
Dynamic Run-time Architecture Techniques for Enabling
Continuous Optimization

Tipp Moseley†, Alex Shye, Vijay Janapa Reddi, Matthew Iyer, Dan Fay,
David Hodgdon, Joshua L. Kihm, Alex Settle, Dirk Grunwald†, Daniel A. Connors

Department of Electrical and Computer
Engineering

University of Colorado
Boulder, CO 80309-0430

{shye,janapare,iyer,faydr,hodgdon,kihm,
mw.settle,dconnors}@colorado.edu

†Department of Computer Science
University of Colorado

Boulder, CO 80309-0430
{moseleyt,grunwald}@colorado.edu

ABSTRACT
Future computer systems will integrate tens of multithreaded
processor cores on a single chip die, resulting in hundreds
of concurrent program threads sharing system resources.
These designs will be the cornerstone of improving through-
put in high-performance computing and server environments.
However, to date, appropriate systems software (operat-
ing system, run-time system, and compiler) technologies for
these emerging machines have not been adequately explored.
Future processors will require sophisticated hardware mon-
itoring units to continuously feed back resource utilization
information to allow the operating system to make opti-
mal thread co-scheduling decisions and also to software that
continuously optimizes the program itself. Nevertheless, in
order to continually and automatically adapt systems re-
sources to program behaviors and application needs, specific
run-time information must be collected to adequately enable
dynamic code optimization and operating system schedul-
ing. Generally, run-time optimization is limited by the time
required to collect profiles, the time required to perform op-
timization, and the inherent benefits of any optimization
or decisions. Initial techniques for effectively utilizing run-
time information for dynamic optimization and informed
thread scheduling in future multithreaded architectures are
presented.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids;
D.4.1 [Operating Systems]: Process Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005 ...$5.00.

General Terms
Performance, Design

Keywords
Performance counters, profiling, scheduling, multithreading

1. INTRODUCTION
By leveraging the advances in semiconductor technologies,

system developers are exploring new paradigms of System-
on-a-Chip (SoC) processors, Chip Multiprocessors (CMP),
and Multithreaded (MT) architectures. The evolution dic-
tates that future high-performance systems will integrate
tens of multithreaded processor cores on a single chip die,
resulting in hundreds of concurrent program threads shar-
ing system resources. These designs will be the cornerstone
of not only high-performance computing and server envi-
ronments, but will also emerge in general-purpose and em-
bedded domains. Managing hundreds of threads requires
continuous optimization of both system resource decisions
and thread execution, for which hardware-only techniques
are not sufficient. As such, it is critical to advance cur-
rent systems software (operating system, run-time system,
and compiler) technologies for these emerging machines. Al-
though it is important for systems software to understand
the complete view of multiple cores, it is first necessary to
build effective models of multithreaded core execution that
will likely be the basis for the multi-core designs.

Multithreaded architectures address the growing processor-
memory gap by supporting multiple hardware thread con-
texts capable of hiding memory latencies of individual
threads. Coarse Grained Multi-Threaded (CGMT) proces-
sors issue instructions from a single thread each cycle and
switch between threads on long latency instructions such
as cache misses or on definable time intervals. Alternative
hardware thread contexts can perform useful work, increas-
ing throughput, where a single thread would stall a pro-
cessor. IBM released the PowerPC RS64-IV [6] which is a
commercial implementation of a course grain multithreading
processor. Simultaneous Multithreaded (SMT) [17][31][30]
processors share the resources (ALUs, branch target buffers,
etc.) of one physical processor between multiple “virtual

processors” that simultaneously execute each cycle. The
SMT design is intended to have a low design overhead for
out-of-order processors, allowing it to be added into existing
processor designs without significant cost. It was estimated
that adding SMT support to the Compaq Alpha EV8 pro-
cessor only required an additional 5% to the die area, and
researchers at Intel found similar costs for their implemen-
tation of SMT called Hyper-Threading [19].

The most commonly available SMT processor is the In-
tel Pentium-4 processor with Hyper-Threading [13]. Hyper-
Threading is technically similar to the SMT designs de-
scribed in the research literature, although it has unique
characteristics – in particular, certain physical resources are
partitioned between the virtual processors while others are
shared. Support for multithreading is enabled by the mul-
tiprocessor configuration tables in the ACPI (Application
Configuration and Power Interface). When running a con-
ventional operating system on a Pentium-4 Xeon system
with Hyper-Threading enabled, each virtual processor ap-
pears to the operating system as two distinct processors
and the base operating system does not need to have de-
tailed knowledge that certain processors are in fact logical
processors.

Despite efforts at enabling transparency in multithreaded
processors, there exists significant potential in the operat-
ing system to be aware of the multithreaded model. More
importantly, as multithreaded multi-core systems emerge,
it will be increasingly important for operating systems to
continuously monitor application behavior and assess job
scheduling opportunities. To explore the space of this work,
we evaluate SMT processors with the intent of providing the
initial results and rationale of enabling operating systems for
multithreading. Figure 1 shows a matrix of speedup values
for different SPEC CPU 2000 applications run with reference
input sets on a 2.53GHz Intel Pentium-4 using the “North-
wood” processor design. The speedup is greater than 1 for
applications pairs where the time to completion for the ap-
plication is less when Hyper-Threading is enabled. When
the speedup is less than 1, it is more efficient to run the
applications sequentially or using a uniprocessor. Most ap-
plication pairs either achieve little speedup or achieve some
speedup – up to 30% speedup in some cases. However, there
are some applications pairs that achieve significant slow-
downs – as much as a 30% slowdown. In order to improve
multithreading systems, performance-aware scheduling is re-
quired.

