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Abstract pected performance improvements by simply scaling hard-

ware resources or deploying instruction-level parallel com-

Even with the breakthroughs in semiconductor technol- piler techniques. Next generation systems will need the

ogy that will enable billion transistor designs, hardware- ability to adapt to system resources and program behav-
based architecture paradigms alone cannot substantially ior. Run-time optimizing systems for these future proces-
improve processor performance. The challenge in realizing sors will deploy sophisticated profile-guided optimizations
the full potential of these future machines is to find ways to to improve performance. However, in order to maximize
adapt program behavior to application needs and processor the performance gain of these run-time optimizations, effi-

resources. As such, run-time optimization will have a dis- cient profiling techniques are required that can accurately

tinct role in future high performance systems. However, as describe a program’s runtime behavior.

these systems are dependent on accurate, fine-grain profile - pofiling provides valuable information to a whole class
information, traditional approaches to collecting profiles at ¢ optimizations: superblock formation [12], code position-
run-t'ime result in significant slowdowns during program ex- ing [20], and improved function inlining[11]. A common
ecution. o _ method of collecting profile information for these profile-
A novel approach to low-overhead profiling is to exploit gjrected optimizations is through program instrumentation.
hardware Performance Monitoring Units (PMUgJresent  The program is first compiled with counters inserted to gen-
in modern microprocessors. The Itanium-2 PMU can pe- grate profile information. The profile-enabled program is
riodically sample the last few taken branches in an execut- ihen run to collect profile data. Finally, the profile is fed
ing program and this information can pe u§ed to recref':lte back to the compiler to re-compile the program and per-
partial paths of execution. With compiler-aided analysis, form profile-directed optimizations. Although these profile-
the partial paths can be correlated into full paths. As sta- jirected optimizations have been shown to improve pro-
tistically hot paths are most likely to occur in PMU sam- gram performance, they have not been widely deployed by
ples, even infrequent sampling can accurately identify thesegoftyare vendors for a number of reasons. One reason is
paths. While traditional path profiling techniques carry a n5¢ they require the inconvenient compile-run-recompile
high overhead, a PMU-based path profiler represents an ef- sequence described earlier. Furthermore, high overhead

fective lightweight profiling alternative. This paper charac- jntroduced by instrumentation makes the process inconve-
terizes the PMU-based path information and demonstratespjant.

the construction of such a PMU-based path profiler for a

run-time system. The ideal run-time profile collection system should have

three distinct characteristics. First, it should provide accu-
rate profile information for a dynamic optimizer to utilize.

) Second, the system ideally should gather all profile infor-

1 Introduction mation in one stage. Finally, and most importantly, the run-
time collection of information should occur with little to

Current semiconductor breakthroughs have the potentialno overhead. Unfortunately, most approaches to profiling

to enable unparalleled advances in computer system perforonly meet one or two of these two goals. Instrumentation-

mance. Such gains, however, are unlikely to achieve ex-based techniques provide an accurate profile while sacrific-



ing the cost of overhead as well as convenience of compi-

lation. Novel hardware-based techniques are emerging to

collect run-time events usingardware performance coun-

ters Although such structures efficiently capture run-time

information, researchers have only begun to study the char-

acteristics and benefit of the amount and type of information

needed for driving run-time optimization [7, 16].
Traditionally, most profile-directed optimizations use

point-based profiles which locate specific events to pro-

file. The most popular of these is edge profiling in which

branch directions are profiled. Edge profiling, as well as Figure 1. Edge Profiled CFG

other types of point-based profiling, cannot correlate spe-

cific events with each other. Path profiling [4] has been re-

cently shown to be a superior form of profiling [5]. It cor- 2.1 The Ideal Profiler

relates branches by keeping track of path execution counts

instead of simple branch counts. However, path profiling

usually comes with a significant increase in overhead(31%  The effectiveness of profile-directed optimizations hinge

for path profiling versus 16% for edge profiling [4]). upon the quality of the profile information. Profiles which
In this paper, we demonstrate a low-overhead PMU- do not reflect run-time execution result in poorly optimized

based path profiling system and characterize the hardwareode. An accurate profile enables many optimization oppor-

collected statistics. This path profiling system is based tunities. Unfortunately, the quality of profile accuracy often

on the Intel Itanium-2 PMU [13]. The Branch Trace comes with the trade-off of the increased overhead required

