

1

Design and Implementation of Correlating Caches
Arindam Mallik, Matthew C. Wildrick, Gokhan Memik

Department of Electrical and Computer Engineering
Northwestern University

Evanston, IL 60208

ABSTRACT
We introduce a new cache architecture that can be used to
increase performance and reduce energy consumption in Network
Processors. This new architecture is based on the observation that
there is a strong correlation between different memory accesses. In
other words, if load X and load Y are two consecutively executed
load instructions, the offset between the source addresses of these
instructions remain usually constant between different iterations.
We utilize this information by building a correlating cache
architecture. This architecture consists of a Dynamic Correlation
Extractor, a Correlation History Table, and a Correlation Buffer.
We first show simulation results investigating the frequency of
correlating loads. Then, we evaluate our architecture using
SimpleScalar/ARM. For a set of representative applications, the
correlating cache architecture is able to reduce the average data
access time by as much as 52.7% and 36.1% on average, while
reducing the energy consumption of the caches by as much as
49.2% and 25.7% on average. 1

CATEGORIES & SUBJECT DESCRIPTORS
 B.3 Memory Structures; B.8 Performance and Reliability

GENERAL TERMS
 Performance, Design

1. INTRODUCTION
Traditional processing elements in networks are either general-
purpose processors or ASIC solutions. The limitations of these
traditional approaches led to the design of Network Processors
(NPs). By being tailored towards a specific application domain and
utilizing application-specific optimizations, NPs achieve
performance comparable to ASIC solutions.
In this paper, we introduce a cache architecture that reduces the
energy consumption of the local caches as well as overall energy
consumption. Our new architecture is proposed to replace the local
data caches in the execution cores of NPs. Overall; the proposed
techniques reduce the average data access times by improving the
hit rates in level 1 data caches. In addition, the energy consumption
of the local caches is also reduced.
In the heart of our technique lies the observation that the load
instructions in most networking applications are correlated. First,
during the execution of the applications, if a loadX (meaning the
load operation at PC X) is followed by a loadY (meaning the load
operation at PC Y) once, the probability that loadX is followed by
loadY in the next iteration is very high. We call this relation the
precedence correlation. Second, in such a precedence correlation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

we observed that the source addresses are also correlated which is
defined as source correlation. In other words, if loadX accesses
srcX_1 in its first iteration and srcX_2 in its second while loadY
accesses srcY_1 and srcY_2 in the same order, there is a high
probability that the following will hold:

| srcX_1 | - | srcY_1 | = | srcX_2 | - | srcY_2 |
In this paper, we design a cache architecture that takes advantage
of this knowledge. Particularly, our contributions in this paper are:
1) We introduce load source correlation,
2) We show that there is a strong source correlation in a variety

of networking applications,
3) We design a memory subsystem that utilizes the correlation

information, and
4) We present simulation results indicating that our proposed

architecture can be efficiently used in Network Processors to
reduce the energy consumption and execution time.

Energy consumption has traditionally been one of the primary
design criteria for mobile systems. Although NPs are initially
designed for wired systems, there is an increasing motivation to
utilize them in wireless systems. Table 1 presents characteristics of
several commercial NPs.
The rest of the paper is organized as follows. In the next section,
we discuss the definitions and present simulation results
investigating the correlation between load operations. Section 3
presents the details of our correlating cache architecture. Section 4
discusses the simulation environment. In Section 5, we present the
simulation results. Section 6 overviews the related work. We
conclude the paper with a summary in Section 7.

