
Code Coverage Testing Using Hardware Performance
Monitoring Support

Alex Shye Matthew Iyer Vijay Janapa Reddi Daniel A. Connors

Department of Electrical and
Computer Engineering

University of Colorado at Boulder

{shye, iyer, janapare, dconnors}@colorado.edu

ABSTRACT
Code coverage analysis, the process of finding code exer-
cised by a particular set of test inputs, is an important
component of software development and verification. Most
traditional methods of implementing code coverage analysis
tools are based on program instrumentation. These meth-
ods typically incur high overhead due to the insertion and
execution of instrumentation code, and are not deployable
in many software environments. Hardware-based sampling
techniques attempt to lower overhead by leveraging exist-
ing Hardware Performance Monitoring (HPM) support for
program counter (PC) sampling. While PC-sampling incurs
lower levels of overhead, it does not provide complete cov-
erage information. This paper extends the HPM approach
in two ways. First, it utilizes the sampling of branch vec-
tors which are supported on modern processors. Second,
compiler analysis is performed on branch vectors to extend
the amount of code coverage information derived from each
sample. This paper shows that although HPM is gener-
ally used to guide performance improvement efforts, there is
substantial promise in leveraging the HPM information for
code debugging and verification. The combination of sam-
pled branch vectors and compiler analysis can be used to
attain upwards of 80% of the actual code coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Code coverage, software testing, hardware performance mon-
itoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AADEBUG’05,September 19–21, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-050-7/05/0009 ...$5.00.

1. INTRODUCTION
The design of software is an increasingly complex process

involving issues of compatibility, conformance, functional-
ity, time-to-market, and performance. Moreover, the size of
software systems is rapidly growing and thus the potential
for errors is multiplied [15]. As such, an essential step in
the software development process is aggressive testing. One
critical characteristic of evaluating the testing process is de-
termining the amount of code executed by an individual test
or a set of tests. Code coverage is the observation that spe-
cific code points execute during evaluation and is a common
metric of testing [12, 18].

The traditional method of performing code coverage anal-
ysis [4, 9] is by using program instrumentation. The instru-
mentation process inserts software probes into the target ap-
plication to track executed program locations. The tracked
program locations have some assurance of correct operation.
While instrumentation generates precise code coverage in-
formation, there is the disadvantage of significant collection
overhead (between 50% and 200% [17]). Nevertheless, the
generation of high-quality tests in a timely fashion is an
important aspect of software development, and results in
shorter development time.

Another class of code coverage system utilizes existing
Hardware Performance Monitoring (HPM) support for sam-
pling program counter (PC) addresses. The sampled PCs
can be used to determine partial aspects of code coverage [3,
14]. Although these systems decrease overhead considerably,
they are only able to gather a fraction of the information
that full instrumentation allows.

This paper examines the potential use of a HPM support
in modern processors for code coverage analysis. Modern
processor support for HPM [8, 10, 16] provide facilities for
sampling branch vectors, a set of correlated branch events
representing a path of program execution. Branch vectors
naturally provide more information than a single program
point. Furthermore, when HPM information like branch
vectors are integrated with compiler infrastructure, the in-
herent value of the information is dramatically extended
through the use of standard analysis techniques. For ex-
ample, by mapping the HPM information to the compiler’s
control flow graph (CFG) representation of the program,
dominator analysis [2] can guarantee the execution of ad-
ditional code blocks. An experimental system of these con-
cepts is evaluated using the Itanium-2 PMU in the OpenIM-
PACT [13] compiler. Initial results indicate that although

S

1−2−3−4

1

2

3

4

Branch Vector: 4 Taken
Branches

Partial Path from
Branch Vector

Covered Blocks with
Dominator Analysis

A

B C

D

E F

G H

I J K

L M

N
O

P

Q R

S

Figure 1: HPM partial path creation and path ex-
tension based on dominator analysis.

HPM-based code coverage is lossy, it provides a promising
low-overhead alternative to program instrumentation.