Buffer(BTB) is used to periodically sample up to the last for gathering this fine-grained run-time information.

four taken branches and dump the sampled data to a file. The ideal run-time profiler should have three character-

Later,l a compiler-aidedhoﬁll:ne arr:arl]ysis phase uzes thes%tics: 1) high accuracy, 2) single-stage profiling, and 3) low
samples to_recreate pat .St rough the program an generatr‘?roﬁling overhead. Accuracy is crucial for enabling effec-
a path profile. Accuracy is measured comparing the PMU-

based path orofile to a full ath orofil tive optimization. An accurate profile is one that correctly
aﬁ_i path profi e'bor?l ult pa ] profile. reflects a program’s run-time execution behavior. In order
€ main contributions are: for profiling to be feasible in a run-time system, it must be

« a characterization of path information that can be in- done within a single stage. Finally, and perhaps most im-
ferred from the Itanium-2 PMU portantly, profile collection overhead must be minimal.

e an algorithm for extrapolating a path profile from in-
complete path information 2.2 Path Profiling

e quantification of the effectiveness of this techniques

The rest of this paper is organized as follows. Section 2 dis- Mogt past researc_h into profile gu_ided optimi;ations uti-
ze point-based profiles. Edge profiles [3], which capture

cusses background and related work. Section 3 continue% e ) ) ,
ranch bias information by instrumenting branches, are the

into a description of our path profiling technique. Exper- . - .
imental data and analysis are provided in Section 4. Sec-Most popular of the point-based profiling techniques. How-

tion 6 plans out future work, Section 5 discusses related €V€"» €dge profiling is limited in its ability to accurately de-
work, and we conclude the paper in Section 7. scribe execution bghawor. Flgl:ll‘e. 1, a coptrol flow graph
(CFG) annotated with edge profile information, provides an

. example of the limitations of edge profiling. An edge pro-

2 Motivation file of the CFG would indicate that the hot path is through
basic blocks ABDFG. Suppose that all of the paths through

In this section, we first discuss the characteristics of the ACD continued down through blocks F and G. In this case,
ideal profiler. Then we move into the advantages of path the count for path ABDFG is 50, not the 70 suggested by
profiling over traditional point-based profiles. We then de- an edge profile. Path profiling (PP) paints a better picture
scribe existing profiling techniques and compare them to theof the program’s execution by correlating branches together
characteristics of our ideal profiler. Finally, we discuss per- into paths. Instead of collecting data at branch instructions,
formance monitoring and how we believe it can be used for path profiling collects counts for execution of specific paths

providing path profiles. through the code.



2.3 Static Instrumentation Dynamic optimization systems such as Dynamo [2] im-
plement Most Recently Executed Tail(MRET), a specula-

Most path profiles use software-based instrumentation totive version of path profiling for trace creation. Once a trace
determine paths. A program is initially compiled with coun- head’s execution count reaches a predetermined threshold,
ters strategically placed in the original code to keep track of it is considered hot and the next dynamic execution path
dynamic path execution. The advantage of this techniquefrom that trace head becomes a trace. This method has
is that high accuracy can be attained by inserting whateverthree drawbacks. First, the next dynamic execution path
counters are desired through instrumentation. The main dis-may not be the hot trace, causing this method to be overly

advantage is that software-based instrumentation incurs a@gdgressive. Also, itis not able to distinguish between traces
high overhead. once they are determined to be hot. A hot trace that only

The original path profiling algorithm, proposed by Ball €xecutes ten more times should be treated and marked dif-

and Larus [4], divided the code into regions, typically along ferently from a trace that continues to execute millions of

function boundaries, and created directed acyclic graphstimes. The final drawback suffered by these dynamic opti-

(DAGS) in each region by removing loop-back branches. mization systems is the high overhead due to interpretation.