Table 1. Representative Network Processor Products:

Product Power [W] Tech. [µ]
Agere PayloadPlus 12 0.18
AMMC (MMC) nP7510 4 0.18
Clearwater CNP810SP 12 0.15
IBM Rainier 20 0.18
Intel IXP2850 27.5 0.13
Intel IXP1200 5 0.28
Motorola C-5 20 0.18
PMC-Sierra RM9000 5 0.18

2. DEFINITIONS AND MOTIVATIONAL RESULTS
In the previous section, we have defined the two important
concepts in our work: precedence correlation and source
correlation. Figure 1 presents the execution of a loop to illustrate
the correlation relations. Figure 1 (a) presents the code of the loop
labeled start. Within the loop, there are two load operations (ldX
and ldY). Figure 1 (b) and (c) depict the source addresses accessed
by the ldX and ldY for two different scenarios. In (b), we see that
the ldX and ldY exhibit precedence correlation. This sets a high
probability that after ldX is executed, ldY will be executed as the
next load instruction. Figure 1 (c), on the other hand, depicts a
sequence of source address sequences, where there is strong source
correlation, i.e. the offset from the address accessed by ldX and the
address accessed by ldY is the same for all the iterations of the

2

loop (which is equal to 0x200. Similar to precedence correlation,
we associate a probability with a source correlation.
Figure 2 and Figure 3 present simulation results investigating the
correlation factors (precedence and source) in various networking
applications. We simulate a processor similar to StrongARM SA-
110. Note that the size and associativity of the caches do not affect
the correlation factors. The applications and the simulation
parameters for these simulations are identical to those discussed in
Section 4. Figure 2 plots the results for simulations measuring the
precedence correlation.

Figure 1. Correlation example: (A) is the code segment executed, (B) is
a possible sequence of source addresses accessed by ldX and ldY, which
exhibits precedence correlation, but no source correlation, (C) is
another sequence of source addresses which exhibits source correlation
between ldX and ldY.

For each application we measure the fraction of loads that has a
certain probability of precedence correlation. Particularly, more
than 95% of the loads exhibit an 80% or more precedence
correlation. Figure 3 plots the results for source correlation. Similar
to precedence correlation, the results indicate a strong source
correlation. Particularly, 91% of the executed load instructions
exhibit an 80% or more source correlation. Although not presented
due to lack of space, the offset values between the accesses range
from 4 bytes to 13848 bytes. The average offset observed in the
simulated applications is 27.4 bytes.

3. CORRELATING CACHES
We designed the correlating cache architecture to take advantage of
strong source correlation among load operations. The overview of
the architecture is depicted in Figure 4. There are three additional
structures compared to a traditional memory subsystem: the
Dynamic Correlation Extractor (DCE), Correlation History Table
(CHT) and the Correlation Buffer (CB). The DCE aims to detect
the source correlation among different load instructions. The PC of
the preceding load operation is stored in the CHT along with the
corresponding offset. If the same load instruction is executed, the
CHT captures the correlation and starts to prefetch. If the currently
executed PC is not in the CHT, no prefetching is performed.
Regardless of the prefetching, the current request only accesses the
correlating buffer. If the accessed block does not exist in the CB,
the DL1 cache is accessed and the block is promoted to the CB.

0
20
40
60
80

100

crc dh drr firewall md5 nat route ssl-m ssl-s ssl-w tl url AVERAGEPrograms

Pr
ec

ed
en

ce

C
or

re
la

te
d

Lo
ad

s
[%

]

 less than 50 % between 50% and 60 % between 60% and 70 %
 between 70% and 80 % between 80% and 90 % Precedence over 90 %

Figure 2. Fraction of precedence correlated load instructions.

0
20
40
60
80

100

crc dh drr firewall md5 nat route ssl-m ssl-s ssl-w tl url AVERAGEPrograms

So
ur

ce
 C

or
re

la
te

d
Lo

ad
s

[%
]

 less than 50 % between 50% and 60 % between 60% and 70 %
 between 70% and 80 % between 80% and 90 % Precedence over 90 %

Figure 3. Fraction of source correlated loads for NetBench applications.

Figure 4. Correlating Cache Architecture.

