Score 10 6.5 8.5

4.4 Discussion
Here we provide discussion on two key aspects of the approach pre-
sented in this work: the preservation of demonstration variability
within learned policy, and the choice of weight formulation for cor-
rected datapoints. We follow by highlighting some promising direc-
tions for future research.

4.4.1 Reflecting Demonstration Variability in the Policy

This work employed a variant on the GMM-GMR regression for-
mulation, that allowed for deviation from the mean trajectory of the
demonstrations. The goal of such a formulation was to allow for flex-
ibility in the resulting policy execution. Noted benefits of such flex-
ibility included the possibility of following more direct trajectories
to the target position, and online adaptability to perturbations. As a
trade-off, potential detriments included reaching the target position
less reliably however.

This formulation may equivalently be seen as using the differences
seen between demonstrations as a template by which to infer those
parts of the state space in which the task permits variability in the
execution. Likeminded approaches have aimed to infer the crucial
aspects of task execution by extracting what is similar between mul-
tiple demonstrations or demonstrators (e.g. [6, 10, 15]).

We highlight that acceptable variability in the task execution was
effectively conveyed by the teacher through multiple modalities;
namely, teleoperation and tactile corrections. Moreover, the modal-
ities were individually better suited for different areas of the state
space. In particular, to indicate generality in starting position, teleop-
eration was very effective. To provide generality over starting posi-
tions with tactile feedback we expect would have been quite tedious
in comparison, as the tactile interface is best suited for small iterative
movements. By contrast, to indicate generality along a single axis at
the target position was best provided through the tactile interface,
which was more responsive to precise positioning.

4.4.2 Weighting New Datapoints

We also employed this idea of demonstration variability within our
weight formulation for new datapoints. In particular, in areas that ex-
hibited little variability during teacher demonstration, the new behav-
ior examples produced as a result of tactile corrections were consid-
ered to be very significant. By contrast, in areas that exhibited much
variability during demonstration, the presence of additional variabil-
ity in the form of new corrected behavior examples was more ex-
pected, and thus considered to be less significant.

Our weight formulation relied on the assumption that the variance
present within the demonstrations matched the target variance of the
adapted task. Such an assumption is reasonable for policy refinement,
as the target behavior of the adapted policy is the same as that of the
demonstrated policy. Such an assumption is less appropriate for pol-
icy reuse, however, when the target behavior of the adapted policy
differs form that of the demonstrated policy, and therefore so also
might the variance profile. Consider for example the demonstration
of a reaching task that passes through a large hole in order to grasp
an object. Now consider adapting the resultant policy to achieve the
same grasping objective, but by reaching through a much smaller
hole. The demonstrated task will be constrained only at the target
position, where it must grasp the object. By contrast, the adapted
task will be constrained additionally in the middle of the execution
trajectory, when it must pass through the small hole. The compara-
tively large covariance in the demonstration data at this phase of the
execution trajectory therefore will not reflect the allowed variance in
the adapted task.

We therefore expect the development of suitable weight functions
for corrected datapoints to be an active area for future research. Many
formulations are potential candidates, and their suitability depends at
a higher level on what the designer wants to see come out of the learn-
ing. For example, if a separate weighting function is employed for
refinement versus reuse, should the robot is to be notified when reuse
is taking place, or statistically infer as much from differences be-
tween the distributions of demonstrated versus corrected datapoints?
Another learning objective could be to infer the worth of particular
datapoints, according to some utility function, and therefore not rely
on the assumption that corrected datapoints are better examples (than
the demonstrated datapoints) of the target task behavior.

4.4.3 Future Directions

There are many promising extensions to this work. From an algo-
rithmic standpoint, to consider alternative paradigms for setting the
weight on the influence of new data in a policy update will be at
the forefront of our future investigations. Already discussed is how
an alternate formulation would be more appropriate for policy reuse;
another possibility could be to have a distinct weighting function for
each teacher, for example, as demonstrators might differ in their abil-
ity to perform the task. Correcting within the action space is another
area of interest, where for example human touch indicates changes
in joint speed instead of, or in addition to, changes in pose.

From an implementation standpoint, we have found tactile correc-
tions to be effective for the purpose of refining a demonstrated behav-
ior, and to show their effectiveness for the purposes of policy reuse
is currently under development. To validate TCP on a more sophisti-
cated tactile sensor, that provides a richer set of feedback signals, is
another direction that we are actively pursuing. An additional direc-
tion for future research is to expand the application influence of the
tactile corrections, for example to correct the entire arm pose instead
of just end-effector position.