Like operating systems, run-time optimization systems for
future processors can deploy optimizations, guided by profile
information, to improve performance. However, in order to
maximize the performance gain of these run-time optimiza-
tions, efficient profiling techniques are required that can ac-
curately describe a program’s runtime behavior. Profiling
provides valuable information to a whole class of optimiza-
tions: superblock formation [12], code positioning [22], and
improved function inlining[11]. The ideal run-time profile
collection system has three distinct characteristics. First,
it should provide accurate profile information for a dynamic
optimizer to utilize. Second, the system ideally would gather
all profile information in one stage. Finally, and most im-
portantly, the run-time collection of information should oc-
cur with little to no overhead. Unfortunately, most ap-
proaches to profiling only meet one or two of these three
goals. Instrumentation-based techniques provide an accu-

rate profile while sacrificing the cost of overhead as well
as convenience of compilation. Novel hardware-based tech-
niques are emerging to collect run-time events using hard-
ware performance counters. Although such structures effi-
ciently capture run-time information, researchers have only
begun to study the characteristics and benefit of the amount
and type of information needed for driving run-time opti-
mization [7, 18].

Modern microprocessors such as the Intel Pentium-4, In-
tel Itanium, and IBM PowerPC 970 provide a rich set of
performance counters. Hardware performance monitoring
units are commonly placed onto microprocessors to provide
software engineers with low overhead means of performance
tuning. These PMUs are usually fairly simplistic allowing
for PC sampling and counters for certain events. The Intel
Pentium-4 [29] provides a set of 18 event counters which can
collect 50 different events. The Apple Computer Hardware
Understanding Development(CHUD) Tool [2] can be used
to sample the G5 performance counters.

This paper illustrates the potential of using low-overhead
HPM (Hardware Performance Monitoring) information in
scheduling and optimization in multithreaded processor cores.
It is demonstrated that using the run-time information re-
quires substantial analysis to construct effective algorithms
and heuristics that aid systems software. The rest of this
paper is organized as follows. Section 2 discusses related
work in multithreaded scheduling and run-time profiling.
Section 3 presents the potential of using modern hardware-
based profiling techniques in run-time optimization. Sec-
tion 4 gives an overview of constructing an accurate SMT-
resource model using hardware counter information and in
turn the implementation of that model in a performance-
guided multi-threaded job scheduler. Section 5 describes the
effectiveness of the scheduler, and conclusions are presented
in Section 6.

2. RELATED WORK

2.1 Multithreaded Scheduling
Operating systems have a direct role in the performance

of multithreaded machines when the number of software
threads exceeds the number of hardware thread contexts.
Since contention on shared resources can cause variations in
an multithreaded system, the throughput of machines ben-
efit from job scheduling, which is the process of selecting
among a set of application threads to simultaneously exe-
cute and share the processor resources.

The work on thread symbiosis by Snavely et al [26, 27, 28]
is the closest to the idea presented in this paper. Snavely et
al proposes an operating system mechanism for discourag-
ing threads with poor performance pairings from executing
with one another. The SOS (Sample, Optimize, Symbios)
scheduler [27] performs as the name suggests. A set of pro-
cesses are sampled, collecting information from performance
counters. Following this, an optimized schedule is calculated
based on performance counter attributes recorded during
the sampling phase; a number of “pairing functions” are pro-
posed. This yields a period of symbiosis scheduling, where
jobs deemed to benefit from co-scheduling or “Symbios” are
executed concurrently. Snavely proposes a set of heuristics
based on intuition or knowledge of the system microarchi-
tecture and show that certain heuristics (e.g. using data
cache miss rate or IPC (instruction per cycle) to indicate

ammp applu apsi art bzip2 crafty eon equake fma3d galgel gap gcc gzip lucas mcf mesa mgrid parser perlbmk sixtrack swim twolf vortex wupwise

ammp

applu

apsi

art

bzip2

crafty

eon

equake

fma3d

galgel

gap

gcc

gzip

lucas

mcf

mesa

mgrid

parser

perlbmk

sixtrack

swim

twolf

vortex

wupwise

1.17

1.03 1.05

1.14 1.07 1.13

0.98 0.94 0.99 0.78

0.97 1.02 1.00 0.86 1.18

1.04 1.13 1.07 1.01 1.11 1.06

1.20 1.20 1.22 1.29 1.07 1.10 1.12

0.99 1.01 1.02 0.86 0.94 1.16 1.15 1.04

1.09 1.09 1.10 1.07 1.02 1.08 1.15 1.05 1.08

1.08 1.15 1.13 1.01 1.04 1.13 1.24 1.07 1.16 1.16

1.03 1.12 1.07 0.98 1.19 1.23 1.13 1.24 1.09 1.11 1.24

0.92 0.95 0.94 0.79 0.99 1.01 1.02 0.94 0.98 0.95 1.05 0.86

0.96 1.01 0.97 0.83 1.12 1.07 1.04 1.03 1.00 0.98 1.10 1.09 1.27

0.98 0.97 1.01 0.86 1.01 1.13 1.10 1.01 1.03 1.06 1.14 0.90 0.98 0.92

1.02 1.03 1.04 0.84 0.95 1.10 1.20 0.98 1.09 1.09 1.09 0.84 0.90 0.96 0.94

1.13 1.21 1.17 1.17 1.09 1.12 1.15 1.17 1.15 1.23 1.17 1.03 1.05 1.13 1.22 1.20

1.01 1.00 1.04 0.89 0.99 1.07 1.00 0.96 1.06 1.06 1.08 0.95 1.01 0.92 0.94 1.16 0.92

1.08 1.10 1.11 0.98 1.02 1.09 1.17 1.06 1.11 1.10 1.12 0.96 1.01 1.03 1.03 1.22 1.03 1.11

0.94 0.97 0.94 0.83 1.03 0.93 1.01 0.96 0.96 0.96 1.08 1.06 1.13 0.92 0.86 1.02 0.97 0.97 1.08