3.1 DYNAMIC CORRELATION EXTRACTOR (DCE)
In the previous section, we have associated probabilities with each
source correlation. The hardware requirement to implement it is too

high. Instead, the DCE stores the last two offset values seen for the
specific PC using the DCE table. The total data size of the DCE
table is “# of entries in the DCE table * 2” bytes. DCE also uses
two registers called last source address (LSA) and last program
counter (LPC). The overall procedure of the DCE is depicted in
Figure 5. The DCE table is accessed using the LPC (last PC) as the
address. If the DCE table returns a hit, the new offset is compared
against the last_offset_1 and last_offset_2. If both comparisons
indicate equality, the LPC value is entered into the CHT with the
value “new offset”. If the entry is not found in the DCE table, a
new entry is generated. In either case, the LPC and LSA (last
source adreess) values are updated once the remaining
computations are completed.

new offset = current source address – LSA
access the DCE table using the LPC
 if hit
 if new offset == last_offset_1 == last_offset_2

…
start:
(ldX:) load r1,
r2[0]
add r3, r1, r4
(ldY:) load r5,
r3[0]

ldX: 0x1000
ldY: 0x1200
ldX: 0x1800
ldY: 0x2600
ldX: 0x1000
ldY: 0x1600
…

ldX: 0x1000
ldY: 0x1200
ldX: 0x2000
ldY: 0x2200
ldX: 0x1000
ldY: 0x1200
… (C)

(B)

(A)

Correlating
Buffer
(CB)

Dynamic
Correlation
Extractor

(DCE)

C
P
U

PC

Packet
Memory

DL1
Cache

Correlation

History
Table
(CHT)

3

 put the LPC into the CHT with offset value new offset
 else
 last_offset_2 = last_offset_1, last_offset_1 = new offset
 else
 allocate a new entry for LPC with last_offset_1 = new offset
LPC = current PC
LSA = current source address

Figure 5. The procedure for the DCE.

3.2 CORRELATION HISTORY TABLE
The Correlation History Table (CHT) is a small cache structure
used to store the source correlated loads captured by the DCE. For
each memory access, the CHT is probed using the PC. If the PC is
in the CHT, the corresponding offset value is read, and then added
to the current source address. A prefetch signal to the Correlating
Buffer (CB) is generated. If the accessed source address is not in
the CHT, it is ignored. Note that neither the DCE nor the CHT are
in the critical path of the load access. Hence, their latency will not
affect the overall performance.
3.3 CORRELATING BUFFER
The Correlating Buffer (CB) is used as the primary cache. It
receives read/write requests from the CPU and prefetch signals
from the CHT. For the read/write signals, the CB acts like a level 0
cache, i.e. if the block exists in the cache, the data is sent back to
the CPU. If the block does not exist in the cache, DL1 cache is
accessed to satisfy the request and the block is promoted to the CB.
3.4 DISCUSSION
The energy consumption optimizations are due to the small energy
consumption of the correlating cache structure. The correlating
buffer is much smaller than the DL1 cache. Therefore, the energy
consumption of the local cache is reduced. In addition to the
reduction of energy consumption in the local caches, the number of
accesses to the higher levels of memory subsystem (i.e. shared
memory) is also reduced.
The only modification to the CPU is making the PC value available
to the CHT and the DCE. The rest of the structures can be
implemented by only modifying the DL1 cache.

4. SIMULATION ENVIRONMENT
We have performed several simulations to measure the
effectiveness of the proposed techniques. The SimpleScalar/ARM
simulator is used in the experiments. The base processor is
modeled after the StrongARM SA-110 with in-order execution and
an issue width of 2. The base processor has 8 KB, 2-way
associative L1 data and instruction caches and a 128 KB, 4-way
set-associative unified L2 cache. We used the CACTI 3.1 tool to
find important characteristics of the caches. Then assuming a 1
GHz clock speed, the latency for L1 caches is set to 2 cycles, and
the L2 cache latency is set to 12 cycles. We simulate the
applications in the NetBench suite [1].

