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Abstract

Even with the breakthroughs in semiconductor technol-
ogy that will enable billion transistor designs, hardware-
based architecture paradigms alone cannot substantially
improve processor performance. The challenge in realizing
the full potential of these future machines is to find ways to
adapt program behavior to application needs and processor
resources. As such, run-time optimization will have a dis-
tinct role in future high performance systems. However, as
these systems are dependent on accurate, fine-grain profile
information, traditional approaches to collecting profiles at
run-time result in significant slowdowns during program ex-
ecution.

A novel approach to low-overhead profiling is to exploit
hardwarePerformance Monitoring Units (PMUs)present
in modern microprocessors. The Itanium-2 PMU can pe-
riodically sample the last few taken branches in an execut-
ing program and this information can be used to recreate
partial paths of execution. With compiler-aided analysis,
the partial paths can be correlated into full paths. As sta-
tistically hot paths are most likely to occur in PMU sam-
ples, even infrequent sampling can accurately identify these
paths. While traditional path profiling techniques carry a
high overhead, a PMU-based path profiler represents an ef-
fective lightweight profiling alternative. This paper charac-
terizes the PMU-based path information and demonstrates
the construction of such a PMU-based path profiler for a
run-time system.

1 Introduction

Current semiconductor breakthroughs have the potential
to enable unparalleled advances in computer system perfor-
mance. Such gains, however, are unlikely to achieve ex-

pected performance improvements by simply scaling hard-
ware resources or deploying instruction-level parallel com-
piler techniques. Next generation systems will need the
ability to adapt to system resources and program behav-
ior. Run-time optimizing systems for these future proces-
sors will deploy sophisticated profile-guided optimizations
to improve performance. However, in order to maximize
the performance gain of these run-time optimizations, effi-
cient profiling techniques are required that can accurately
describe a program’s runtime behavior.

Profiling provides valuable information to a whole class
of optimizations: superblock formation [12], code position-
ing [20], and improved function inlining[11]. A common
method of collecting profile information for these profile-
directed optimizations is through program instrumentation.
The program is first compiled with counters inserted to gen-
erate profile information. The profile-enabled program is
then run to collect profile data. Finally, the profile is fed
back to the compiler to re-compile the program and per-
form profile-directed optimizations. Although these profile-
directed optimizations have been shown to improve pro-
gram performance, they have not been widely deployed by
software vendors for a number of reasons. One reason is
that they require the inconvenient compile-run-recompile
sequence described earlier. Furthermore, high overhead
introduced by instrumentation makes the process inconve-
nient.

The ideal run-time profile collection system should have
three distinct characteristics. First, it should provide accu-
rate profile information for a dynamic optimizer to utilize.
Second, the system ideally should gather all profile infor-
mation in one stage. Finally, and most importantly, the run-
time collection of information should occur with little to
no overhead. Unfortunately, most approaches to profiling
only meet one or two of these two goals. Instrumentation-
based techniques provide an accurate profile while sacrific-



ing the cost of overhead as well as convenience of compi-
lation. Novel hardware-based techniques are emerging to
collect run-time events usinghardware performance coun-
ters. Although such structures efficiently capture run-time
information, researchers have only begun to study the char-
acteristics and benefit of the amount and type of information
needed for driving run-time optimization [7, 16].

Traditionally, most profile-directed optimizations use
point-based profiles which locate specific events to pro-
file. The most popular of these is edge profiling in which
branch directions are profiled. Edge profiling, as well as
other types of point-based profiling, cannot correlate spe-
cific events with each other. Path profiling [4] has been re-
cently shown to be a superior form of profiling [5]. It cor-
relates branches by keeping track of path execution counts
instead of simple branch counts. However, path profiling
usually comes with a significant increase in overhead(31%
for path profiling versus 16% for edge profiling [4]).

In this paper, we demonstrate a low-overhead PMU-
based path profiling system and characterize the hardware
collected statistics. This path profiling system is based
on the Intel Itanium-2 PMU [13]. The Branch Trace
Buffer(BTB) is used to periodically sample up to the last
four taken branches and dump the sampled data to a file.
Later, a compiler-aided offline analysis phase uses these
samples to recreate paths through the program and generate
a path profile. Accuracy is measured comparing the PMU-
based path profile to a full path profile.