A single counter per region is used in conjunction with an

edge numbering algorithm to determine paths. In terms2.5 Hardware Profiling Techniques

of overhead, their path profiler averaged a 31% slowdown,

with slowdowns as high as 97% for gcc. A number of hardware profiling techniques have
Targeted Path Profiling (TPP) [14] and Practical Path been proposed for collecting run-time profile informa-

Profiling (PPP) [6], extensions of Ball and Larus’ PP, make tion. Conte [8] uses branch handling hardware coupled

an effort to decrease overhead in the context of staged dyWith the branch predictor to obtain branch information.

namic optimization systems. Both are based on the idea thaierten’s [18] work discusses using a branch behavior

an edge profile from a previous stage of dynamic optimiza- buffer for collecting branch profile data.

tion can be carried into a path profiling stage, and used to  These techniques incur a low overhead and can effec-

locate obvious paths that do not need to be instrumentedively gather data during one program run but suffer in ac-

for path profiling. TPP lowers overhead to around 16% by curacy because they are designed to collect edge profiles.

ignoring these obvious paths. PPP is an extension of TPPOUr technique incurs a higher overhead compared to spe-

which ignores more paths and decreases overhead to an agialized hardware but offers two advantages. First, because

erage of 5%. the analysis is done in software instead of hardware, more
Our approach to path profiling offers a few advantages analysis can be performed. Second, our method utilizes ex-

over PP, TPP and PPP. First, we do not need extra stages fofting performance monitoring hardware.

profiling. PP requires the 3-phase compile-run-recompile

method. TPP and PPP add two extra stages for compiling2.6  Performance Monitoring

and running to gather the edge profile. Sampling will be

used to statistically ignore cold paths similar to ideas behind Modern microprocessors such as the Intel Pentium 4, In-

TPP and PPP. Additionally, by using hardware to do the tel Itanium, and IBM PowerPC 970 provide a rich set of

actual data collection, run-time overhead will be reduced. performance counters. The work in this paper uses the Intel

[tanium-2 PMU [13]. It includes a set of counters which

2.4 Dynamic Instrumentation can be configured to count any four of almost 500 events. It

also allows for sampling of Event Address Registers to cap-

ture recent data or instruction cache or TLB misses. This

jpaper takes advantage of the PMU's ability to sample BTB

registers to obtain partial paths.

Instead of inserting instrumentation at compile time,
which requires access to source code, instrumentation cal
also be inserted during runtime using binary instrumenta-
tion. PIN [21] is a binary instrumentation tool functional-
ity similar to ATOM [9], but can dynamically injectinstru- 3~ PMU Path Profiling
mentation into a running executable. This makes it possible
to attach PIN to an already running process to collect pro- Clearly, there is not a solution for run-time profiling yet
file information. PIN-instrumented binaries, however, ex- that meets the criteria of the ideal profiler. We propose a
perience a high overhead, averaging slowdowns of 2.8x fornew two-phase path profiling technique to meet these crite-
integer benchmarks(up to 20x slowdown) [17] for simple ria. The first phase consists of sampling a PMU to collect
basic block counting. Although dynamic instrumentation run-time path information. This path information is then
allows for high accuracy and removes the need for multiple run through an off-line analysis phase to create a full path
profile-execute stages, it drastically increases overhead. profile. This technique is able to achieve low overhead by



sampling hardware but is able to create accurate path infor- Join Point
mation in the off-line phase. In addition, the profile can be ’
gathered during run-time without any previous instrumen-
tation phases or interpretation.

Using the Itanium-2 PMU as an example, section 3.1 de-
scribes the run-time sampling phase. The remaining sec-
tions describe the off-line analysis. Sections 3.2 and 3.3
describe how we prepare the PMU data for extrapolation,
and section 3.4 shows how we generate an estimated path
profile.