5. EXPERIMENTAL RESULTS
We have performed two sets of simulations. In the first set, we
investigate the effects of the DCE size and the CHT size on their
performance. In the second set, we measure the energy and
performance effects of our techniques.
5.1 ANALYSIS OF CORRELATING CACHE STRUCTURES
Figure 6 plots the success of Dynamic Correlation Extractor (DCE)
when its size is varied between 4 entries and 128 entries. Each data
point in the figure corresponds to the average success of the
particular configuration for 12 NetBench applications. The success
of a DCE is measured in the number of extractions it makes
divided by maximum possible extractions. Particularly, a 4-entry

DCE captures 65% of the source correlated loads. A 32-entry DCE,
on the other hand, captures 81% of the source correlated loads on
average.
We have also performed a set of experiments to measure the
success rate of the CHT. The results are summarized in Figure 7. In
these simulations, the DCE size is set to 16-entries. To find the
success rate of the CHT, we first set its size to “infinite” and
measure the number of CHT hits. The success rate for any CHT
size is the number of hits for the particular size divided by the
number of hits to the CHT with infinite entries. We see that even a
very small CHT is able to store most captured loads. Particularly,
an 8-entry CHT is able to successfully capture 65% of the possible
source correlations.

0

20

40

60

80

100

128 64 32 16 8 4
Size [No. of entries]

Su
cc

es
s

R
at

e
[%

]

Figure 6. The success rate for different sizes of DCE.

0

20

40

60

80

100

128 64 32 16 8 4
Size [No. of Entries]

Su
cc

es
s

R
at

e
[%

]

Figure 7. The success rate for different sizes of History Table.

5.2 CORRELATING CACHE PERFORMANCE
In this section, we present results for the energy and performance
measurements of 6 cache configurations. The first configuration is
the base configuration where the level 1 data cache (DL1) is
directly accessed. The performances of the remaining techniques
are presented relative to this base processor. Besides 4 different
configurations of the correlating cache architecture, we also
simulate a configuration called “without prefetching” technique
(WOP). WOP has a small cache is placed between the CPU and the
L1 data cache.
In all of these techniques, the large CB (LCB) is a 32-entry direct-
mapped cache. We also perform simulations with a small CB that
has 8-entries. When applicable, CHT and DCE have 16 entries and
are direct-mapped. Using the CACTI 3.1 [2] tool, we found the
properties of different CB sizes. In all cases, the CB can be
accessed within a single cycle. When a CB is used (for WOP and
all correlating cache configurations), the L1 data cache accesses
are completed in 3 cycles.
The results for the energy consumption are presented in Figure 8.
For each application, Figure 8 reports the reduction in the energy
consumption of different caches compared to the base
configuration. On average, we see that the correlating cache with
large CB and small level 1(LCB x SDL1) data cache (2K direct-
mapped) results in the least energy consumed - the energy
consumed by the caches in the base processor is reduced by 25.9%
on average. On the other hand, the correlating cache using the large
CB (32-entry direct-mapped) combined with the LDL1 reduces the
energy consumption by 25.7%, and WOP reduces the energy
consumption by 22.2% on average. In general, we see that the LCB

4

x SDL1 configuration has one of the best energy performances.
However, for the ssl-m application, it increases the total energy
consumption by 27%. The reason for this is the large data size
accessed by this application. The main reason for the reduction in
the energy consumption with respect to the base processor is that
most accesses are satisfied by the smaller CB (SCB) structure. In
addition, the correlation architecture has a better energy efficiency
compared to the WOP because more accesses are satisfied by the
CB. In fact, the average miss rate for the CB in WOP is 32.6%.
Correlation prefetching reduces this rate to 17.1%. The number of
level 1 data cache accesses is not reduced in WOP. DL1 is
accessed after a miss, in correlating cache it is accessed for
prefetch. In fact, the number of DL1 accesses is slightly increased
in the correlating cache architecture due to unused prefetch (on
average 4%). Nevertheless, the energy consumed for CB misses is
significantly reduced because of the reduction in the number of
misses. Overall, the energy consumed by the CB is reduced by
13.6% for the correlating cache architecture compared to the WOP.
Another factor in calculating the energy consumption of the
correlating cache is the energy consumed for prefetch signals. On