1.19 1.27 1.23 1.29 1.10 1.18 1.26 1.17 1.23 1.27 1.19 1.02 1.06 1.17 1.26 1.28 1.21 1.29 1.01 1.29

0.97 0.92 1.01 0.76 0.94 1.04 1.23 0.90 1.04 1.00 1.05 0.90 0.94 0.88 0.84 1.25 0.86 0.98 0.92 1.31 0.73

1.14 1.01 1.11 0.92 0.98 1.01 1.20 0.98 1.05 1.03 1.03 0.93 0.94 0.98 0.96 1.12 0.95 1.04 0.93 1.20 0.91 1.07

0.97 1.00 0.99 0.86 1.10 1.07 1.05 1.04 1.00 1.01 1.15 1.00 1.10 0.99 0.95 1.06 0.97 1.00 1.03 1.09 0.94 0.94 1.05

1.05 1.12 1.07 1.00 1.07 1.17 1.15 1.11 1.09 1.18 1.18 0.99 1.05 1.03 1.15 1.18 1.03 1.13 0.90 1.19 1.06 1.05 1.06 1.02

>=1.30 1.29−1.25 1.24−1.20 1.19−1.05 1.04−0.95 0.94−0.90 0.89−0.80 0.79−0.70

Figure 1: Speedup comparison when running application pairs sequentially vs. concurrently on an Intel
Pentium-4 processor with Hyper-Threading. The speedup is expressed as a percentage of of the concurrent
execution over sequential execution. Shading has been added based on the range of speedup.

likely pairings) yield poor results. By comparison, this paper
presents a methodical, statistical model that can be used to
derive the scheduling “pairing function”. More importantly,
use of a one-time machine characterization avoids the need
for any distinct “sampling” and “optimization” phases. In-
stead, sampling and characterization are continuous, which
are essential given the limited speedups possible from such
sampling mechanisms. Likewise, this paper illustrates actual
operating system implementation and discusses building ef-
fective scheduling models for real processors.

There is a large history of scheduling mechanisms that try
to exploit program characteristics to improve throughput –
[27] has a good survey. These techniques exploit higher level
characteristics of the process (such as communication or I/O
accesses). Our work focuses on scheduling tasks based on ob-
served execution behavior once they have been entered into
in a queue – it simply adjusts the selection of jobs of equal
priority. There has been limited work in co-scheduling sys-
tem for SMT processors that is actually implemented in the
operating system and evaluated on a commercial processor.
The most similar study compares the SOS technique on the
Tera MTA, and yields 10% speedups [26] on combinations of
parallel programs using manual co-scheduling. The speedup
rises from balancing parallel vs. serial sections of different
multithreaded programs as well as fine-tuning machine re-
sources. In the same way, the statistical model used in our
system is related to work by Isci and Martonosi [15], which
derives a linear combination of performance counters to val-
idate an activity based power model. However, they did not
consider the percentage of variation from specific counters
nor did they consider interactions between counters.

2.2 Profiling with Hardware Counters
Specialized hardware profiling techniques have been pro-

posed for collecting run-time profile information. Conte [8]

examines using branch handling hardware coupled with the
branch predictor to obtain branch information. Merten’s [20]
work explores using a branch behavior buffer for collecting
branch profile data. These techniques incur a low overhead
and can effectively gather data during one program run but
suffer in accuracy because they are designed to collect edge
profiles. The ADORE dynamic optimization system [7, 18]
is one excellent example of directly using hardware infor-
mation for dynamic trace generation. ADORE uses the
Itanium-2 PMU (Performance Monitoring Unit) for collect-
ing profile information aimed at improving data cache per-
formance. The primary goal of the ADORE optimizer is
to use the Itanium-2 PMU to detect a small amount of hot
traces for optimization. While ADORE is interested in a
few traces to optimize during run-time, future run-time sys-
tems will need to gather and exploit as much information
possible from PMUs, correlating these samples and charac-
terizing the nature of the PMU information with respect to
program behavior.

Other sampling ideas originate from continuous profiling
and optimization systems [1, 16]. These systems sample per-
formance monitors for profile information to drive feedback-
based optimization between application invocations. This
paper demonstrates an important addition into the area of
continuous program optimization by illustrating how future
systems can make use of existing hardware monitoring units
in run-time optimization.

3. PATH PROFILING USING HARDWARE
MONITORING

Collecting run-time program information is critical to di-
recting next generation processors. A number of optimiza-
tion techniques can use run-time profile to adapt program
behavior as well as the allocation of resources. However,

hardware profiling has several issues which bring its effective
use into question. Accuracy is critical to enabling effective
optimization. More importantly, in order for profiling to be
feasible in a run-time system, it must be done with mini-
mal collection overhead. Finally, unlike software profiling,
hardware profiling is not deterministic as it uses sampling
of events which might occur at different time points in a
program execution.

3.1 Performance Monitoring
The work in this section of the paper uses the Intel Itanium-

2 PMU [14]. The Itanium-2 includes a set of counters which
can be configured to count among 500 events. It also allows
for sampling of Event Address Registers to capture recent
data or instruction cache or TLB misses. In the following
section, it is illustrated how the Itanium-2 PMU can sample
the processor’s branch execution to obtain accurate partial
paths.

3.2 A Study of Using Hardware to Generate
Path Profiles

Path profiling [3] has been shown to be an important form
of profiling [4]. Path profiles correlate branches by keep-
ing track of path execution counts instead of simple branch
counts. However, path profiling usually comes with a sig-
nificant increase in overhead(31% for path profiling versus
16% for edge profiling [3]). As such, using hardware to help
generate path profiles has substantial promise. However,
since hardware-collected execution information is limited in
size and type, any collected information must be assembled
and transformed to be put in a more usable form. Figure 2
illustrates the problem of adapting hardware monitoring in-
formation to the problem of run-time path profiling. The
figure illustrates a hot path of a program’s execution and
the partial information (PMU trace) that is collected from
performance monitoring units. Essentially the sampled re-
gions of code do not indicate the complete path profile of
the code region.

