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Abstract
Transient faults are emerging as a critical concern in the

reliability of general-purpose microprocessors. As archi-
tectural trends point towards multi-threaded multi-core de-
signs, there is substantial interest in adapting such parallel
hardware resources for transient fault tolerance. This paper
proposes a software-based multi-core alternative for tran-
sient fault tolerance using process-level redundancy (PLR).
PLR creates a set of redundant processes per application
process and systematically compares the processes to guar-
antee correct execution. Redundancy at the process level
allows the operating system to freely schedule the processes
across all available hardware resources. PLR’s software-
centric approach to transient fault tolerance shifts the fo-
cus from ensuring correct hardware execution to ensuring
correct software execution. As a result, PLR ignores many
benign faults that do not propagate to affect program cor-
rectness. A real PLR prototype for running single-threaded
applications is presented and evaluated for fault coverage
and performance. On a 4-way SMP machine, PLR provides
improved performance over existing software transient fault
tolerance techniques with 16.9% overhead for fault detec-
tion on a set of optimizedSPEC2000 binaries.

1 Introduction
Transient faults, also known as soft errors, are emerg-

ing as a critical concern in the reliability of computer sys-
tems [4, 21]. A transient fault occurs when an event (e.g.
cosmic particle strikes, power supply noise, device cou-
pling) causes the deposit or removal of enough charge to
invert the state of a transistor. The inverted value may prop-
agate to cause an error in program execution.

Current trends in process technology indicate that the fu-
ture error rate of a single transistor will remain relatively
constant [13, 18]. As the number of available transistors
per chip continues to grow exponentially, the error rate
of for an entire chip is expected to increase dramatically.
These trends indicate that to ensure correct operation of
systems, all general-purpose microprocessors and memo-
ries must employ reliability techniques.

Transient faults have historically been a design con-
cern in specific computing environments (e.g. spacecrafts,
high-availability server machines) in which the key system
characteristics are reliability, dependability, and availabil-
ity. While memory is easily protected with error-correcting
code (ECC) and parity, protecting the complex logic within
a high-performance microprocessor presents a significant
challenge. Custom hardware designs have added 20-30%
additional logic to add redundancy to mainframe proces-
sors and cover upwards of 200,000 latches [32, 2]. Other
approaches include specialized machines with custom hard-
ware and software redundancy [16, 39].

However, the same customized techniques can not be di-
rectly adopted for the general-purpose computing domain.
Compared to the ultra-reliable computing environments,
general-purpose systems are driven by a different, and of-
ten conflicting, set of factors. These factors include:

Application Specific Constraints: In ultra-reliable en-
vironments, such as spacecraft systems, the result of an
transient error can be the difference between life or death.
For general-purpose computing, the consequences of faulty
execution are often less severe. For instance, in audio de-
code and playback, a fault results in a mere glitch which
may not even be noticed. Thus, the focus for reliability
shifts from providing a bullet-proof system to improving re-
liability to meet user expectations of failure rates.

Design Time and Cost Constraints: In the general-
purpose computing market, low cost and a quick time to
market are paramount. The design and verification of new
redundant hardware is costly and may not be feasible in
cost-sensitive markets. In addition, the inclusion of redun-
dant design elements may negatively impact the design and
product cycles of systems.

Post-Design Environment Techniques: A system’s
susceptibility to transient faults is often unplanned for and
appears after the design and fabrication processes. For ex-
ample, the scientists at the Los Alamos National Laboratory
documented a surprisingly high incidence of single-node
failures due to transient faults during the deployment of the



ASC Q supercomputer [21]. Likewise, environmental con-
ditions of a system such as altitude, temperature, and age
can cause higher fault rates [40]. In these cases, reliability
techniques must be augmented after the design and devel-
opment phase without the addition of new hardware.

With such pressures driving general-purpose computing
hardware, software reliability techniques are an attractive
solution for improving reliability in the face of transient
faults. While software techniques cannot provide a level of
reliability comparable to hardware techniques, they signifi-
cantly lower costs (zero hardware design cost), and are very
flexible in deployment. Existing software transient fault tol-
erant approaches use the compiler to insert redundant in-
structions for checking computation [26], control flow [25],
or both [29]. The compiler-based software techniques suffer
from a few limitations. First, the execution of the inserted
instructions and assertions decreases performance (∼1.4x
slowdown [29]). Second, a compiler approach requires re-
compilation of all applications. Not only is it inconvenient
to recompile all applications and libraries, but the source
code for legacy programs is often unavailable.