2. HPM-BASED CODE COVERAGE
This section presents a HPM-based code coverage analysis

framework. The framework consists of two main phases: a
run-time collection phase in which PMU samples are gath-
ered, and an off-line compiler-aided analysis phase. It is
at this offline phase in the compiler framework that rela-
tionships between run-time branch information and program
structures (statements, loops, subroutine calls) are known.
Within the program’s representation, compiler analysis can
extend the inherent amount of hardware-monitoring infor-
mation to provide increased code coverage results.

2.1 PMU Branch Execution Information
The experiments in this paper utilize the Branch Trace

Buffer (BTB) registers supported on the Itanium-2 [10] PMU.
The BTB acts as a circular buffer which is able to store the
instruction and target addresses of the last four branches
executed. Collectively, this set of branches defines a branch
vector. The BTB also allows for a set of user-defined fil-
ters on the sampled branches such as sampling only taken
branches or applying instruction range restrictions. In this
framework, the BTB is configured to sample only taken
branches in an effort to collect more information per sample.
Since fall-through branches can be automatically tracked
within a program CFG, a branch vector consisting of only
taken branches indicates more information. Likewise, since
compiler optimizations tend to emphasize fall-through paths
over taken paths to improve code locality, aggressively op-
timized applications are more likely to execute fall-through
branches. During run-time, the BTB is periodically sampled
and the corresponding branch vector is stored in a table that
keeps track of encountered branch vectors. The set of en-
countered branch vectors are then used in the offline phase
for analysis.

Analysis

A

B C

F

I

H

K

M

O P

Q R S

S

P Q R

A H O

B

C F

I K M

(a) Dominator Tree

(b) Post Dominator Tree

D

E

G

L

J N

D E G L N J

Partial Path Blocks

Blocks from Dominator

Figure 2: (a) Dominator and (b) post dominator
trees for CFG in Figure 1. Partial path blocks and
blocks added from dominator analysis are shown.

2.2 Compiler Support for Code Coverage
The first component of off-line compiler analysis is to as-

sociate the branch vectors with partial paths of the CFG
representation of program. A partial path is the set of basic
blocks that are known to execute from a given branch vec-
tor. Figure 1 shows an example of the entire off-line process
for a particular branch vector and program CFG. The num-
bered branches in Figure 1 show the four taken branches
that are indicated by a single branch vector sample. In
partial path creation, these four branches are mapped onto
the original CFG to create the partial path shown in dark
shaded blocks. Here, a partial path of six basic blocks can
be determined from the branch vector. The following sec-
tion discusses dominator analysis which can utilized to sys-
tematically infer other blocks which are guaranteed to have
executed.

2.2.1 Dominator Analysis
A number of compiler optimizations rely on dominator

analysis [1] to determine guaranteed execution relationships
of blocks in a CFG. There are two commonly analyzed dom-
inator relationships: dominance - basic block u dominates
basic block v if every path from the entry of the CFG to
basic block v contains basic block u, and post-dominance -
basic block u post-dominates basic block v if every path from
v to the exit of the CFG contains basic block u. Tree rep-
resentations of the information summarize the dominance
and post-dominance relationships. For example, in a dom-
inator tree, each node dominates all nodes underneath it.
The dominator tree representations for the CFG of Figure 1
are shown in Figure 2(a) and Figure 2(b). In the example,
applying dominator analysis to partial path D, E, G, J, L, N
guarantees that basic blocks A, B, P, S must have also exe-
cuted. In this case, the execution of 10 basic blocks could be
guaranteed by the collection and analysis of a single branch
vector.

Percent Overhead vs. Sampling Period

Sampling Period (Clock Cycles)
50K 100K 500K 1M 5M 10M

P
er

ce
nt

 O
ve

rh
ea

d

0

10

20

30

40

Figure 3: Overhead of run-time collection of branch
vectors for various sampling periods.