Figure 2: Path detection using PMU information.

At the center of the problem of hardware monitoring is
that hardware has limited capacity to maintain all program

information. For instance, the Itanium-2 PMU contains
eight registers for collecting branch execution outcomes and
the registers are treated as a circular buffer. Each executed
branch instruction usually requires two of the BTB registers;
one for the branch instruction address and another for the
branch target address. Because of this, the BTB registers ef-
fectively act as a four branch circular buffer. In the Itanium-
2 PMU, the user is able to conduct BTB samples through a
set of user-defined filters. The following set of experiments
use the SPEC 2000 benchmarks compiled with the base con-
figuration of the OpenIMPACT Research Compiler [21]. A
PMU collection tool based on the perfmon kernel interface
and libpfm library [10] was constructed to collect samples
of the Itanium-2 PMU taken-branch registers. The PMU
samples are analyzed within an OpenIMPACT module to
expand to larger intra-procedure paths.

3.2.1 Effect of PMU Sampling Period
Figure 3 shows the effect of sampling rate on run-time

overhead as well as the number of unique paths discovered
by the PMU for a few benchmarks. The sampling period
is varied from 50K to 10M clock cycles. Naturally, a lower
sampling rate decreases the overhead but provides a lower
number of unique paths, while a high sampling rate increases
the overhead but provides more unique paths. PMU sam-
pling overhead remains relatively low, less than 10%, from
10M all the way down to around 500K. When the sampling
rate is increased further, the percentage overhead increases
quickly up to 50% for a sampling period of 50K. The num-
ber of unique paths discovered by the PMU rises steadily
for each increase in sampling rate.

3.2.2 Profile Determinism
The profiling infrastructure enables aggregate profile in-

formation to be collected from multiple runs of a program
and compared. By gathering PMU information over sepa-
rate runs, analysis of lost paths due to statistical sampling
can be measured. Figure 4 shows the effects of aggregat-
ing the PMU branch samples from multiple runs of a few
benchmarks with the same input. The figure illustrates the
additional runs increase the number of unique PMU paths.
The greatest increase occurring from combining up to 10
runs, after which there is a slight leveling off. It is possi-
ble that the paths collected from multiple runs will fill in
important partial paths that are missing from other runs.
However, it is more important to understand if the paths
collected accurately find the most important paths of pro-
gram execution.

3.2.3 Accuracy Results
To measure accuracy of the PMU-generated paths, a full

path profile was generated with a Pin tool. Pin was de-
signed to provide functionality similar to the popular ATOM
toolkit [9] for Compaq’s Tru64 Unix on Alpha. Unlike
ATOM, Pin does not instrument an executable statically by
rewriting it before execution, but rather adds the code dy-
namically while the executable is running. This makes it
possible to attach Pin to an already running process to col-
lect profile information on the fly. However, Pin-instrumented
binaries experience average slowdowns on the order of 1000%
when collecting detailed information, and by themselves do
not meet the profiling constraint of low overhead. The PMU
path profile is compared to a full path profile gathered with

186.crafty

Sampling Period
5e4 1e5 5e5 1e6 5e6 1e7

U
ni

qu
e

P
at

hs

0

5000

10000

15000

P
er

ce
nt

 O
ve

rh
ea

d

0

10

20

30

40

50 300.twolf

Sampling Period
5e4 1e5 5e5 1e6 5e6 1e7

U
ni

qu
e

P
at

hs

0

2000

4000

6000

8000

P
er

ce
nt

 O
ve

rh
ea

d

0

10

20

30

40

50

60

164.gzip

Sampling Period
5e4 1e5 5e5 1e6 5e6 1e7

U
ni

qu
e

P
at

hs

200

700

1200

P
er

ce
nt

 O
ve

rh
ea

d

0

10

20

30

40 181.mcf

Sampling Period
5e4 1e5 5e5 1e6 5e6 1e7

U
ni

qu
e

P
at

hs

0

1000

2000

3000

P
er

ce
nt

 O
ve

rh
ea

d

0

10

20

30

40

50

Figure 3: Overhead and number of unique paths for various sampling periods.

186.crafty

Number of Aggregated Runs
0 2 4 6 8 10 12 14 16 18 20

U
ni

qu
e

P
at

hs

0

10000

20000

30000

40000 300.twolf

Number of Aggregated Runs
0 2 4 6 8 10 12 14 16 18 20

U
ni

qu
e

P
at

hs

0

5000

10000

15000

20000

164.gzip

Number of Aggregated Runs
0 2 4 6 8 10 12 14 16 18 20

U
ni

qu
e

P
at

hs

0

1000

2000

3000

4000

181.mcf

Number of Aggregated Runs
0 2 4 6 8 10 12 14 16 18 20

U
ni

qu
e

P
at

hs

0

2000

4000

6000

8000

5e4 1e5 5e5 1e6 5e6 1e7

Figure 4: Number of unique paths found by aggregating data from runs with same input set.

a Pin tool using a method similar to Wall’s weight match-
ing scheme [32]. The accuracy is described as the fraction
of estimated hot path flows as compared to hot path flows
in the full path profile:

Accuracy of Pestimated =
P
p∈(Hestimated∩Hactual) F (p)

P
p∈Hactual F (p)

In this equation F (p) is the flow of a path. This is defined
as the paths count divided by the count of all the paths
added together. This represents the percentage of the all
counts that path p accounts for. Hactual is the set of paths
in the full path profile which are above a set threshold. A
threshold of 0.125% is used, similar to previous path profil-
ing studies [4, 5]. Hestimated is then the created by selecting
the hottest paths in our path profile equal to the number of
paths in Hactual.