average, 35% of the CHT generated prefetch signals results in an
actual prefetch operation. The remainder of the requests hit in the
CB. These hits increase the energy consumed by the tag array.
However, since the tag array consumes less energy than the data
array, the overall penalty remains low. Comparing the energy
consumed by all the correlating cache structures, the total extra
energy consumed for the LCB x LDL1 configuration for prefetch is
11.4% of the total energy consumed by the CB.
Figure 9 presents the performance implications of the simulated
architectures. Since the execution cores in Network Processors do
not have the exact ARM processor architecture we are simulating,
we present the average data access latency instead of execution
cycles. Average data access latency is the average number of
cycles for the memory subsystem to satisfy a request. We see that
the LCB x LDL1 configuration has the best performance. It
reduces the average access latency of the base processor by 36.1%
on average. Overall, assuming that 15% of the processor energy is
consumed for data accesses, the LCB x LDL1 configuration
reduces the energy-delay product of the simulated architecture by
14.5%.

-40

-20

0

20

40

60

crc dh drr f irewall md5 nat route ssl-m ssl-s ssl-w t l url M eanEn
er

gy

R
ed

uc
tio

n

WOP LCB x LDL1 SCB x LDL1 LCB x SDL1 SCB x SDL1

Figure 8. The energy reduction for the simulated techniques relative to the base processor: WOP (CB w/o any prefetching), NBP (CB with next-
block prefetching), LCB x LDL1 (large CB and large DL1 combination), SCB x LDL1 (small CB and large DL1 combination), LCB x SDL1 (large
CB and small DL1 combination), SCB x SDL1 (small CB and small DL1 combination). Small CB is 8-entry direct-mapped, large CB is 32-entry
direct-mapped, large DL1 is 256 entry 2-way associative (8 KB), and small DL1 is 64 entry direct-mapped.

-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60

crc dh drr firewall md5 nat route ssl-m ssl-s ssl-w tl url Mean

La
te

nc
y

R
ed

uc
tio

n

WOP LCBxLDL1 SCBxLDL1 LCBxSDL1 SCBxSDL1

Figure 9. The reduction in average data access latency. The labels are identical to those of Figure 8.

6. RELATED WORK
McKee et al. [3] proposed a special stream buffer unit (SBU) to
store the stream accesses. Benitez and Davidson [4] presented a
compiler framework to detect streaming data. Our proposed
architecture does not require any compiler support for its tasks. In
addition, earlier techniques are not applicable to networking
applications as the displacement of accesses in most networking
applications is not fixed. New techniques have been proposed to
reduce the power consumption of high-performance processors
[5,6] which concentrates on restructuring the cache. Our correlating
buffer resembles the filter cache[5]. However, it improves the
performance of the processor instead of degrading it.

7. SUMMARY AND CONCLUSIONS
In this paper, we introduced a correlating cache architecture that
reduces the energy consumption of the local caches as well as
overall energy consumption. In the heart of the architecture lies the
observation that source addresses accessed by consecutive load
operations usually exhibit a constant offset. For a set of
representative applications, this architecture is able to reduce the

average data access time by as much as 52.7% and 36.1% on
average, while reducing the energy consumption of the caches by
as much as 49.2% and 25.7% on average.

REFERENCES
1. Memik, G., W.H. Mangione-Smith, and W. Hu. NetBench: A
Benchmarking Suite for Network Processors. in International Conference
on Computer-Aided Design (ICCAD). Nov. 2001. San Jose / CA.
2. Wilton, S. and N. Jouppi, An enhanced access and cycle time model for
on-chip caches. July 1995, Digital Western Research Laboratory, 93/5.
3. McKee, S.A., et al., Smarter Memory: Improving Bandwith for Streamed
References, in IEEE Computer. July 1998. p. 54-63.
4. Benitez, M.E. and J.W. Davidson. Code Generation for Streaming: An
Access/Execute Mechanism. in Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems.
1991. Los Alamitos / CA.
5. Kin, J., M. Gupta, and W.H. Mangione-Smith. The Filter Cache: an
energy efficient memory structure. in Intl. Symposium on Microarchitecture.
Dec. 1997. Research Triangle Park / NC.
6. Powell, M.D., et al. Gated-Vdd: A circuit technique to reduce leakage in
cache memories. in Intl. Symposium on Low Power Electronics and Design.
July 2000.