1-2-3-4 BTB Trace: 4 Taken
Branches

Partial Path from BTB
Trace

fffff Partial Path w/ Extensions

3.1 Collection of BTB (Branch) Traces

The Itanium-2 PMU BTB contains eight registers which
are treated as a circular buffer. Each executed branch in-
struction usually requires two of the BTB registers; one for X _
the branch instruction address and another for the branch Branch Point
target address. Because of this, the BTB registers effec- Figure 2. Extending Partial Paths
tively act as a four branch circular buffer. In the Itanium-2
PMU, the user is able to conduct BTB samples through a
set of user-defined filters. In this work, we configure the
BTB to sample only taken branches. This improves path
collection for two reasons. F|rst, sampling all branchgs IS path extensions increase the probability that the partial path
redundant because the off-line tool uses the CFG to inter- . ; : ) .

will span multiple regions. Region-based path discovery,
polate fall-through paths between taken branches. Second . . :
o : the next stage of the off-line phase, is discussed in the fol-
code optimizations emphasize fall-through paths over taken, . .
: . : lowing subsections.
paths for increased code locality. Therefore, sampling only

accurate path profile. are split along function boundaries and loop backedges. We
Upon conclusion of each sampling period, the PMU is myst perform this splitting because these partial paths are
queried for the contents of the BTB. The BTB registers form |ater compared to region-based paths. Our current imple-

a BTB trace. The trace is stored in a hash table that col- mentation of regions constrains them to function and loop
lects and aggregates duplicate traces. At the end of progranpgundaries.

execution, the BTB traces and their respective occurrence
counts are written to a file to be used by the off-line analy- Complications Due to the nature of the PMU, several

top of the initial partial path can be extended up until a join

point in the CFG and the bottom can be extended down un-
til a branch point. These extensions help to provide longer
partial paths while ensuring that they are unique. Partial

sis tool. complications can arise in obtaining BTB traces. First, the
branch instruction addresses entered into the PMU are in-
3.2 Partial Path Creation exact. From what we can gather, this is because proces-

sor performance was prioritized over accuracy of the PMU.
Forming partial paths The first profiling step interpo- Second, branch addresses are occasionally entered without

lates a set of BTB traces to form the corresponding set of& target. If the branch add_resses were exac_t, this would not
partial paths. Apartial path is simply a BTB trace mapped be a problem. Howevgr, it means that a bit of.guesswork
onto the original CFG including two enhancements. First, it My be required to build a partial path from a list of BTB
infers the fall-through edges between taken branches. Sec€ntries. In the rare situations where we cannot safely guess
ond, it extends the path above the first edge and below theN€ path of execution, the BTB trace is discarded.
last edge until a point of uncertainty is reached.

Figure 2 shows an example of partial path creation. The 3-3 Region-based Path Discovery
numbers 1 through 4 indicate the four taken branches from
the BTB Trace. These four branches are related back to Unlike instrumented path profiling, sampled path profil-
the CFG while following fall-through edges between the ing introduces the problem gfath ambiguity. Under the
branches to produce an initial partial path shown by the random sampling assumption, samples do not have guaran-
solid line. The partial path can then be extended upwardteed starting points, and due to the inexact nature of current
and downward to a point of uncertainty. For example, the performance monitoring hardware, sampled paths contain



Figure 3. Example of region formation

Partial | Count || Matches Inc | Total

Path

IJLMO 100 AFGIJLMO +50 50
AFHIJLMO +50 50

BCE 50 BCE +50 50

AFGIJ 300 AFGIJLMO | +150| 200
AFGIJLNO +150 150

LMO 200 AFGIJLMO +50 | 250
AFHIJLMO +50 100
AFGIKLMO +50 50
AFHIKLMO +50 50

Table 1. Example of path matching of partial
paths to region-based paths

src(el) = RgnrTRrY and tgt((:’n) € Rgxir. The set of
paths from RgnTRry to Rpxr in which edge e appears is
denoted by P(e).