Figure 5 shows accuracy results using the method de-
scribed above. In general, our accuracy ranges from 75%
to 95%, averaging 80% accuracy. Applications 177.mesa
and 197.parser are particularly bad with accuracies of 60%.
Evidence shows that although our method performs well for
some benchmarks such as 175.vpr, 178.art, and 183.equake,
it could use some improvement in others. Noise from the
path matching scheme is most likely distorting the final path
counts. Nevertheless, the data clearly motivates using hard-
ware collected profile information for optimization methods
that require even the most specific of information. The fol-
lowing section more closely examines the use of hardware
information to impact multithreaded scheduling.

Benchmarks
gzip vpr mesa art mcf equake ammp parser bzip2 twolf

P
er

ce
nt

 A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100

Figure 5: Accuracy of PMU-based path profiling.

4. SCHEDULING FOR SIMULTANEOUS
MULTITHREADED ARCHITECTURES

The performance impact of operating system scheduling
on multithreaded architectures depends directly on having
an integrated run-time model of processor resources and ap-
plication characteristics. For example, it is important for the
scheduler to view logical processors in a multithreaded phys-
ical processor core as a dynamically varying pair of asym-
metric processors. In the case that one logical processor
is running a memory intensive application the other logical
processor should be treated like a machine with fewer mem-
ory resources. Since the behavior of the processors depends
on dynamically varying application demands and the cur-
rent allocation of threads to logical processors, the scheduler
determines the “properties” of a logical processor by profil-
ing application demand and adjusting its internal scheduling
model based on this profile. Building an effective run-time
model for scheduling is the topic of the following section.

Consider a case where there are two logical processors
(in a single 2-way multithreaded physical processor) and

a total of R processes ready to execute. Furthermore, as-
sume that it’s possible to classify processes as either “good”
(causing no or minimal slowdown when scheduled with most
other processes) or “bad” (causing slowdown when sched-
uled with most other processes) and that there are R =
G + B of each of those processes available to run. At any
scheduling interval, the probability of scheduling two “bad”
jobs to the same physical processor concurrently using a
random scheduler would be (B ∗ (B − 1))/

`
R
2

´
, and the

probability of scheduling exactly one “bad” job would be
1 −

`
G
2

´
/
`
R
2

´
− (B ∗ (B − 1))/

`
R
2

´
.

Since an operating system scheduler must eventually run
all processes, the best outcome is to not run two “bad” jobs
at the same time (this assumes that the scheduler always
uses both logical processors). If running the full combi-
nation of the SPEC benchmarks in Figure 1 concurrently,
then G = 21 and B = 3 (considering 176.gcc, 171.swim
and 179.art to be “bad” processes). This would result in
about 2% of scheduling intervals where two “bad” jobs are
scheduled concurrently, and about 22% of scheduling inter-
vals where one “bad” program is run with a “good” pro-
gram. If, as Figure 1 indicates, running a combination of
“bad” jobs impacts performance by 20%. By detecting such
“bad” jobs, the overall performance may be improved by
0.4% overall. The potential performance improvement in-
creases when a smaller number of processes are involved. If
G = 2, B = 2 then the overall performance might be im-
proved by 33% ∗ 20%, or about 6%.

These potential speedups are small, but this simple anal-
ysis mainly indicates that any improved scheduling mecha-
nism has to be efficient to be worth implementing. Micropro-
cessor designers are hard-pressed to improve performance by
more than 3-5% by any single architectural improvement.
If a simple scheduling mechanism can achieve comparable
gains, there is value in implementing it, as long as it does
not hurt performance by co-scheduling “bad” processes more
frequently than a random scheduler would.

Due to the need for extreme efficiency, this paper ex-
plores using hardware performance counters to predict how
co-scheduled processes might interact. Most processors sup-
port performance counters for both debugging processor de-
signs and gathering data for performance tuning applica-
tions. The organization in the Pentium-4 is similar to that
of many other processors - the processor has a limited num-
ber of performance registers and a larger number of per-
formance counters. A given performance counter can be
associated with specific performance registers. Additional
performance information can be synthesized from combina-
tions of performance counters (for example, the instructions
per cycle delivered by a processor can be calculated once
the number of instructions retired and the processor cycles
are counted). It is important to characterize the interaction
of logical processors in an SMT system using a data-driven,
empirical approach to determine which threads should be
co-scheduled rather than adopt the ad hoc approach used in
prior studies [27].

Five performance metrics are identified that indicate ei-
ther particular aspects of program activity (such as the num-
ber of branches or floating point instructions) or imple-
mentation specific characteristics of the processor, such as
branch mispredictions or trace cache lookup misses that oc-
cur due to incorrect processor speculation. These are shown
in Table 1. These five metrics are chosen because they

b Retired branches
tcm Trace cache lookup misses
l2m Second-level cache misses

f Retired Floating point µops
ipc Instructions per cycle

Table 1: Performance metrics recorded for applica-
tion characterization. In reported metrics, events
are normalized by the number of instructions issued
to be per-cycle events counts. Thus, a value of 0.05
for f would indicate that 5% of cycles are spent on
floating point instructions.

are a good representation of thread behavior given the con-
straints on performance counter allocation. Since there are
two threads, each counter must be allocated twice, one per
logical processor, and certain events can only be counted
with certain counters. The Linux 2.6 task structure was
modified to include software counters to shadow the hard-
ware counters. Counter values are recorded during execution
and can be used during scheduling.