This paper presentsprocess-level redundancy(PLR), a
software reliability technique leverages multiple processor
cores for transient fault tolerance. PLR creates a set of
redundant processes per original application process and
compares their output to ensure correct execution. PLR
scales with the architectural trend towards large many-
core machines and leverages available hardware parallelism
to improve performance without any additional redundant
hardware structures or modifications to the system. In com-
puting environments which are not throughput-constrained,
PLR provides an alternate method of leveraging the hard-
ware resources for transient fault tolerance. In addition,
PLR can be easily deployed without recompilation or mod-
ifications to the underlying operating system.

This paper makes the following contributions:

• PLR implies asoftware-centricparadigm in transient
fault tolerance which views the system as software lay-
ers which must execute correctly. In contrast, the typ-
ical hardware-centricparadigm views the system as
a collection of hardware that must be protected. We
differentiate between software-centric and hardware-
centric views using the commonly acceptedsphere of
influenceconcept.

• Demonstrates the benefits of a software-centric ap-
proach. In particular, we show how register errors
propagate through software. We show that many of the
errors result in benign faults and many detected faults
propagate through hundreds or thousands of instruc-
tions. By using a software-centric approach, PLR is
able to ignore many benign faults.

• Presents a software-only transient fault tolerance tech-
nique for leveraging multiple cores on a general-
purpose microprocessor for transient fault tolerance.
We describe a real prototype system designed for
single-threaded applications and evaluate the fault cov-
erage and performance of PLR. Overall, the PLR pro-
totype runs a set of theSPEC2000benchmark suite
with only a 16.9% overhead on a 4-way SMP system.

The rest of this paper is organized as follows. Section 2
provides background on transient fault tolerance. Section 3
describes PLR. Section 4 shows initial results from the dy-
namic PLR prototype. Section 5 discusses related work.
Section 6 concludes the paper.

2 Background
In general, a fault can be classified by its effect on system

execution into the following categories [37]:

Benign Fault: A transient fault which does not propa-
gate to affect the correctness of an application is considered
a benign fault. A benign fault can occur for a number of rea-
sons. Examples include a fault to an idle functional unit, a
fault to a performance-enhancing instruction (i.e. a prefetch
instruction), data masking, and Y-branches [36].

Silent Data Corruption (SDC): An undetected fault
which propagates to corrupt system output is an SDC. This
is the worst case scenario where a system appears to execute
correctly but silently produces incorrect output.

Detected Unrecoverable Error (DUE): A fault which
is detected without possibility of recovery is considered a
DUE. DUEs can be split into two categories. Atrue DUE
occurs when a fault which would propagate to incorrect exe-
cution is detected. Afalse DUE occurs when a benign fault
is detected as a fault.

A transient fault in a system without transient fault tol-
erance will result in a benign fault, SDC, or true DUE (e.g.
error detected by core dump). A system with only detection
attempts to detect all of the true DUEs and SDCs. However,
the system may inadvertently convert some of the benign
faults into false DUEs and unnecessarily halt execution. Fi-
nally, a system with both detection and recovery will detect
and recover from all faults without SDCs or any form of
DUE. In this case, faults which would be false DUEs may
cause unwarranted invocations to the recovery mechanism.

3 Approach

3.1 Software-centric Fault Detection

Thesphere of replication(SoR) [28] is a commonly ac-
cepted concept for describing a technique’s logical domain
of redundancy and specifying the boundary for fault detec-
tion and containment. Any data which enters the SoR is
replicated and all execution within the SoR is redundant in
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Figure 1. Hardware-centric and software-
centric transient fault detection models.

some form. Before leaving the SoR, all output data is com-
pared to ensure correctness. All execution outside of the
SoR is not covered by the particular transient fault tech-
niques and must be protected by other means. Faults are
contained within the SoR boundaries and detected in any
data leaving the SoR.

