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ABSTRACT  
We introduce a new cache architecture that can be used to 
increase performance and reduce energy consumption in Network 
Processors. This new architecture is based on the observation that 
there is a strong correlation between different memory accesses. In 
other words, if load X and load Y are two consecutively executed 
load instructions, the offset between the source addresses of these 
instructions remain usually constant between different iterations. 
We utilize this information by building a correlating cache 
architecture. This architecture consists of a Dynamic Correlation 
Extractor, a Correlation History Table, and a Correlation Buffer. 
We first show simulation results investigating the frequency of 
correlating loads. Then, we evaluate our architecture using 
SimpleScalar/ARM. For a set of representative applications, the 
correlating cache architecture is able to reduce the average data 
access time by as much as 52.7% and 36.1% on average, while 
reducing the energy consumption of the caches by as much as 
49.2% and 25.7% on average.  1 
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1. INTRODUCTION  
Traditional processing elements in networks are either general-
purpose processors or ASIC solutions. The limitations of these 
traditional approaches led to the design of Network Processors 
(NPs). By being tailored towards a specific application domain and 
utilizing application-specific optimizations, NPs achieve 
performance comparable to ASIC solutions.  
In this paper, we introduce a cache architecture that reduces the 
energy consumption of the local caches as well as overall energy 
consumption. Our new architecture is proposed to replace the local 
data caches in the execution cores of NPs. Overall; the proposed 
techniques reduce the average data access times by improving the 
hit rates in level 1 data caches. In addition, the energy consumption 
of the local caches is also reduced.  
In the heart of our technique lies the observation that the load 
instructions in most networking applications are correlated. First, 
during the execution of the applications, if a loadX (meaning the 
load operation at PC X) is followed by a loadY (meaning the load 
operation at PC Y) once, the probability that loadX is followed by 
loadY in the next iteration is very high. We call this relation the 
precedence correlation. Second, in such a precedence correlation, 
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we observed that the source addresses are also correlated which is 
defined as source correlation. In other words, if loadX accesses 
srcX_1 in its first iteration and srcX_2 in its second while loadY 
accesses srcY_1 and srcY_2 in the same order, there is a high 
probability that the following will hold:  

| srcX_1 | - | srcY_1 | = | srcX_2 | - | srcY_2 | 
In this paper, we design a cache architecture that takes advantage 
of this knowledge. Particularly, our contributions in this paper are: 
1) We introduce load source correlation, 
2) We show that there is a strong source correlation in a variety 

of networking applications, 
3) We design a memory subsystem that utilizes the correlation 

information, and 
4) We present simulation results indicating that our proposed 

architecture can be efficiently used in Network Processors to 
reduce the energy consumption and execution time.  

Energy consumption has traditionally been one of the primary 
design criteria for mobile systems. Although NPs are initially 
designed for wired systems, there is an increasing motivation to 
utilize them in wireless systems. Table 1 presents characteristics of 
several commercial NPs.  
The rest of the paper is organized as follows. In the next section, 
we discuss the definitions and present simulation results 
investigating the correlation between load operations. Section 3 
presents the details of our correlating cache architecture. Section 4 
discusses the simulation environment. In Section 5, we present the 
simulation results. Section 6 overviews the related work. We 
conclude the paper with a summary in Section 7.  
 
Table 1. Representative Network Processor Products:  

Product Power [W] Tech. [µ] 
Agere PayloadPlus 12 0.18 
AMMC (MMC) nP7510 4 0.18 
Clearwater CNP810SP 12 0.15 
IBM Rainier 20 0.18 
Intel IXP2850 27.5 0.13 
Intel IXP1200 5 0.28 
Motorola C-5 20 0.18 
PMC-Sierra RM9000 5 0.18 

2. DEFINITIONS AND MOTIVATIONAL RESULTS  
In the previous section, we have defined the two important 
concepts in our work: precedence correlation and source 
correlation. Figure 1 presents the execution of a loop to illustrate 
the correlation relations. Figure 1 (a) presents the code of the loop 
labeled start. Within the loop, there are two load operations (ldX 
and ldY). Figure 1 (b) and (c) depict the source addresses accessed 
by the ldX and ldY for two different scenarios. In (b), we see that 
the ldX and ldY exhibit precedence correlation. This sets a high 
probability that after ldX is executed, ldY will be executed as the 
next load instruction. Figure 1 (c), on the other hand, depicts a 
sequence of source address sequences, where there is strong source 
correlation, i.e. the offset from the address accessed by ldX and the 
address accessed by ldY is the same for all the iterations of the 
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loop (which is equal to 0x200. Similar to precedence correlation, 
we associate a probability with a source correlation.  
Figure 2 and Figure 3 present simulation results investigating the 
correlation factors (precedence and source) in various networking 
applications. We simulate a processor similar to StrongARM SA-
110. Note that the size and associativity of the caches do not affect 
the correlation factors. The applications and the simulation 
parameters for these simulations are identical to those discussed in 
Section 4. Figure 2 plots the results for simulations measuring the 
precedence correlation. 
 