Pair-wise combinations of the SPEC CPU 2000 bench-
mark suite ran with reference input sets and measured the
performance counters of each application each time the sched-
uler was invoked. Using the R statistical computing pack-
age [23] to fit a linear model on this data and predict the
IPC based on the sum of performance counters extracted
from each application for each application pair. The mo-
tivation in using the sum of the performance counters was
the intuition that most architectural mechanisms have some
form of capacity limit. For example, the processor memory
bandwidth is finite; if two processes tend to approach that
limit, they will probably interfere with one another.

The goal of this was to determine if there is a simple set of
performance registers that can be used to predict speedup
(or slowdown); scheduling decisions could then use those
specific set of performance counters and the derived model
to predict which application pairings are most likely to yield
speedups. It was separately observed that application be-
havior is reasonably consistent across scheduling quanta – in
other words, that the immediate past is a reasonable predic-
tor for the immediate future. Most programs exhibit some
degree of phase behavior in the use of microarchitectural
features [25]; this is one reason why the SOS technique of
Snavely et al undergoes periodic resampling to determine
which processes cooperate. The autocorrelation coefficient
for the ipc and l2m counters were computed as 0.93 and 0.92
(respectively) for a single lag period, indicating that using
the prior sample provides reasonable accuracy. Rather than
use a larger sampling period and periodically re-sampled,
the auto-correlation decreases, indicating less predictive ac-
curacy – for example, summed over six scheduling quanta,
the autocorrelation for l2m drops to 0.52. This implies that
the resampling mechanism of Snavely et al would have higher
overhead than our simpler mechanism.

The predictor for speedup was a linear model of each of
the normalized performance counters that included multi-
plicative terms to capture interactions between microarchi-

tectural features. The model is of the form

speedup = w0 + w1b +w2tcm + . . .

+w10cpc + w11b ∗ tcm + w12b ∗ l2m + . . .

+residual.

The full linear model includes a total of 256 terms. The
weights for individual terms (wi) define the contribution of
a particular factor (e.g. b or tcm) or a combination of factors
(e.g. tcm∗l2m). The combinations of factors include interac-
tions between specific factors – for example, tcm∗ l2m repre-
sents the contribution of the interaction of trace cache misses
and level-2 cache misses. This linear model has a multiple
correlation coefficient of R2 = 0.942, indicating that the
model has very high predictive accuracy. The “residual”
term represents any error term needed to have the linear
model fit the data. The correlation coefficient can occasion-
ally provide a misleading measure of the model accuracy.
Further analysis was performed to verify that the statistical
model was accurate.

The linear model serves three purposes. First, it indi-
cates that it is possible to accurately predict speedup using
samples from performance counter sampling of independent
applications. Second, using the linear model, it’s possible to
determine which performance counters are most significant
in predicting speedup. This can be done using two tech-
niques. The first involves adding or removing terms from the
linear model to see if a reduced set of performance counters
yields a model with the same accuracy (defined by the R2

metric); a complete analysis was performed by dropping in-
dividual performance counters and found that omitting any
one counter reduced R2 to values of 0.70 . . . 0.30. Thus, it
appeared important to include this full set of performance
counters.

The basic performance counters explain about 90% of
the variation in the speedup when applications are paired.
Based on the linear model, it should be possible to select ap-
plications by comparing a scaled sum of performance coun-
ters corresponding to the model – −23 ∗ l2m + 1.5 ∗ f + 5.2 ∗
b + −1 ∗ tcm. This simple heuristic captures the relative
contribution of the leading contributors to the performance
variation and involved only simple calculation, yielding an
efficient solution.

4.1 Informed-Multithreaded Scheduling
Informed scheduling decisions are made in two ways: first

by migrating tasks between processors so that any decision
is more likely to be positive, and second by selecting tasks
predicted to behave well with the other tasks currently run-
ning on the other logical processor. Previous work [24] illus-
trated that informing operating system schedulers with the
information of processor performance counters has the po-
tential of improving multithreaded architectures. This sec-
tion examines the complete implementation of constructing
an informed performance-guided multithreaded scheduler.

The Pentium-4 performance counters are configured prior
to execution to record five separate metrics for each logi-
cal processor: branches, DTLB misses, L2 misses, floating
point micro-ops, and instructions. Due to the constraints on
performance counter allocation, it’s not possible to directly
record all the performance counters used in the linear model
concurrently, and thus use this reduced set of counters. Each
time the scheduler is invoked, these counters, along with the

time stamp (in nanoseconds) are read and set to zero. Af-
ter reading, the value is multiplied by a large integer factor
before being divided by the elapsed time so that a scaled
metric per cycle is created without using the floating point
unit within the kernel. The adjusted value is then stored
with the task structure of the previous task, providing an
estimate of the events per cycle for the previous scheduling
quantum. New processes have null values for these coun-
ters, meaning they will be scheduled ahead of most other
processes; this is corrected once that process executes and
records the performance counter values.

Our scheduler modification is done by adding a hook into
the default Linux 2.6 scheduler that calls a function if it is
registered by a module. The module handles all instrumen-
tation, task selection, and the decision of when to migrate
tasks, but the migration is part of the statically loaded ker-
nel because the scheduling data structures are not exported.
The Linux 2.6 scheduler uses a queue based scheme, and the
first task in the queue has the highest priority to be sched-
uled next. In order to maintain scheduling fairness and re-
sponsiveness, but still exploit differences in processes, the
scheduler only looks at the first four tasks on the run-queue
and never skip a task more than three times.

The linear model is useful for predicting IPC and giving
us information about what resources are most critical for
scheduling. However, it is less useful for predicting actual
speedup of paired tasks because of the residual effect be-
tween the actual counters and IPC. For example, the model
predicts that a high floating point count will yield a high
IPC, but it is obvious that pairing two applications with
high floating point is the wrong decision. Instead of directly
applying the model, its factors are used as a heuristic to
guide scheduling. Instead of summing the counters from
each process, the absolute difference is taken and weighed
to indicate the difference. This scheme will pair jobs with
different usage patterns. The following prediction function
was derived. Assume process A is running on logical CPU 0,
and a decision between other processes for co-scheduling is
required. Each process has a set of counters representing the
event count per cycle – for example Br, Bl2m and so on. For
each process, value is calculated: v = 4(abs(Al2m−Bl2m))+
(abs(Atcm − Btcm)) + (abs(Af − Bf)) + 2(abs(Ab − Bb)).