Most previous work in fault tolerance ishardware-
centric and uses a hardware-centric SoR. A hardware-
centric model views the system as a collection of hardware
components which must be protected from transient faults.
In this model, a hardware-centric SoR is placed around spe-
cific hardware units. All inputs are replicated, execution is
redundant, and output is compared.

While the hardware-centric model is appropriate for
hardware-implemented techniques, it is awkward to apply
the same approach to software. Software naturally oper-
ates at a different level and does not have full visibility into
the hardware. Nevertheless, previous compiler-based ap-
proaches attempt to imitate a hardware-centric SoR. For ex-
ample, SWIFT [29] places its SoR around the processor as
shown in Figure 1(a). Without the ability to control du-
plication of hardware, SWIFT duplicates at the instruction
level. Each load is performed twice for input replication
and all computation is performed twice on the replicated in-
puts. Output comparison is accomplished by checking the
data of each store instruction prior to executing the store in-
struction. This particular approach works because it is pos-
sible to emulate processor redundancy with redundant in-
structions. However, other hardware-centric SoRs would be
impossible to emulate with software. For example, software
alone cannot implement an SoR around hardware caches.

Software-centricfault detection is a paradigm in which
the system is viewed as the software layers which must exe-
cute correctly. A software-centric model uses a software-
centric SoR which is placed around software layers, in-
stead of hardware components. The key insight to software-
centric fault detection is this: although faults occur at the
hardware level,the only faults which matter are the faults
which affect software correctness. By changing the bound-
aries of output comparison to software, a software-centric
model shifts the focus from ensuring correct hardware exe-
cution to ensuring correct software execution. As a result,

only faults which affect correctness are detected. Benign
faults are safely ignored. A software-centric system with
only detection is able to reduce the incidence of false DUEs.
A software-centric system with both detection and recovery
will not need to invoke the recovery mechanism for faults
which do not affect correctness.

Figure 1(b) shows an example software-centric SoR
which is placed around the user space application and li-
braries (as used by PLR). A software-centric SoR acts ex-
actly the same as the hardware-centric SoR except that it
acts on the software instead of the hardware. Again, all in-
put is replicated, execution within the SoR is redundant, and
data leaving the SoR is compared.

By operating at the software level, the software-centric
model caters to the strengths of a software-implemented
technique. While software has limited visibility into hard-
ware, it is able to view a fault at a broader scope and de-
termine its effect on software execution. Thus, software-
implemented approaches which are hardware-centric are ig-
noring the potential strengths of a software approach.

3.2 Process-Level Redundancy

Process-level redundancy(PLR) is a technique which
uses the software-centric model of transient fault detec-
tion. As shown in Figure 1(b), PLR places its SoR around
the user address space by providing redundancy at the pro-
cess level. PLR replicates the application and library code,
global data, heap, stack, file descriptor table, etc. Every-
thing outside of the SoR, namely the OS, must be protected
by other means. Any data which enters the SoR via the
system call interface must be replicated and all output data
must be compared to verify correctness.

Providing redundancy at the process level is natural as
it is the most basic abstraction of any OS. The OS views
any hardware thread or core as a logical processor and
then schedules processes to the available logical proces-
sors. PLR leverages the OS to schedule the redundant pro-
cesses to take advantage of hardware resources. With mas-
sive multi-core architectures on the horizon, there will be a
tremendous amount of hardware parallelism available in fu-
ture general-purpose machines. In computing environments
where throughput is not the primary concern, PLR provides
a way of utilizing the extra hardware resources for transient
fault tolerance.

A high level overview of PLR is shown in Figure 2 with
three redundant processes, which is the minimum number
of processes necessary for both transient fault detection and
recovery. PLR intercepts the beginning of application exe-
cution and replicates the original process to create other re-
dundant processes. One of the processes is logically labeled
themasterprocess and the others are labeled theslavepro-
cesses. At each system call, thesystem call emulation unit
is invoked. The emulation unit performs the input replica-
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Figure 2. Overview of PLR with three redun-
dant processes.

tion, output comparison, and recovery. The emulation unit
also ensures that the following requirements are maintained
in order for PLR to operate correctly:

• The execution of PLR must be transparent to the sys-
tem environment with the redundant processes inter-
acting with the system as if only the original process
is executing. System calls which alter any system state
can only be executed once with the master process ac-
tually executing the system call and the slave processes
emulating the system call.