 
 
 
 
 
 
 
 
 
Figure 1. Correlation example: (A) is the code segment executed, (B) is 
a possible sequence of source addresses accessed by ldX and ldY, which 
exhibits precedence correlation, but no source correlation, (C) is 
another sequence of source addresses which exhibits source correlation 
between ldX and ldY.  

For each application we measure the fraction of loads that has a 
certain probability of precedence correlation. Particularly, more 
than 95% of the loads exhibit an 80% or more precedence 
correlation. Figure 3 plots the results for source correlation. Similar 
to precedence correlation, the results indicate a strong source 
correlation. Particularly, 91% of the executed load instructions 
exhibit an 80% or more source correlation. Although not presented 
due to lack of space, the offset values between the accesses range 
from 4 bytes to 13848 bytes. The average offset observed in the 
simulated applications is 27.4 bytes. 

3. CORRELATING CACHES   
We designed the correlating cache architecture to take advantage of 
strong source correlation among load operations. The overview of 
the architecture is depicted in Figure 4. There are three additional 
structures compared to a traditional memory subsystem: the 
Dynamic Correlation Extractor (DCE), Correlation History Table 
(CHT) and the Correlation Buffer (CB). The DCE aims to detect 
the source correlation among different load instructions. The PC of 
the preceding load operation is stored in the CHT along with the 
corresponding offset. If the same load instruction is executed, the 
CHT captures the correlation and starts to prefetch. If the currently 
executed PC is not in the CHT, no prefetching is performed. 
Regardless of the prefetching, the current request only accesses the 
correlating buffer. If the accessed block does not exist in the CB, 
the DL1 cache is accessed and the block is promoted to the CB.  
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Figure 2. Fraction of precedence correlated load instructions.  
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Figure 3. Fraction of source correlated loads for NetBench applications.  
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Correlating Cache Architecture.  

3.1 DYNAMIC CORRELATION EXTRACTOR (DCE) 
In the previous section, we have associated probabilities with each 
source correlation. The hardware requirement to implement it is too 

high. Instead, the DCE stores the last two offset values seen for the 
specific PC using the DCE table. The total data size of the DCE 
table is “# of entries in the DCE table * 2” bytes. DCE also uses 
two registers called last source address (LSA) and last program 
counter (LPC). The overall procedure of the DCE is depicted in 
Figure 5. The DCE table is accessed using the LPC (last PC) as the 
address. If the DCE table returns a hit, the new offset is compared 
against the last_offset_1 and last_offset_2. If both comparisons 
indicate equality, the LPC value is entered into the CHT with the 
value “new offset”. If the entry is not found in the DCE table, a 
new entry is generated. In either case, the LPC and LSA (last 
source adreess) values are updated once the remaining 
computations are completed. 
  
new offset = current source address – LSA 
access the DCE table using the LPC 
 if hit 
   if new offset == last_offset_1 == last_offset_2 

… 
start: 
(ldX:) load r1, 
r2[0] 
add r3, r1, r4 
(ldY:) load r5, 
r3[0]  

ldX: 0x1000
ldY: 0x1200 
ldX: 0x1800 
ldY: 0x2600 
ldX: 0x1000 
ldY: 0x1600 
… 

ldX: 0x1000
ldY: 0x1200 
ldX: 0x2000 
ldY: 0x2200 
ldX: 0x1000 
ldY: 0x1200 
… (C) 

(B) 

(A) 
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   put the LPC into the CHT with offset value new offset 
  else 
   last_offset_2 = last_offset_1,  last_offset_1 = new offset 
 else 
  allocate a new entry for LPC with last_offset_1 = new offset 
LPC = current PC 
LSA = current source address 
 
Figure 5. The procedure for the DCE.  