The main contributions are:

• a characterization of path information that can be in-
ferred from the Itanium-2 PMU

• an algorithm for extrapolating a path profile from in-
complete path information

• quantification of the effectiveness of this techniques

The rest of this paper is organized as follows. Section 2 dis-
cusses background and related work. Section 3 continues
into a description of our path profiling technique. Exper-
imental data and analysis are provided in Section 4. Sec-
tion 6 plans out future work, Section 5 discusses related
work, and we conclude the paper in Section 7.

2 Motivation

In this section, we first discuss the characteristics of the
ideal profiler. Then we move into the advantages of path
profiling over traditional point-based profiles. We then de-
scribe existing profiling techniques and compare them to the
characteristics of our ideal profiler. Finally, we discuss per-
formance monitoring and how we believe it can be used for
providing path profiles.
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Figure 1. Edge Profiled CFG

2.1 The Ideal Profiler

The effectiveness of profile-directed optimizations hinge
upon the quality of the profile information. Profiles which
do not reflect run-time execution result in poorly optimized
code. An accurate profile enables many optimization oppor-
tunities. Unfortunately, the quality of profile accuracy often
comes with the trade-off of the increased overhead required
for gathering this fine-grained run-time information.

The ideal run-time profiler should have three character-
istics: 1) high accuracy, 2) single-stage profiling, and 3) low
profiling overhead. Accuracy is crucial for enabling effec-
tive optimization. An accurate profile is one that correctly
reflects a program’s run-time execution behavior. In order
for profiling to be feasible in a run-time system, it must be
done within a single stage. Finally, and perhaps most im-
portantly, profile collection overhead must be minimal.

2.2 Path Profiling

Most past research into profile guided optimizations uti-
lize point-based profiles. Edge profiles [3], which capture
branch bias information by instrumenting branches, are the
most popular of the point-based profiling techniques. How-
ever, edge profiling is limited in its ability to accurately de-
scribe execution behavior. Figure 1, a control flow graph
(CFG) annotated with edge profile information, provides an
example of the limitations of edge profiling. An edge pro-
file of the CFG would indicate that the hot path is through
basic blocks ABDFG. Suppose that all of the paths through
ACD continued down through blocks F and G. In this case,
the count for path ABDFG is 50, not the 70 suggested by
an edge profile. Path profiling (PP) paints a better picture
of the program’s execution by correlating branches together
into paths. Instead of collecting data at branch instructions,
path profiling collects counts for execution of specific paths
through the code.



2.3 Static Instrumentation

Most path profiles use software-based instrumentation to
determine paths. A program is initially compiled with coun-
ters strategically placed in the original code to keep track of
dynamic path execution. The advantage of this technique
is that high accuracy can be attained by inserting whatever
counters are desired through instrumentation. The main dis-
advantage is that software-based instrumentation incurs a
high overhead.

The original path profiling algorithm, proposed by Ball
and Larus [4], divided the code into regions, typically along
function boundaries, and created directed acyclic graphs
(DAGs) in each region by removing loop-back branches.
A single counter per region is used in conjunction with an
edge numbering algorithm to determine paths. In terms
of overhead, their path profiler averaged a 31% slowdown,
with slowdowns as high as 97% for gcc.

Targeted Path Profiling (TPP) [14] and Practical Path
Profiling (PPP) [6], extensions of Ball and Larus’ PP, make
an effort to decrease overhead in the context of staged dy-
namic optimization systems. Both are based on the idea that
an edge profile from a previous stage of dynamic optimiza-
tion can be carried into a path profiling stage, and used to
locate obvious paths that do not need to be instrumented
for path profiling. TPP lowers overhead to around 16% by
ignoring these obvious paths. PPP is an extension of TPP
which ignores more paths and decreases overhead to an av-
erage of 5%.

Our approach to path profiling offers a few advantages
over PP, TPP and PPP. First, we do not need extra stages for
profiling. PP requires the 3-phase compile-run-recompile
method. TPP and PPP add two extra stages for compiling
and running to gather the edge profile. Sampling will be
used to statistically ignore cold paths similar to ideas behind
TPP and PPP. Additionally, by using hardware to do the
actual data collection, run-time overhead will be reduced.