Under the paradigm of region-based path discovery, a
CFG is divided into regions of basic blocks such that given
a partial pattp we can accurately derive the set of full paths
M that contain all the edges pf Thus, the following rules
govern the formation of a regioR:

1. R can only be entered via its entry vertex

2. Rgopy must not contain basic blocks both inside and
outside a loop

3. The total number of paths fronRgyrry to all
Rex T vertices must be less than some lirvit

4. Rpopy should contain as many basic blocks as pos-
sible.

To form regions within these limitations, we use a greedy
algorithm. This method begins with the single regiin
containing just one vertexniry of the CFG. In a breadth-
first mannerR is expanded along the target edges of its exit
vertices. When the algorithm can no longer expdtdt
marks all verticesRg xr as the entry vertices for new re-
gions. The algorithm is repeated for these vertices and so on
until all the basic program within the CFG have been added
to regions.

Figure 3 provides a simple example of region formation.
The algorithm begins with basic block A. Basic block B
cannot be added into the region because it belongs to a loop.
But the algorithm is able to include basic blocks F, G, H, I,
J, K, L, M, N, and O. Basic block P cannot be included
because it would break the first rule that a region may only
have one entry. This region is shown as Region 2 in the
figure. The loop including basic blocks B, C, D and E forms

an inconsistent number of edges. To mitigate these chal-3ngther region shown as Region 1 and naturally, basic block

lenges we proposeegion-based paths.

First, we define relevant terms used in the description of

P begins a new region.
When a CFG has been converted to its composite re-

our algorithm. Our terminology is consistent with Ball's gions, the full paths in each region are enumerated and

study [5].

Definition 3.1 Let R(V, E) be a sub-graph of the directed
graph G(V, E) with a unique entry vertex RenTRy, a set
of body vertices Rpopy, and a set of exit vertices Rgx 1
all of which are reachable from RgnTRry. An edge e =
v — w connects source vertex v (denoted by src(e)) to
target vertex w (denoted by tgt(e)).

A partial path in R is represented as a sequence of edges
E(p) = le1,ea,...,en]|, where src(e;) € Rpopy. A
full path in R is a partial path with the added constraints

stored in memory. Each full path within a set of CFGs can
be accessed by a unique identifier. During the stage of path
enumeration, we also implement the functi®fe) by using

a hash table.

3.4 Path Profile Generation

At this point in our off-line analysis we have built a set
of partial paths from BTB traces and divided the entire CFG
of the application into regions. We extrapolate each partial
path into its matching set of full paths as described below.



Definition 3.2  Given a single partial path p, the minimum The experiments use tt#PEC 2000 benchmarks com-

matching set M of full paths which contain p is the inter- piled with the base configuration of the OpenIMPACT Re-
section of all P(e) for each edge of p. That is, for partial search Compiler [19]. The benchmarks are compiled with
path p consisting of edges [e1, e3...€,], classical optimization but without more aggressive profile-
A guided optimizations. The PMU collection tool developed

My =Ny P(ei) using the perfmon kernel interface and libpfm library [10]

initiates and samples the Itanium-2 PMU BTB registers on
individual SPEC programs. The PMU samples are analyzed

| off-line with an OpenIMPACT module to generate the path
profile.

Depending on the number of edges withiand the char-
acteristics of the CFG, the matching gdtmay contain an
indeterminate number of paths. The next step of our a
gorithm assigns weights to each path Mdf based on the

following assumptions: ) )
4.2 Effect of PMU Sampling Period

1. Equal probability of execution of each path withif

Figure 4 shows the effect of sampling rate on run-time
overhead as well as the number of unique paths discovered
3. Adequate samples to clearly distinguish frequently ex- by the PMU for a few benchmarks. The sampling rate is
ecuted paths varied from 50K to 10M clock cycles. Naturally, a lower

sampling rate decreases the overhead but provides a lower

Given these assumptions equal weights to every match-number of unique paths while a high sampling rate increases
ing full path can be assigned; however, enough sam-the overhead but provides more unique paths.
ples must be available in order to distinguish hot paths PMU sampling overhead remains relatively low, less
from cold. For example, consider partial paths and their than 10%, from 10M all the way down to around 500K.
occurrence counts from the CFG in Figure 3 and Ta- \When the sampling rate is decreased further, the percentage
ble 1: IJLMO(100), BCE(50), AFGIJ(300), and  overhead increases quickly up40% for a sampling pe-
LMO(200). IJLMO matches bottAFGIJLMO and  riod of 50K. The number of unique paths discovered by the