• Execution among the redundant processes must be
deterministic. System calls which return non-
deterministic data, such as a request for system time
or resources, must be emulated to ensure all redundant
processes use the same data for computation.

• All redundant processes must be identical in address
space and any other process-specific data, such as the
file descriptor table. At any time, a transient fault could
render one of the redundant processes useless. With
identical processes, any of the processes can be logi-
cally labeled the master process at any given invoca-
tion of the emulation unit.

On occasion, a transient fault will cause the program to
suspend or hang. Thewatchdog alarmis employed by the
emulation unit to detect such faults. Upon entrance to the
system call emulation unit, a timer begins. If the redun-
dant processes do not all enter the emulation unit in a user-
specified amount of time, the watchdog alarm times out,
signaling an error in execution.

3.2.1 Input Replication

As the SoR model dictates, any data which enters the
SoR must be replicated to ensure that all data is redundant
within the SoR. In the case of PLR, any data which passes
into the processes via system calls (such as a read from a
file descriptor) is received once by the master process, and
then replicated among the slave processes. Also, the return
value from all system calls is considered an input value and
is copied for use across all redundant processes.

3.2.2 Output Comparison

All data which exits the redundant processes must be
compared for correctness before proceeding out of the SoR.
If the output data does not match, a transient fault is de-
tected and a recovery routine is invoked. Any write buffers
which will be passed outside of the SoR must be compared.
Also, any data passed as a system call parameter can be con-
sidered an output event which leaves the SoR and must also
be checked to verify program correctness.

3.2.3 Emulating System Calls

The emulation unit is responsible for the input replica-
tion, output comparison, and system call emulation. The
data transfer during input replication and output comparison
is accomplished through a shared memory segment between
all of the redundant processes.

At the beginning of each call to the emulation unit, the
type of system call is compared to ensure that all redundant
processes are at a common system call. If not, a fault is
assumed which caused an error in control flow to call an
errant system call.

Depending upon the system call, the system call emula-
tion unit will perform different tasks. System calls which
modify any system state, such file renaming and linking,
must only be executed once. In other cases, the system call
will be actually called by all processes; once by the mas-
ter process in its original state, and once by each redundant
process to emulate the operation. For example, in emulat-
ing a system call to open a new file, the master process will
create and open the new file, while the redundant processes
will simply open the file without creating it.

3.3 Transient Fault Detection
A transient fault is detected in one of three ways:

1. Output Mismatch : A transient fault which propagates
to cause incorrect output will be detected with the out-
put comparison within the emulation unit at the point
which the data is about to exit the SoR.

2. Watchdog Timeout: There are two scenarios in which
the watchdog timer will time out. The first case is
when a fault causes an error in control flow which calls
an errant system call. The faulty process will cause an
entrance into the emulation unit which will begin wait-
ing for the other processes. If the other processes enter
the emulation unit, an error will be detected if the sys-
tem calls mismatch, or if there is a mismatch in data. If
the other processes continue execution, a timeout will
occur. The second case is when a transient fault causes
a process to hang indefinitely (e.g. an infinite loop).
In this case, during the next system call, all the pro-
cesses except the hanging process will enter the emu-
lation unit and eventually cause a watchdog timeout. A



drawback to the watchdog alarm is that a timeout pe-
riod exists in which the application does not make any
progress. In our experience, on an unloaded system, a
timeout of 1-2 seconds is sufficient. The timeout value
is user specified and can be increased on a loaded sys-
tem. On a loaded system, spurious timeouts will not
affect application correctness, but will cause unneces-
sary calls to the recovery unit.

3. Program Failure: Finally, a transient fault may cause
a program failure due to an illegal operation such as a
segmentation violation, bus error, illegal instruction,
etc. Signals handlers are set up to catch the corre-
sponding signals and an error is be flagged. The next
time the emulation unit is called, it can immediately
begin the recovery process.

3.4 Transient Fault Recovery
Transient fault recovery mechanisms typically fit into

two broad categories:checkpoint and repair, and fault
masking. Checkpoint and repair techniques involves the pe-
riodic checkpointing of execution state. When a fault is de-
tected, execution is rolled back to the previous checkpoint.
Fault masking involves using multiple copies of execution
to vote on the correct output.