The process among the first three in the priority queue with
the highest v is selected. Notice that the scaling for the l2m
term is four-fold that of the b and f terms – this is done
because the model indicates that the l2m contributes 20%
of the variance compared to the other counters. A similar
argument holds for the ipc counters, but those counters are
subtracted from the others since IPC is the only “higher is
better” counter.

In a situation where jobs are randomly distributed be-
tween run queues, it is possible to encounter a situation
where there is little choice but to schedule two processes
that are cache-intensive. Our solution to this was to add
a two bit saturating counter to each task structure. The
counter is incremented after a “high-cache” interval, and
decremented after a “low-cache” interval. When a task’s
two bit counter is maximized, it is migrated to a CPU that
has been designated as the ”high-cache” CPU, if it is not
already located there, and then the affinity mask is set so
that process cannot be migrated away. When tasks on the
”high-cache” CPU fall to a weak state in the two bit counter
the affinity mask is restored and the Linux scheduler can mi-

grate it to another processor if necessary for load balancing.
Fortunately, the Linux scheduler does an adequate job of
load balancing, and as such no additional compensation is
performed to account for tasks the algorithm removes. In
practice, this method was very effective in grouping tasks;
on average there were two or three tasks of a set of eight
that were fixed at any given time. To prevent an imbalance,
the number of fixed tasks was capped at half of the total
runnable task count.

5. CO-SCHEDULER RESULTS
All measurements and experiments reported were run on

a single 2.53GHz Pentium-4 “Northwood” workstation with
768MB of RDRAM using a modified Linux 2.6.5 kernel.
All benchmarks were executed using a reference data set.
Each experiment involved executing eight randomly selected
benchmarks for a fixed time interval of four minutes on both
the base Linux scheduler and our modified co-scheduler.
Speedup was measured using the throughput IPC (measured
in IA32 instructions per cycle rather than µops/cycle) of the
processor.

The time limit was chosen for several reasons. First, it
seems that the best way to evaluate this system would be
to allow jobs to run to completion, but doing so makes it
difficult to understand the results. In a set of jobs, sup-
pose that all jobs except the slowest one improve; the sys-
tem has obviously increased throughput, but the time to
completion remained the same. Summing individual bench-
mark execution times is also flawed; improvement in shorter
benchmarks has a cascading effect on the results of longer
benchmarks. Also, since the timeslice in the Linux 2.6 ker-
nel is 100ms for IA32 systems, the scheduler will make at
least 2400 decisions in each experiment.

Figure 6 shows the speedup for fifty random sets of eight
different applications drawn from the SPEC2000 benchmark
suite. The speedup reported is an average of three measure-
ments of four minute intervals of program execution. We
ran the same combination of benchmarks using the default,
unmodified scheduler in Linux 2.6.5 and our own modified
version for the same period of time and then compare the
throughput of the processor. For eight co-scheduled pro-
cesses, we achieve an average speedup of 6.0%, with values
ranging from -2.9% to 58%.

Figure 7 gives a closer look at the worst, median, and
best benchmark sets. In these three examples, along with
every other experiment, there is a severe disparity between
the amount of speedup individual applications receive, even
though the overall speedup is positive. It is important to
note that although processes are chosen to run in a different
order, they always receive the same amount of time on the
processor. Since the scheduler is fair with respect to time,
this implies that there is an issue of microarchitectural un-
fairness that must be addressed.

6. CONCLUSION
This work demonstrates that there is good potential to

improve throughput using hardware-monitoring-based co-
operative scheduling for multithreaded processors. Across
fifty random sets of eight different applications, an average
speedup of 6%, with some positive speedup values ranging
from 11% to 25%. The results show a clear potential for
operating systems to influence future systems, and more im-

−10%

0%

10%

20%

30%

40%

50%

60%

50 Sets of 8 SPEC Benchmarks

P
er

ce
nt

S
pe

ed
up

Figure 6: Speedup realized by each set of benchmarks over the base Linux scheduler.

Individual Benchmark Speedup

0.50

1.00

1.50

2.00

2.50

3.00

3.50

ar
t

bz
ip

ga
p

ga
p

gz
ip

lu
ca

s

pa
rs

er

si
xt

ra
ck

O
ve

ra
ll

ap
si

cr
af

ty

eo
n

eq
ua

ke

ga
lg

el

tw
ol

f

tw
ol

f

vo
rte

x

O
ve

ra
ll

gc
c

ga
lg

el

gz
ip

sw
im

sw
im

sw
im

tw
ol

f

tw
ol

f

O
ve

ra
ll

Benchmark Set

S
pe

ed
up Worst Set Median Set Best Set

Figure 7: Individual benchmark speedups for sets with the worst, median, and best speedup.

portantly for performance counters to be integrated into op-
erating systems. However, the improved throughput is dis-
tributed very unevenly; threads are sometimes penalized due
to architectural unfairness, some receive dramatic improve-
ment over the default scheduler and others only receive a few
percent. A mechanism to evaluate how well a job “should”
be doing is a novel problem in operating system scheduling.
Traditionally, operating systems have scheduled “time,” but
increased sharing of resources may require scheduling for a
combination of resources simultaneously. We believe the
methodology used for selecting “pairing functions” can be
applied to larger future systems with many SMT cores, or
to systems with different microarchitures.