AFHIJLMO and assigns a weight Gi0 to both. The  pMU rises steadily for each decrement in sampling rate.
intra-loop partial-pathBCE yields a unique match and

needs not distribute its weight. The third pathF'G1J, 4.3 Partial Paths
matches bothAFGIJLMO and AFGIJLNO and dis-
tributes a weight ofi50 to each. Finally,LMO matches
the four path&A\FGIJ LM O, AFHIJ LM O, AFGIK LM O,
andAFHIK LM O and assigns each a weightif The hot
path AFGIJLMO becomes prominent due to continued
random sampling of paths within the region.

2. Random sampling of actual program flow

Once branch samples are collected, they are analyzed
and related back to the IMPACT low-level intermediate rep-
resentation(IR) to create partial paths. The nature of PMU
sampling allows these partial paths to span function bound-

. . ri retch acr I k nd even extend from
Once all partial paths have been matched and weighte es, stretch across loopback edges, and even extend fro

d ibed ab th led path fle i ted b he user program into shared libraries. However, the system
gzthevigirg;h? anad ?r:/ee'patﬁssvirr?ops: to‘t)rjl prg;;ri ]'cfovsvoéxeceeéfgnores paths in libraries and splits partial paths at function
an arbitrarily-defined hot threshold are extracted. Theseboundanes as well as loopback edges in this initial infras-

hot paths are ready for immediate use in path-profile base ructure.
pa - ready path-p Table 2 shows the average length of partial paths initially,
compiler optimization.

after partial path extensions, and after splitting on function
boundaries and loopback edges. Path lengths are measured

4 Experiment in number of low level IR instructions. On average, the
system locates paths38 instructions long. Partial path ex-
4.1 Methodology tensions increase the average length by about 20%. After

splitting, the average path length drops about 40% from the
For our experiments, we explore this path profiling tech- extended length te-27 instructions.

nigue on applications that have not yet been highly opti-  Table 3 characterizes partial paths in relation to the num-
mized. The reason for this is to show that this technique ber of procedure boundaries crossed by the partial path. A
can be used as a stand-alone profiler. Studying highly op-surprisingly large number partial paths not only cross one
timized code implies that a previous profile run has been function boundary, but span across multiple boundaries. In
used. We are interested in the effects of optimizations onparticular, a large majority of partial paths in 186.crafty
the quality of profiles but leave this exploration up to future and 197.parser cross at least one function boundary. This
work. indicates that had our infrastructure been able to account
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Figure 4. Overhead and number of unique paths for various sampling periods

Benchmark | Initial | Ext | Func | Loop Func. Boundaries Spanned
164.gzip 28.9 | 34.8| 22.8 | 204 Benchmark | 0 1 2 3 | 4
175.vpr 418 | 50.5| 30.6 | 19.6 164.gzip 187 | 149 | 35 | 2 0
177.mesa 446 | 53.8| 35.3 | 33.0 175.vpr 234 | 171 | 162 | 65 | 12
179.art 295 | 34.7| 321 | 229 177.mesa 75 50 27 7 0
181.mcf 32.0 | 38.8| 33.7 | 255 179.art 230 | 29 7 1 0
183.equake | 65.8 | 75.1| 66.8 | 54.5 181.mcf 1106| 237 | 96 | 26 | 1
186.crafty 36.0 | 45.2| 31.7 | 31.1 183.equake | 231 | 31 | 24 | 1 0
188.ammp 31.3 | 395| 36.4 | 285 186.crafty | 1367 | 2281 | 968 | 154 | 13
197.parser 28.7 | 35.2| 14.7 | 12.7 188.ammp | 298 | 123 | 42 5 2
256.bzip2 38.8 | 45.8| 334 | 227 197.parser | 488 | 654 | 599 | 224 | 40
300.twolf 37.8 | 46.5| 325 | 254 256.bzip2 532 | 353 | 279| 55 | 9
Average 37.7 | 454 | 33.6 | 26.9 300.twolf 1293 | 514 | 467 | 55 | 7
Table 2. Average length of partial paths in Table 3. Breakdown of partial paths spanning
instruction count initially, after partial path function boundaries(500K Sampling Period)
extensions, and after splitting on function
boundaries and loopback edges In Figure 5 shows the effects of aggregating the PMU BTB