PLR supports both types of fault recovery. If checkpoint
and repair functionality already exists, then PLR only needs
to use two processes for detection and can defer recovery to
the repair mechanism. Otherwise, fault masking can be ac-
complished by using at least three processes for a majority
vote. If fault masking is used, the following schemes are
used for recovery (the examples use an assumption of three
redundant processes).

1. Output Mismatch: If an output data mismatch occurs
the remaining processes are compared to ensure cor-
rectness of the output data. If a majority of processes
agree upon the value of the output data, it is assumed
to be correct. The processes with incorrect data are im-
mediately killed and replaced by duplicating a correct
process (e.g. using thefork() system call in Linux).

2. Watchdog Timeout: As mentioned in Section 3.3,
there are two cases for a watchdog timeout. In the
first case, where a faulty process calling the emula-
tion unit while the other processes continue execut-
ing, there will only be one process in the emulation
unit during timeout. The process in the emulation unit
is killed and recovery occurs during the next system
call. In the second case, where a faulty process hangs,
all processes except one will be in the emulation unit
during timeout. The hanging process is killed and re-
placed by duplicating a correct process.

3. Program Failure: In the case of program failure, the
incorrect process is already dead. The emulation unit

simply replaces the missing process by duplicating one
of the remaining processes.

We assume the single event upset (SEU) fault model in
which a single transient fault occurs at a time. However,
PLR can support simultaneous faults by simply scaling the
number of redundant processes and the majority vote logic.

3.5 Windows of Vulnerability
A fault during execution of PLR code may cause an un-

recoverable error. Also, a fault which causes an erroneous
branch into PLR code could result in undefined behavior.
Finally, PLR is not meant to protect the operating system
and any fault during operating system execution may cause
failure. The first and third windows of vulnerability may
be mitigated by compiling the operating system and/or PLR
code with compiler-based fault tolerance solutions.

All fault tolerance techniques have windows of vulnera-
bility which are usually associated with faults to the checker
mechanism. Although not completely reliable, partial re-
dundancy [12, 33] may be sufficient to improve reliability
enough to meet user or vendor reliability standards.

3.6 Shared Memory, Interrupts, Exceptions
and Multi-threading

PLR hinges upon deterministic behavior among the re-
dundant processes. However, shared memory, interrupts,
exceptions and multi-threaded applications introduce poten-
tial non-determinism.

Shared memory could be supported by changing page
permissions and trapping upon accesses to the shared mem-
ory. A similar approach is used for detecting self-modifying
code within dynamic code translators [9]. Interrupts and
exceptions present a more difficult challenge because there
is not a clear execution point in which to synchronize the
redundant processes. Hardware supported techniques have
been proposed previously such as hardware counters to sup-
port epochs [8]. Multi-threaded applications require a pro-
gramming model that ensures the same inter-thread mem-
ory ordering for each replica. Without this support, PLR is
limited to executing on single-threaded applications.

These challenges are still open research problems for
all software-implemented fault tolerance techniques. We
plan to explore extensions to PLR to support these non-
deterministic issues.

4 Experimental Results
This paper presents and evaluates a PLR prototype built

using the Intel Pin dynamic binary instrumentation sys-
tem [20]. The tool uses Pin to dynamically create redun-
dant processes and uses PinProbes (a dynamic code patch-
ing system for program binaries) to intercept system calls.

The prototype is evaluated running a set of the
SPEC2000benchmarks compiled with gcc v3.4.6 and ifort



v9.0. Fault coverage is evaluated using a fault injection
campaign similar to [29]. One thousand runs are executed
per benchmark. To maintain manageable run times, the test
inputs are used during fault analysis. For each run, an in-
struction execution count profile of the application is used
to randomly choose a specific invocation of an instruction to
fault. For the selected instruction, a random bit is selected
from the source or destination general-purpose registers. To
inject a simulated transient error, Pin tool instrumentation is
used to change the random bit during the specified dynamic
execution count of the instruction. Thespecdiffutility in-
cluded within theSPEC2000harness is used to determine
the correctness of program output.