3.2 CORRELATION HISTORY TABLE 
The Correlation History Table (CHT) is a small cache structure 
used to store the source correlated loads captured by the DCE. For 
each memory access, the CHT is probed using the PC. If the PC is 
in the CHT, the corresponding offset value is read, and then added 
to the current source address. A prefetch signal to the Correlating 
Buffer (CB) is generated. If the accessed source address is not in 
the CHT, it is ignored. Note that neither the DCE nor the CHT are 
in the critical path of the load access. Hence, their latency will not 
affect the overall performance.  
3.3 CORRELATING BUFFER 
The Correlating Buffer (CB) is used as the primary cache. It 
receives read/write requests from the CPU and prefetch signals 
from the CHT. For the read/write signals, the CB acts like a level 0 
cache, i.e. if the block exists in the cache, the data is sent back to 
the CPU. If the block does not exist in the cache, DL1 cache is 
accessed to satisfy the request and the block is promoted to the CB.  
3.4 DISCUSSION  
The energy consumption optimizations are due to the small energy 
consumption of the correlating cache structure. The correlating 
buffer is much smaller than the DL1 cache. Therefore, the energy 
consumption of the local cache is reduced. In addition to the 
reduction of energy consumption in the local caches, the number of 
accesses to the higher levels of memory subsystem (i.e. shared 
memory) is also reduced.  
The only modification to the CPU is making the PC value available 
to the CHT and the DCE. The rest of the structures can be 
implemented by only modifying the DL1 cache.  

4. SIMULATION ENVIRONMENT 
We have performed several simulations to measure the 
effectiveness of the proposed techniques. The SimpleScalar/ARM 
simulator is used in the experiments. The base processor is 
modeled after the StrongARM SA-110 with in-order execution and 
an issue width of 2. The base processor has 8 KB, 2-way 
associative L1 data and instruction caches and a 128 KB, 4-way 
set-associative unified L2 cache. We used the CACTI 3.1 tool to 
find important characteristics of the caches. Then assuming a 1 
GHz clock speed, the latency for L1 caches is set to 2 cycles, and 
the L2 cache latency is set to 12 cycles. We simulate the 
applications in the NetBench suite [1]. 

5. EXPERIMENTAL RESULTS  
We have performed two sets of simulations. In the first set, we 
investigate the effects of the DCE size and the CHT size on their 
performance. In the second set, we measure the energy and 
performance effects of our techniques.  
5.1 ANALYSIS OF CORRELATING CACHE STRUCTURES 
Figure 6 plots the success of Dynamic Correlation Extractor (DCE) 
when its size is varied between 4 entries and 128 entries. Each data 
point in the figure corresponds to the average success of the 
particular configuration for 12 NetBench applications. The success 
of a DCE is measured in the number of extractions it makes 
divided by maximum possible extractions. Particularly, a 4-entry 

DCE captures 65% of the source correlated loads. A 32-entry DCE, 
on the other hand, captures 81% of the source correlated loads on 
average.  
We have also performed a set of experiments to measure the 
success rate of the CHT. The results are summarized in Figure 7. In 
these simulations, the DCE size is set to 16-entries. To find the 
success rate of the CHT, we first set its size to “infinite” and 
measure the number of CHT hits. The success rate for any CHT 
size is the number of hits for the particular size divided by the 
number of hits to the CHT with infinite entries. We see that even a 
very small CHT is able to store most captured loads. Particularly, 
an 8-entry CHT is able to successfully capture 65% of the possible 
source correlations.  
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Figure 6. The success rate for different sizes of DCE.  
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Figure 7. The success rate for different sizes of History Table.  