samples from multiple runs of a few benchmarks with the
for paths spanning across function boundaries and loopbacksame input. Additional runs increase the number of unique
edges, it would have been able to utilize better path infor- PMU paths. The greatest increase occurs from combining
mation. Future work is planned to integrate function and up to 10 runs. There is a slight leveling off after 10 runs. It
loopback correlation into our infrastructure. is possible that the paths collected from multiple runs will
fill in missed important partial paths in other runs.
4.4 Aggregating Data from Multiple Runs
4.5 Accuracy Results
The profiling infrastructure enables aggregate profile in-
formation to be collected from multiple runs of a program. To measure accuracy of the PMU-generated paths, we
By gathering PMU information over separate runs, analysis generate a full path profile with a PIN tool. The PMU path
of lost paths due to statistical sampling can be measuredprofile is compared to the full path profile using a method



164.9zip 181.mcf

4000 —| 8000 —|
£ 2
= 3000 w6000
o o
S 2000 o S 4000 o Looeoo0ool
5 33885 85 5 588 208866000009
1000 — 2000 | 2
g@ggwgggggggggggg nggg%%ggggg
0 T T T T T 1 — 0 T T T T T )
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of Aggregated Runs Number of Aggregated Runs
40000 — 186.crafty 20000 — 300.twolf
g 30000 —| g 15000 —|
© ©
o a
@ 20000 - @ 10000 )
<3 <3 ; 0000
= ! = o8 eeeeeree@
D 10000 — oo D 5000 — 28 00© OO
@g@@g&g&&»ww 80 opensenteseesee
0 T T T T T 0 T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of Aggregated Runs Number of Aggregated Runs
A 50K vV 100K O 500K O 1m O 5M > 10M

Figure 5. Number of unique paths found by aggregating data from runs with same input set

Benchmark | # Hot Paths | % Total Flow the percent of total execution flow that the hot paths ac-
164.gzip 30 98.96% count for. The percentages indicate that using a hot thresh-
175.vpr 29 96.05% old of 0.125% indeed provides a relatively low number of
177.mesa 8 97.99% hot paths corresponding to a very high percentage of to-
179.art 50 99.60% tal program flow. 197.parser is the exception with a larger
181.mcf 52 97.84% number of hot paths contributing to a lower amount of total
183.equake 24 98.53% program flow.

188.ammp 33 96.73% Figure 6 shows accuracy results with respect to various
197.parser 168 82.41% sampling periods ranging from 50K to 500M clock cycles.
256.bzip2 78 96.52% In general, at low sampling periods, this path profiling tech-
300.twolf 80 92.55% nique achieves fairly high accuracy with one set of bench-

marks in the high 90%s and another set in the 80%s. As
sampling period increases, the accuracy remains relatively
constant for a while. This is because each of these sampling
similar to Wall's weight matching scheme [22]. In this pa- periods contains enough samples for our technique to locate

Table 4. Number of actual hot paths and per-
cent of total flow they account for

per, accuracy is defined as the important hot paths. However, once the sampling period
is increased to a certain point(around 5M), accuracy suffers
Accuracy of Posimated = Zpemm_macmp Fact.(p) because we are not able to cpllect _enough §amples to recre-
2ven,,, Fact.(p) ate the hot paths. By observing this behavior, a sweet spot

can be seen around a sampling rate of 5M-10M. If the sam-

In this equationF'(p) is the flow of a path. This is de-  jing period is set to 10M, 88% accuracy can be obtained at
fined as the path’s count divided by the count of all the paths 104 run-time overhead.