Fault propagation and performance evaluation are both
studied using the reference inputs. Performance is mea-
sured by running the PLR prototype with both two and
three redundant processes without fault injection on a four-
processor SMP system; specifically the system has four
3.00Ghz Intel Xeon MP processors each with 4096KB L3
cache, has 6GB of system-wide memory, and is running
Red Hat Enterprise Linux AS release 4.

4.1 Fault Injection Results
A fault injection study is performed to illustrate the

effectiveness of PLR as well as the benefits of using a
software-centric model of fault detection. Figure 3 shows
the results of a fault injection campaign with the left bar
in each cluster showing the outcomes with just fault injec-
tion and the right bar showing the outcomes when detecting
faults with PLR. The possible outcomes are:

• Correct: A benign fault which does not affect pro-
gram correctness.

• Incorrect: An SDC where the program executes com-
pletely and returns with correct return code, but the
output is incorrect.

• Abort: A DUE in which the program returns with an
invalid return code.

• Failed: A DUE in which the program terminates (e.g.
segmentation violation).

• Mismatch: Occurs when running PLR. In this case, a
mismatch is detected during PLR output comparison.

• SigHandler: Occurs when running PLR. In this case,
a PLR signal handler detects program termination.

Timeouts of the watchdog alarm are ignored because
they occurs very infrequently (∼.05% of the time).

PLR is able to successfully eliminate all of theFailed,
Abort, andIncorrectoutcomes. In general, the output com-
parison detects theIncorrect and Abort cases, and turns
each error into detectedMismatchcases. Similarly, PLR de-
tects theFailed cases turning them intoSigHandlercases.

Occasionally, a small fraction of theFailed cases are de-
tected asMismatch under PLR. This indicates cases in
which PLR is able to detect a mismatch of output data be-
fore a failure occurs.

The software-centric approach of PLR is very effective
at detecting faults based on their effect on software exe-
cution. Faults which do not affect correctness are gener-
ally not detected in PLR, thereby avoiding false positives.
In contrast, SWIFT [29], which is currently the most ad-
vanced compiler-based approach, detects roughly∼70% of
theCorrectoutcomes as faults.

However, not all of theCorrectcases during fault injec-
tion remainCorrect with PLR detection as the software-
centric model would suggest. This mainly occurs with
the SPECfp benchmarks. In particular,168.wupwise,
172.mgridand178.galgelshow that many of the original
Correct cases during fault injection become detected as
Mismatch. In these cases, the injected fault causes the out-
put data to be different than data from regular runs. How-
ever, the output difference occurs in the printing of floating
point numbers to a log file.specdiffallows for a certain tol-
erance in floating point calculations, and considers the dif-
ference within acceptable bounds. PLR compares the raw
bytes of output and detects a fault because the data does not
match. This issue has less to do with the effectiveness of a
PLR, or a software-centric model, and is more related to the
definition of an application’s correctness.

4.2 Fault Propagation
Figure 4 shows the number of instructions executed be-

tween fault injection and detection. Runs are shown as
stacked bars showing the breakdown of instructions exe-
cuted before the fault was detected. The leftmost bar labeled
M shows the breakdowns for theMismatchruns shown in
Figure 3. The middle bar (S) shows the breakdown for the
SigHandlerruns and the left bar (A) shows all of the de-
tected faults including bothMismatchandSegHandler.

In general, theMismatchruns tend to be detected much
later than the point of fault injection with fault propagation
instruction counts of over 10,000 instructions for nearly all
of the benchmarks. On the other hand, theSegHandlerruns
have a higher probability of being detected early. Across all
of the detected runs, there is a wide variety in amounts of
fault propagation ranging from254.gapwhich has a low
amount of fault propagation, to191.fma3dwhich has an
even distribution of runs among the various categories.

The software-centric model delays the detection of a
fault until an error is certain via program failure, or incorrect
data exiting the SoR. However, the delayed detection also
means that a fault may remain latent during execution for
an unbounded period of time. Future work remains in char-
acterizing fault propagation as well as exploring methods
for bounding the time in which faults remain undetected.
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Figure 3. Results of the fault injection campaign. The left bar in each cluster shows the outcomes
with just fault injection and the right bar shows the breakdown of how PLR detects the faults.
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Figure 4. Distribution of the number of executed instructions between the injection and detection
of a fault. Percentages are normalized to all the runs which are detected via output mismatch ( M ),
program failure ( S), or both combined ( A).