3. EXPERIMENTAL EVALUATION

3.1 Methodology
The experiments in this paper are performed using a set of

the SPEC CPU 2000 benchmarks compiled with the Open-
IMPACT [13] Research Compiler on an Itanium-2 with the
2.6.10 kernel. Benchmarks are compiled with the base Open-
IMPACT configuration which include classical optimizations
and profile-directed optimizations. The applications run us-
ing a HPM data collection tool developed using the perf-
mon interface and libpfm-3.1 library [5, 7]. The tool can
be configured to collect branch vector samples at regular or
randomized intervals. Branch vector samples are fed into
an OpenIMPACT software module that performs compiler-
aided code coverage analysis. Results are compared to an
instrumentation-based code coverage tool developed with
Pin [6].

3.2 Results and Analysis

3.2.1 PMU Sampling Overhead
There are a few main causes which contribute to the over-

head incurred in collecting branch vectors. First, an inter-
rupt occurs every sampling period which copies the BTB
registers into a kernel buffer. As the sampling period in-
creases, this causes the overhead to increase because inter-
rupts happen more frequently. Afterwards, the data must
be periodically read from the kernel buffer, processed, and
stored.

Figure 3 shows the effect of sampling period on the run-
time collection of branch vectors. The sampling period is
varied from 50K to 10M clock cycles and the percent over-
head is an average of overhead measurements across the ex-
perimental benchmarks. A trade-off clearly exists between
overhead and the amount of information gathered. Using
a smaller sampling period increases the number of samples
and therefore the quality of information provided for code
coverage analysis. However, as the sampling period is de-
creased, the overhead increases.

3.2.2 PMU Coverage Characteristics
Before exploring code coverage data, it is important to

understand the size of the evaluated benchmarks as well as
their run-time instruction footprints. Table 1 shows the size

Benchmark # Ops # Covered Ops
164.gzip 6,466 3,063 (47%)

175.vpr 23,573 12,229 (52%)

177.mesa 89,006 7,390 (8%)

179.art 2,201 1,515 (69%)

181.mcf 1,973 1,401 (71%)

183.equake 3,033 2,265 (75%)

188.ammp 19,562 5,835 (30%)

197.parser 17,541 11,271 (64%)

256.bzip2 5,095 3,138 (62%)

300.twolf 40,490 15,705 (39%)

Table 1: Number of instructions per benchmarks
and actual code coverage.

of each benchmark in number of low-level IR instructions as
well as the number of these instructions that are actually
covered during run-time. Code size varies greatly in this set
of benchmarks ranging from 181.mcf with 1,973 instructions
to 177.mesa with 89,006 instructions. The number and per-
centage of covered instructions also ranges greatly from 8%
coverage for 177.mesa to 75% coverage for 183.equake.

Figure 4 presents PMU-based code coverage normalized to
the total instruction counts shown in Table 1. 100% would
mean that PMU-based code coverage has covered all the in-
structions that have actually been executed. For each bench-
mark, four sampling periods is shown; 100K, 1M, 10M and
100M clock cycles. Code coverage is divided into three main
categories; Single BB, Branch Vectors, and Branch Vectors
w/ Dominator Analysis:

Single BB: The first basic block of each branch vector
is used for marking covered instructions. This is used to
simulate PC-sampling where a single PC is mapped to a
basic block.

Branch Vectors: The branch vectors are mapped to
partial paths and each basic block in the path is marked as
covered.

Branch Vectors w/ Dominator Analysis: Dominator
analysis is performed on partial paths to mark additional
basic blocks.

Figure 4 shows that Single BB leaves much to be desired
in term of code coverage. Even at a low sampling period of
100K cycles, the highest code coverage percentage is barely
over 50% for 181.mcf. 164.gzip, 175.vpr and 300.twolf per-
form particularly bad at only around 21-22% of the code
coverage. The percentage only decreases as the sampling
period increases for each benchmark. By sampling branch
vectors and mapping them back to partial paths, there are
substantial increases in the percentage of covered code that
can be discovered using PMU-based code coverage. At the
lowest sampling period, the coverage percentage increases
by an average of 14%. 183.equake has the greatest improve-
ment due to using branch vectors at around 30%.