This paper also presented a system for extending hardware-
collected information related to run-time optimization. The
construction of a run-time hardware-based profiling system
demonstrated that path profiling information can be accu-
rately estimated (between 80-90%) while requiring very little
performance overhead (between 3-5%). Overall the schedul-
ing and profiling results illustrate the promising potential
of performing continuous optimization of future processor
resource decisions and thread execution.

7. REFERENCES
[1] J. Anderson, L. M. Berc, J. Dean, S. Ghemawat,

M. R. Henzinger, S. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: Where have all the cycles gone?
In Proc. of the 16th ACM Symposium of Operating
Systems Principles, pages 1–14, October 1997.

[2] Apple Computer, Inc.
http://developer.apple.com/tools/performance/.

[3] T. Ball and J. R. Larus. Efficient path profiling. In
Proceedings of 29th Annual Int’l Symposium on
Microarchitecture, pages 46–57, December 1996.

[4] T. Ball, P. Mataga, and M. Sagiv. Edge profiling
versus path profiling: The showdown. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 134–148,
January 1998.

[5] M. D. Bond and K. S. McKinley. Practical path
profiling for dynamic optimizer. In Proceedings of the
3rd International Symposium on Code Generation and
Optimization(CGO-2005), March 2005.

[6] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla,

and S. R. Kunkel. A multithreaded powerpc processor
for commercial servers. IBM Journal of Research and
Development, 44(6):885–898, November 2000.

[7] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y.
Chen. Dynamic trace selection using performance
monitoring hardware sampling. In Proceedings of the
International Symposium on Code Generation and
Optimization(CGO 2003), March 2003.

[8] T. M. Conte, B. A. Patel, K. N. Menezes, and J. S.
Cox. Hardware-based profiling: An effective technique
for profile-driven optimization. International Journal
of Parallel Programming, 24(2):187–206, April 1996.

[9] A. Eustace and A. Srivastava. ATOM: A flexible
interface for building high performance program
analysis tools. In Proceedings of the Winter 1995
USENIX Conference, January 1995.

[10] Hewlett-Packard Development Company. perfmon
project
http://www.hpl.hp.com/research/linux/perfmon/.

[11] W. W. Hwu and P. P. Chang. Inline function
expansion for compiling realistic C programs. In
Proceedings of the ACM SIGPLAN 1989 Conference
on Programming Language Design and
Implementation, pages 246–257, June 1989.

[12] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery. The Superblock: An effective technique
for VLIW and superscalar compilation. The Journal
of Supercomputing, 7(1):229–248, January 1993.

[13] Intel Corporation. Special issue on intel
hyperthreading in pentium-4 processors. Intel
Technology Journal, 1(1), January 2002.

[14] Intel Corporation. Intel Itanium 2 processor reference
manual: For software development and optimization.
May 2004.

[15] C. Isci and M. Martonosi. Runtime power monitoring
in high-end processors: Methodology and empirical
data. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture,
page 93. IEEE Computer Society, 2003.

[16] T. Kistler and M. Franz. Continuous program
optimization. In IEEE Transactions on Computers
vol. 50 n. 6, June 2001.

[17] V. Krishnan and J. Torrellas. A chip-multiprocessor
architecture with speculative multithreading. IEEE
Transactions on Computers, 48(9):866–880, 1999.

[18] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design
and implementation of a lightweight dynamic
optimization system. In Journal of Instruction-Level
Parallelism 6(2004), pages 1–24, April 2004.

[19] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A.
Koufaty, J. A. Miller, and M. Upton. Hyper-threading
technology architecture and microarchitecture. Intel
Technology Journal, 6(1):4–15, Feb. 2002.

[20] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D.
Barnes, J. C. Gyllenhaal, and W. W. Hwu. A
hardware mechanism for dynamic extraction and
relayout of program hot spots. In Proc. 2000 Int’l
Symp. on Computer Architecture, pages 136–147, June
2000.

[21] OpenIMPACT Research Compiler.
http://www.gelato.uiuc.edu/.

[22] K. Pettis and R. C. Hansen. Profile guided code
positioning. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design
and Implementation, pages 16–27, June 1990.

[23] R Development Core Team. R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2004.
3-900051-07-0.

[24] A. Settle, J. Kihm, , A. Janiszewski, and D. Connors.
Performance analysis of simultaneous multithreading
in a powerpc-based processor. In Proceedings of the
International Conference on Parallel Architectures and
Compiler Techniques, October 2004.

[25] T. Sherwood, S. Sair, and B. Calder. Phase tracking
and prediction. In Proceedings of the 30th annual
international symposium on Computer architecture,
pages 336–349. ACM Press, 2003.

[26] A. Snavely and L. Carter. Symbiotic jobscheduling on
the tera mta. In Workshop on Multi-Threaded
Execution Architecture and Compilers, Jan 2000.

[27] A. Snavely and D. M. Tullsen. Symbiotic
jobscheduling for a simultaneous multithreaded
processor. In Proceedings of the ninth international
conference on Architectural support for programming
languages and operating systems, pages 234–244. ACM
Press, 2000.

[28] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic
jobscheduling with priorities for a simultaneous
multithreading processor. In Proceedings of the 2002
ACM SIGMETRICS international conference on
Measurement and modeling of computer systems,
pages 66–76. ACM Press, 2002.

[29] B. Sprunt. Pentium 4 performance-monitoring
features. In IEEE Micro 22(4), pages 72–82, 2002.

[30] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In 22nd Annual International Symposium
on Computer Architecture, June 1995.

[31] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy.
Supporting fine-grained synchronization on a
simultaneous multithreading processor. In
International Symposium on Architectural Support for
Programming Languages and Operating Systems,
pages 54–58, 2000.

[32] D. W. Wall. Predicting program behavior using real
and estimated profiles. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming
Language Design and Implementation, pages 59–70,
June 1991.