5.2 CORRELATING CACHE PERFORMANCE  
In this section, we present results for the energy and performance 
measurements of 6 cache configurations. The first configuration is 
the base configuration where the level 1 data cache (DL1) is 
directly accessed. The performances of the remaining techniques 
are presented relative to this base processor. Besides 4 different 
configurations of the correlating cache architecture, we also 
simulate a configuration called “without prefetching” technique 
(WOP). WOP has a small cache is placed between the CPU and the 
L1 data cache.  
In all of these techniques, the large CB (LCB) is a 32-entry direct-
mapped cache. We also perform simulations with a small CB that 
has 8-entries. When applicable, CHT and DCE have 16 entries and 
are direct-mapped. Using the CACTI 3.1 [2] tool, we found the 
properties of different CB sizes. In all cases, the CB can be 
accessed within a single cycle. When a CB is used (for WOP and 
all correlating cache configurations), the L1 data cache accesses 
are completed in 3 cycles.  
The results for the energy consumption are presented in Figure 8. 
For each application, Figure 8 reports the reduction in the energy 
consumption of different caches compared to the base 
configuration. On average, we see that the correlating cache with 
large CB and small level 1(LCB x SDL1) data cache (2K direct-
mapped) results in the least energy consumed - the energy 
consumed by the caches in the base processor is reduced by 25.9% 
on average. On the other hand, the correlating cache using the large 
CB (32-entry direct-mapped) combined with the LDL1 reduces the 
energy consumption by 25.7%, and WOP reduces the energy 
consumption by 22.2% on average. In general, we see that the LCB 
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x SDL1 configuration has one of the best energy performances. 
However, for the ssl-m application, it increases the total energy 
consumption by 27%. The reason for this is the large data size 
accessed by this application. The main reason for the reduction in 
the energy consumption with respect to the base processor is that 
most accesses are satisfied by the smaller CB (SCB) structure. In 
addition, the correlation architecture has a better energy efficiency 
compared to the WOP because more accesses are satisfied by the 
CB. In fact, the average miss rate for the CB in WOP is 32.6%. 
Correlation prefetching reduces this rate to 17.1%. The number of 
level 1 data cache accesses is not reduced in WOP. DL1 is 
accessed after a miss, in correlating cache it is accessed for 
prefetch. In fact, the number of DL1 accesses is slightly increased 
in the correlating cache architecture due to unused prefetch (on 
average 4%). Nevertheless, the energy consumed for CB misses is 
significantly reduced because of the reduction in the number of 
misses. Overall, the energy consumed by the CB is reduced by 
13.6% for the correlating cache architecture compared to the WOP. 
Another factor in calculating the energy consumption of the 
correlating cache is the energy consumed for prefetch signals. On 

average, 35% of the CHT generated prefetch signals results in an 
actual prefetch operation. The remainder of the requests hit in the 
CB. These hits increase the energy consumed by the tag array. 
However, since the tag array consumes less energy than the data 
array, the overall penalty remains low. Comparing the energy 
consumed by all the correlating cache structures, the total extra 
energy consumed for the LCB x LDL1 configuration for prefetch is 
11.4% of the total energy consumed by the CB.  
Figure 9 presents the performance implications of the simulated 
architectures. Since the execution cores in Network Processors do 
not have the exact ARM processor architecture we are simulating, 
we present the average data access latency instead of execution 
cycles. Average data access latency is the average number of 
cycles for the memory subsystem to satisfy a request. We see that 
the LCB x LDL1 configuration has the best performance. It 
reduces the average access latency of the base processor by 36.1% 
on average. Overall, assuming that 15% of the processor energy is 
consumed for data accesses, the LCB x LDL1 configuration 
reduces the energy-delay product of the simulated architecture by 
14.5%. 
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Figure 8. The energy reduction for the simulated techniques relative to the base processor: WOP (CB w/o any prefetching), NBP (CB with next-
block prefetching), LCB x LDL1 (large CB and large DL1 combination), SCB x LDL1 (small CB and large DL1 combination), LCB x SDL1 (large 
CB and small DL1 combination), SCB x SDL1 (small CB and small DL1 combination). Small CB is 8-entry direct-mapped, large CB is 32-entry 
direct-mapped, large DL1 is 256 entry 2-way associative (8 KB), and small DL1 is 64 entry direct-mapped.  
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Figure 9. The reduction in average data access latency. The labels are identical to those of Figure 8. 

6. RELATED WORK  
McKee et al. [3] proposed a special stream buffer unit (SBU) to 
store the stream accesses. Benitez and Davidson [4] presented a 
compiler framework to detect streaming data. Our proposed 
architecture does not require any compiler support for its tasks. In 
addition, earlier techniques are not applicable to networking 
applications as the displacement of accesses in most networking 
applications is not fixed. New techniques have been proposed to 
reduce the power consumption of high-performance processors 
[5,6] which concentrates on restructuring the cache. Our correlating 
buffer resembles the filter cache[5]. However, it improves the 
performance of the processor instead of degrading it.  

7. SUMMARY AND CONCLUSIONS   
In this paper, we introduced a correlating cache architecture that 
reduces the energy consumption of the local caches as well as 
overall energy consumption. In the heart of the architecture lies the 
observation that source addresses accessed by consecutive load 
operations usually exhibit a constant offset. For a set of 
representative applications, this architecture is able to reduce the 

average data access time by as much as 52.7% and 36.1% on 
average, while reducing the energy consumption of the caches by 
as much as 49.2% and 25.7% on average. 
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