4.3 Performance Results

Performance is evaluated using two redundant processes
for fault detection (PLR2), and three processes to support
recovery (PLR3). Figure 5 shows PLR performance on
benchmarks compiled with both-O0 and -O2 compiler
flags. Performance is normalized to native execution time.
PLR provides transient fault tolerance on-O0 programs
with an average overhead of 8.1% overhead for PLR2 and
15.2% overhead for PLR3. On-O2 programs, PLR2 incurs
a 16.9% overhead for PLR2 and 41.1% overhead for PLR3.
Overhead in PLR is due to the fact that multiple redundant
processes are contending for system resources. Programs
which place higher demands on systems resources result in
a higher PLR overhead. Optimized binaries stress the sys-
tem more than unoptimized binaries (e.g. higher L3 cache
miss rate) and therefore have a higher overhead. As the
number of redundant processes increases, there is an in-
creasing burden placed upon the system memory controller,
bus, as well as cache coherency implementation. Simi-
larly, as the emulation is called with more processes, the
increased synchronization with semaphores and the usage

and shared memory may decrease performance. At certain
points, the system resources will be saturated and perfor-
mance will be severely impacted. These cases can be ob-
served in181.mcf and171.swim when running PLR3 with
-O2 binaries. PLR overhead and system resource saturation
points are explained in more detail in the next subsection.

4.4 PLR Overhead Breakdown

The performance overhead of PLR consists ofcontention
overhead andemulation overhead, shown as stacked bars in
Figure 5. Contention overhead is the overhead from simul-
taneously running the redundant processes and contending
for shared resources such as the memory and system bus.
The contention overhead is measured by running the ap-
plication multiple times independently and comparing the
overhead to the execution of a single run. This roughly
simulates running the redundant processes without PLR’s
synchronization and emulation. The rest of the overhead is
considered emulation overhead. Emulation overhead is due
to the synchronization, system call emulation, and mecha-
nisms for fault detection incurred by PLR.
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Figure 5. Overhead of running PLR on a set of both unoptimized and optimized SPEC2000 bench-
marks. The combinations of runs include -O0 compiled binaries with PLR2 ( A), -O0 with PLR3 ( B),
-O2 with PLR2 ( C) and -O2 with PLR3 ( D).
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Figure 6. PLR overhead vs. L3 cache miss
rate.

For the set of benchmarks, contention overhead is signif-
icantly higher than emulation overhead. Benchmarks such
as181.mcf and189.lucas have relatively high cache miss
rates leading to a high contention overhead with increased
memory and bus utilization. On the other hand,176.gcc
and187.facerec substantially utilize the emulation unit and
result in a high PLR overhead.

4.4.1 Contention Overhead

Contention overhead mainly stems from the sharing of
memory bandwidth between the multiple redundant pro-
cesses. To study the effects of contention overhead, we
construct a program to generate memory requests by peri-
odically missing in the L3 cache. Figure 6 shows the effect
of L3 cache miss rate on contention overhead when run-
ning with PLR. For both PLR2 and PLR3, the L3 cache
miss rate has a substantial affect on the contention over-
head. With less than 10 L3 cache misses per second, there
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Figure 7. PLR overhead vs. system call rate.

can be a significant overhead of about 10%. After that point,
the overhead increases greatly with over a 50% overhead at
about 40 L3 cache misses per second. These results indicate
that the total overhead for using PLR is highly impacted by
the applications cache memory behavior. CPU-bound ap-
plications can be protected from transient faults with a very
low overhead while memory-bound applications may suffer
from high overheads.

4.4.2 Emulation Overhead

Emulation overhead mainly consists of the synchronization
overhead and the overhead from transferring and comparing
data in shared memory. To examine each aspect of emula-
tion overhead, two synthetic programs were designed and
run with PLR. The first program calls thetimes() system
call at a user-controlled rate.times() is one of the of sim-
pler system calls supported by PLR and is used to measure
the emulation overhead from the barrier synchronizations
within the emulation unit. The second test program calls the
write() system call ten times a second and writes a user-
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Figure 8. PLR overhead vs. data bandwidth.

specified number of bytes per system call. Eachwrite()
system call forces the emulation unit to transfer and com-
pare the write data in shared memory.