Compiler-aided dominator analysis significantly extends
the amount of code coverage information. As shown in Fig-
ure 4, for the lower sampling periods, it consistently provides
an additional 15-25% to the code coverage percentage. The
exception is 177.mesa which improves less that 10% at all
sampling periods.

Code Coverage

Benchmark

gzip vpr mesa art mcf equake ammp parser bzip2 twolf

P
er

ce
nt

 C
od

e
C

ov
er

ag
e

0
10
20
30
40
50
60
70
80
90

100

100K 100K 100K 100K 100K 100K 100K 100K 100K 100K
1M 1M 1M 1M 1M 1M 1M 1M 1M 1M

10M 10M 10M 10M 10M 10M 10M 10M 10M 10M
100M 100M 100M 100M 100M 100M 100M 100M 100M 100M

Single BB Branch Vectors Branch Vectors w/ Dom. Analysis

Figure 4: Code coverage across different sampling periods (100K, 1M, 10M 100M) showing the effects of 1)
using a single basic block per sample, 2) using branch vectors to create partial paths and 3) extending partial
path information by using dominator analysis.

(a) 164.gzip: Actual Distribution Graph

InstructionsF
ra

ct
io

n
of

 C
ou

nt
s

0

0.004

0.008

0.012

(b) 164.gzip: Estimated Distribution Graph

InstructionsF
ra

ct
io

n
of

 C
ou

nt
s

0

0.002

0.004

0.006

Figure 5: Instruction execution distribution across
address range for 164.gzip (a) actual and (b) PMU.

3.2.3 PMU Entropy Analysis
Figure 5 shows the probability distribution graphs for the

code execution of 164.gzip determined by both complete cov-
erage (a) and PMU-based coverage (b). Although sampling
in PMU-based coverage may miss program behavior, the
instruction execution distributions appear similar. How-
ever, more detailed analysis can assess the overall ability
of PMU code coverage data to accurately characterize the
actual coverage. The relative entropy (Kullback-Leibler di-
vergence [11]) defines the distance between two probability
distribution functions. Let two discrete distributions have
probability functions pk and qk. The relative entropy of p
with respect to q is defined by:

d =
Pn

k=0 pklog2(
pk
qk

)

Figure 6 presents the relative entropy numbers between
actual and PMU code coverage. Three sampling rates are
examined: 100K, 1M, and 10M. Results indicate that the
average divergence between the actual and PMU distribu-
tions is about five. While the number is relative, it can be
used to quantify the deviation from complete code coverage

Entropy

Benchmarks
gzip vpr mesa art mcf equake ammp parser bzip2 twolf

E
nt

ro
py

0
1
2
3
4
5
6
7
8
9

10
11
12

100K 1M 10M

Figure 6: Entropy (Kullback-Leibler divergence) of
actual/PMU coverage.

results. For instance, for 175.vpr, 181.mcf, and 256.bzip2
the divergence over the sampling rates increase by 3-4, in-
dicating that sampling will have a direct role in the cov-
erage accuracy while the divergence of 164.gzip, which has
a smaller code execution footprint, is not effected by sam-
pling rate. These results indicate that code coverage test-
ing should deploy variable sampling rates to maximize the
trade-off between code coverage and testing overhead.

3.2.4 Aggregating Multiple Runs
One opportunity to improve the quality of the PMU-code

coverage approach is to aggregate data from multiple ex-
ecution runs. This is simply a matter of collecting the
PMU monitoring tool’s output from multiple runs and ap-
plying the off-line analysis module. Figure 7(a) shows an
example of aggregating up to 20 separate runs at a regular
sampling period of 100K clock cycles. There are two gen-
eral trends for the benchmarks shown in Figure 7(a). The
first, is that some benchmarks such as 164.gzip, 197.parser,
and 300.twolf significantly improve their code coverage per-
centage by over 10%; 164.gzip actually improves over 20%.
In these cases, the aggregation of multiple runs seems very

(a) Regular Sampling

Number of Aggregated Runs
0 5 10 15 20

P
er

ce
nt

 C
ov

er
ag

e

0

10

20

30

40

50

60

70

80

90

100

(b) Randomized Sampling

Number of Aggregated Runs
0 5 10 15 20

P
er

ce
nt

 C
ov

er
ag

e

0

10

20

30

40

50

60

70

80

90

100

164.gzip 175.vpr 177.mesa 181.mcf 197.parser 300.twolf

Figure 7: Code coverage percentage from aggregating multiple runs using (a) regular sampling period and
using (b) randomized sampling period of 100K.

promising. Benchmarks 177.mesa and 181.mcf do not see as
substantial improvements and their percentages stay fairly
level with additional runs.