added together. This represents the percentage of the all
counts that path p accounts fat,....; is the set of paths

in the full path profile which are above a set threshold. We
use 0.125% as this threshold is used previous path profiling
studies [5, 6]. Hestimatea 1S then the created by selecting Although the method of assigning equal weights to
the hottest paths in our path profile equal to the number of multiply-matched partial paths allows for accurate identi-
paths inH ,¢yq1- fication of the hottest paths in an individual region, we sac-

Table 4 shows the number of hot paths in each bench-rifice the ability to correctly identify the hot paths among all

mark which have flows above the hot threshold as well asregions in a routine. To illustrate this flaw, we first define

4.6 Incorrectly Identified Hot Paths
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Figure 6. Accuracy vs. Sampling Period

the matching ratio for a region as the average size of the optimize during run-time, we are interested in as gathering

matching sef\/ for all partial paths in the region. as much information as we can from the PMU, correlat-
Now consider an extremely hot regidd whose paths  ing these PMU samples and characterizing the nature of the

represent a large percentage of total program flow. As-PMU information with respect to gathering a path profile.

sume that the matching ratio fdt is significantly greater Other sampling ideas stem from continuous profiling and
than one. In other words, attempts at matching partial pathsoptimization systems [1, 15]. These systems sample perfor-
within R are unable to uniquely identify full paths. mance monitors for profile information to drive feedback

In this scenario, a substantial number of paths within the driven optimizations. They typically utilize simple event
region have been falsely matched. Singerepresents a  counters or PC sampling techniques. Our work could be
large percentage of total program flow, all of the falsely- animportant addition into continuous optimization systems
matched paths oR are likely to be incorrectly identified ~ provided future processors are designed with more robust
as hot paths. This phenomenon occurs frequently in largehardware monitoring units.
regions of code due to high matching ratios within them.

Amplifying the over-matching problem is that applications 6 Future Work
tend to frequently execute code within large regions.

We are looking at several different ways to detect and  As this paper presents the initial results and findings of
correct for the over-matching problem such as cold-edge PMU-generated path profiling, there a number of areas of
elimination and obvious path elimination [14, 6], redistri- work to make PMUs a viable profiling mechanism for run-
bution of weights based on heuristics, and adaptive weighttime optimization. Future work involves the following:

distribution. _ )
e Region Formation - Regions represent a potential

representation for effectively limiting the number of

5 Related Work matches of PMU generated data. Judging from the

characteristics of partial paths, it is important that fur-

The profiling approach for trace selection in the ADORE ther work investigate regions that span hot function
dynamic optimization system [7, 16] is very similar to our boundaries and loop iterations.

technique for profiling. ADORE uses the Itanium-2 PMU
for collecting profile information aimed at improving data
cache performance Our work can be viewed as an extension
from their approach with a few differences. The goal of
the ADORE optimizer is to use the PMU to detect a small
amount of hot traces for optimization. Our work differs
in that we use the PMU to gather and build a path pro- e Effects of Optimization - Aggressive optimizations
file. While ADORE is only interested in a few traces to previously performed will impact the characteristics of

e Noise Elimination - Path crediting may introduce
noise into generated path profile weights creating false
hot-path profiles. It is important to qualify and assess
this occurrence in PMU generated profiles and explore
algorithms for reducing path accreditation noise.



PMU-based path profile information. The details of
the impact of a program’s optimization on PMU pro-
files will be investigated.

(6]

e Aggregating Multiple Runs - Analysis of multiple pro- (7]
files of different input sets per application may reveal
opportunities to deploy persistent optimizations in a

run-time system.

(8]
7 Conclusion

In this paper, the initial rationale and results of using a
PMU-based path profiling system in a run-time optimiza-
tion system are presented. We demonstrate the construc-
tion of a PMU-based profiling system in existing hardware
and point out challenges that need to be overcome for the[10]
success of this profiling technique. Overall, PMU-based [11]
path profiling shows promise as a run-time profiling tech-
nology with advantages of the speed of hardware sampling
and the ability to accurately detect hot paths. With an over-
head of only~1%, PMU path profiling can obtain an 88%
accurate path profile when compared to a detailed software
instrumentation-based path profile.

9]

(12]

(13]
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