Figure 7 shows the effect of synchronization on the PLR
overhead. Synchronization overhead is minimal up until
about 300-400 emulation unit calls per second with less
than 5% overhead for using PLR with both two and three
redundant processes. Afterward, the emulation overhead in-
creases quickly. Overall, these results indicate that the PLR
technique might be best deployed for specific application
domains without significant system call functionality.

Figure 8 illustrates the effect of write data bandwidth on
emulation overhead. The experiment evaluates the amount
of data at each system call that must be compared between
redundant process techniques. The write data bandwidth
has a similar characteristics as system call synchronization,
achieving low overhead until a cut-off point. In this case,
for the experimental machines evaluated, the overhead is
minimal when the write data rate stays less than 1MB per
second but then increases substantially after that point for
both PLR2 and PLR3.

5 Related Work
PLR is similar to a software version of the hardware

SMT and CMP extensions for transient fault tolerance [11,
23, 28]. However, PLR aims to provide the same function-
ality in software. Wang [35] proposes a compiler infrastruc-
ture for software redundant multi-threading which achieves
19% overhead with the addition of a special hardware com-
munication queue. PLR attains similar overhead and only
relies on the fact that multiple processors exist. In addition,
PLR does not require source code to operate.

Executable assertions [14, 15] and other software detec-
tors [27] explore the placement of assertions within soft-
ware. Other schemes explicitly check control flow during
execution [31, 25]. The software-centric approach provides
a different model for transient fault tolerance using a soft-
ware equivalent of the commonly accepted SoR model. The

pi bit [37] and dependence-based checking [34] have been
explored as methods to follow the propagation of faults in
an attempt to only detect faults which affect program be-
havior. The software-centric model accomplishes the same
task on a larger scale.

The PLR approach is similar to a body of fault toler-
ant work which explores the use of replicas for fault toler-
ance [6, 8, 7, 24, 38, 39]. This body of work targets hard
faults (such as hardware or power failures) and assumes
fail-stop execution [30] in which the processor stops in the
event of failure. For transient faults, this assumption does
not hold. As far as we know, we provide the first perfor-
mance evaluation, and overhead breakdown, of using redun-
dant processes on general-purpose multiple core systems.

There have been a number of previous approaches to pro-
gram replication. N-version programming [3] uses three
different versions of an application for tolerating software
errors. Aidemark uses a time redundant technique which
execute an application multiple times and use majority vot-
ing [1]. Virtual duplex systems combine both N-version
programming and time-redundancy [10, 19]. The Tan-
dem Nonstop Cyclone [16] is a custom system designed to
use process replicas for transaction processing workloads.
Chameleon [17] is an infrastructure designed for distributed
systems which uses various ARMOR processes (some sim-
ilar to process replicas) to implement adaptive and config-
urable fault tolerance. DieHard [5] proposes using repli-
cas in general-purpose machines for tolerating memory er-
rors. Shadow profiling [22] uses process replicas for low-
overhead program instrumentation.

6 Conclusion

This paper motivates the necessity for software tran-
sient fault tolerance for general-purpose microprocessors
and proposes process-level redundancy (PLR) as an attrac-
tive alternative in emerging multi-core processors. By pro-
viding redundancy at the process level, PLR leverages the
OS to freely schedule the processes to all available hardware
resources. In addition, PLR can be deployed without modi-
fications to the application, operating system or underlying
hardware. A real PLR prototype supporting single-threaded
applications is presented and evaluated for fault coverage
and performance. Fault injection experiments prove that
PLR’s software-centric fault detection model effectively de-
tects faults which safely ignoring benign faults. Exper-
imental results show that when running an optimized set
of SPEC2000 benchmarks on a 4-way SMP machine, PLR
provides fault detection with an 16.9% overhead. PLR per-
formance improves upon existing software transient fault
techniques and takes a step towards enabling software fault
tolerant solutions comparable to hardware techniques.
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