One of the issues facing periodic sampling is sampling
aliasing. It is possible to miss important sections of code
that periodically execute in the time between samples. Ran-
domized sampling periods may be used in order to account
for sampling aliasing. Figure 7(b) shows 20 aggregated runs
using randomized sampling. The behavior of benchmarks
such as 175.vpr, 197.parser and 300.twolf are not signifi-
cantly altered. However, 177.mesa and 181.mcf see substan-
tial improvements. In these cases, the random sampling is
able to uncover sections of code that regular sampling does
not discover.

4. CONCLUSION
The initial rationale and results of using a PMU-based sys-

tem for code coverage are presented. Overall, PMU-based
code coverage shows promise since a low overhead (less than
3%) can obtain upwards of 80% code coverage, with an av-
erage of 50%. Several techniques to increase code cover-
age information are illustrated: the use of branch vectors,
compiler analysis, random sampling periods, and the use of
multiple application runs. There is a considerable amount of
future work to investigate in both the compiler and testing
domains, specifically: examining the effects of code opti-
mization on HPM code coverage, exploring use of multiple
application executions to create full coverage results, and
studying the inter-procedural and library behaviors of ap-
plications within the HPM-based approach.

5. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques and Tools. A-W Press, 1986.

[2] F. Allen. Control flow analysis. In Proceedings of
Compiler Optimization, pages 1–19, 1970.

[3] J. Anderson and et al. Continuous profiling: Where
have all the cycles gone? In Proc. of the 16th ACM
Symposium of Operating Systems Principles, pages
1–14, October 1997.

[4] Bullseye Testing Technology.
http://www.bullseye.com/.

[5] S. Eranian. The perfmon2 interface specification.
Technical Report HPL-2004-200R1, Hewlett-Packard
Laboratory, February 2005.

[6] C. L. et al. Pin: Building customized program analysis
tools with dynamic instrumentation. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation, Chicago, IL, June 2005.

[7] Hewlett-Packard Development Company. perfmon
project
http://www.hpl.hp.com/research/linux/perfmon/.

[8] IBM. PowerPC 740/PowerPC 750 RISC
Microprocessor User’s Manual, 1999.

[9] IBM PureCoverage. http://www.pts.com/wp2077.cfm.

[10] Intel Corporation. Intel Itanium 2 processor reference
manual: For software development and optimization.
May 2004.

[11] M. Kearns and et al. On the learnability of discrete
distributions. In STOC ’94: Proceedings of the
twenty-sixth annual ACM symposium on Theory of
computing, pages 273–282. ACM Press, 1994.

[12] Y. W. Kim. Efficient use of code coverage in
large-scale software development. In CASCON ’03:
Proceedings of the 2003 conference of the Centre for
Advanced Studies on Collaborative research, pages
145–155. IBM Press, 2003.

[13] OpenIMPACT Compiler.
http://www.gelato.uiuc.edu/.

[14] OProfile System Profiler for Linux.
http://oprofile.sourceforge.net.

[15] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In Proceedings of the
12th Symposium on Foundations of Software
Engineering, pages 241–251. ACM Press, 2004.

[16] B. Sprunt. Pentium 4 performance-monitoring
features. In IEEE Micro 22(4), pages 72–82, 2002.

[17] M. M. Tikir and J. K. Hollingsworth. Efficient
instrumentation for code coverage testing. In
Proceedings of the Symposium on Software Testing
and Analysis, July 2002.

[18] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Computing Survey,
29(4):366–427, 1997.