5 Conclusion

We have presented Tactile Policy Correction (TPC) as an algorithm
for the adaptation of policies through tactile feedback from a human
teacher. With tactile corrections, we aimed to improve the perfor-
mance of a demonstrated behavior in response to execution experi-
ence. Multiple teaching modalities - namely, teleoperation and tactile

corrections - were employed to provide examples of behavior execu-
tion, and we have highlighted the differing suitability of each for
providing information about acceptable variability in the task behav-
ior at different points during the task execution. We have provided
an initial validation of policy refinement with TPC on a humanoid
performing a grasp positioning task. Future work will validate TPC
for policy reuse and with a more sophisticated tactile sensor.

ACKNOWLEDGEMENTS
The research leading to these results has received funding from
EC Projects IST-2004-004370 (RobotCub) and IST-04169 (feelix-
growing), and from the European Community’s Seventh Framework
Programme FP7/2007-2013 - Challenge 2 - Cognitive Systems, Inter-
action, Robotics - under grant agreement n [231500]-[ROBOSKIN].

REFERENCES
[1] Pieter Abbeel and Andrew Y. Ng, ‘Exploration and apprenticeship

learning in reinforcement learning’, in Proceedings of ICML, (2005).
[2] Brenna D. Argall, Learning Mobile Robot Motion Control from Demon-

stration and Corrective Feedback, Ph.D. dissertation, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, March 2009.

[3] P. Baerlocher and R. Boulic, ‘An inverse kinematics architecture enforc-
ing an arbitrary number of strict priority levels’, International Journal
of Computer Graphics, 20, (2004).

[4] Darrin C. Bentivegna, Learning from Observation Using Primitives,
Ph.D. dissertation, College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA, July 2004.

[5] Aude Billard, Sylvain Callinon, Rudiger Dillmann, and Stefan Schaal,
‘Robot programming by demonstration’, in Handbook of Robotics,
eds., B. Siciliano and O. Khatib, Springer, New York, NY, USA, (2008).

[6] S. Calinon, F. D’halluin, D. G. Caldwell, and A. Billard, ‘Handling of
multiple constraints and motion alternatives in a robot programming by
demonstration framework’, in Proceedings of Humanoids, (2009).

[7] Sylvain Calinon and Aude Billard, ‘Incremental learning of gestures by
imitation in a humanoid robot’, in Proceedings of HRI, (2007).

[8] Sonia Chernova and Manuela Veloso, ‘Learning equivalent action
choices from demonstration’, in Proceedings of IROS, (2008).

[9] Daniel H. Grollman and Odest Chadwicke Jenkins, ‘Dogged learning
for robots’, in Proceedings of ICRA, (2007).

[10] Michael Kaiser, Holger Friedrich, and Rudiger Dillmann, ‘Obtaining
good performance from a bad teacher’, in Programming by Demon-
stration vs. Learning from Examples Workshop at ML’95, (1995).

[11] Andrea Lockerd and Cynthia Breazeal, ‘Tutelage and sociallyl guided
robot learning’, in Proceedings of IROS, (2004).

[12] Takashi Minato, Yuichiro Yoshikawa, Tomoyuki Noda, Shuhei Ike-
moto, Hiroshi Ishiguro, and Minoru Asada, ‘CB2: A child robot with
biomimetic body for cognitive developmental robotics’, in Proceedings
of IROS, (2007).

[13] Chrystopher L. Nehaniv and Kerstin Dautenhahn, ‘The correspondence
problem’, in Imitation in Animals and Artifacts, eds., Kerstin Dauten-
hahn and Chrystopher L. Nehaniv, chapter 2, MIT Press, Cambridge,
MA, USA, (2002).

[14] Monica N. Nicolescu and Maja J. Mataric, ‘Methods for robot task
learning: Demonstrations, generalization and practice’, in Proceedings
of AAMAS, (2003).

[15] P. K. Pook and D. H. Ballard, ‘Recognizing teleoperated manipula-
tions’, in Proceedings of ICRA ’93, (1993).

[16] Joe Saunders, Chrystopher L. Nehaniv, and Kerstin Dautenhahn,
‘Teaching robots by moulding behavior and scaffolding the environ-
ment’, in Proceedings of HRI, (2006).

[17] Martin Stolle and Christopher G. Atkeson, ‘Knowledge transfer using
local features’, in Proceedings of ADPRL, (2007).

[18] John D. Sweeney and Roderic A. Grupen, ‘A model of shared grasp af-
fordances from demonstration’, in Proceedings of Humanoids, (2007).

[19] Kazuyoshi Wada and Takanori Shibata, ‘Social effects of robot ther-
apy in a care house - change of social network of the residents for two
months -’, in Proceedings of ICRA, (2007).