2.4 Dynamic Instrumentation

Instead of inserting instrumentation at compile time,
which requires access to source code, instrumentation can
also be inserted during runtime using binary instrumenta-
tion. PIN [21] is a binary instrumentation tool functional-
ity similar to ATOM [9], but can dynamically inject instru-
mentation into a running executable. This makes it possible
to attach PIN to an already running process to collect pro-
file information. PIN-instrumented binaries, however, ex-
perience a high overhead, averaging slowdowns of 2.8x for
integer benchmarks(up to 20x slowdown) [17] for simple
basic block counting. Although dynamic instrumentation
allows for high accuracy and removes the need for multiple
profile-execute stages, it drastically increases overhead.

Dynamic optimization systems such as Dynamo [2] im-
plement Most Recently Executed Tail(MRET), a specula-
tive version of path profiling for trace creation. Once a trace
head’s execution count reaches a predetermined threshold,
it is considered hot and the next dynamic execution path
from that trace head becomes a trace. This method has
three drawbacks. First, the next dynamic execution path
may not be the hot trace, causing this method to be overly
aggressive. Also, it is not able to distinguish between traces
once they are determined to be hot. A hot trace that only
executes ten more times should be treated and marked dif-
ferently from a trace that continues to execute millions of
times. The final drawback suffered by these dynamic opti-
mization systems is the high overhead due to interpretation.

2.5 Hardware Profiling Techniques

A number of hardware profiling techniques have
been proposed for collecting run-time profile informa-
tion. Conte [8] uses branch handling hardware coupled
with the branch predictor to obtain branch information.
Merten’s [18] work discusses using a branch behavior
buffer for collecting branch profile data.

These techniques incur a low overhead and can effec-
tively gather data during one program run but suffer in ac-
curacy because they are designed to collect edge profiles.
Our technique incurs a higher overhead compared to spe-
cialized hardware but offers two advantages. First, because
the analysis is done in software instead of hardware, more
analysis can be performed. Second, our method utilizes ex-
isting performance monitoring hardware.

2.6 Performance Monitoring

Modern microprocessors such as the Intel Pentium 4, In-
tel Itanium, and IBM PowerPC 970 provide a rich set of
performance counters. The work in this paper uses the Intel
Itanium-2 PMU [13]. It includes a set of counters which
can be configured to count any four of almost 500 events. It
also allows for sampling of Event Address Registers to cap-
ture recent data or instruction cache or TLB misses. This
paper takes advantage of the PMU’s ability to sample BTB
registers to obtain partial paths.

3 PMU Path Profiling

Clearly, there is not a solution for run-time profiling yet
that meets the criteria of the ideal profiler. We propose a
new two-phase path profiling technique to meet these crite-
ria. The first phase consists of sampling a PMU to collect
run-time path information. This path information is then
run through an off-line analysis phase to create a full path
profile. This technique is able to achieve low overhead by



sampling hardware but is able to create accurate path infor-
mation in the off-line phase. In addition, the profile can be
gathered during run-time without any previous instrumen-
tation phases or interpretation.

Using the Itanium-2 PMU as an example, section 3.1 de-
scribes the run-time sampling phase. The remaining sec-
tions describe the off-line analysis. Sections 3.2 and 3.3
describe how we prepare the PMU data for extrapolation,
and section 3.4 shows how we generate an estimated path
profile.

3.1 Collection of BTB (Branch) Traces

The Itanium-2 PMU BTB contains eight registers which
are treated as a circular buffer. Each executed branch in-
struction usually requires two of the BTB registers; one for
the branch instruction address and another for the branch
target address. Because of this, the BTB registers effec-
tively act as a four branch circular buffer. In the Itanium-2
PMU, the user is able to conduct BTB samples through a
set of user-defined filters. In this work, we configure the
BTB to sample only taken branches. This improves path
collection for two reasons. First, sampling all branches is
redundant because the off-line tool uses the CFG to inter-
polate fall-through paths between taken branches. Second,
code optimizations emphasize fall-through paths over taken
paths for increased code locality. Therefore, sampling only
taken branches provides more path information and a more
accurate path profile.

Upon conclusion of each sampling period, the PMU is
queried for the contents of the BTB. The BTB registers form
a BTB trace. The trace is stored in a hash table that col-
lects and aggregates duplicate traces. At the end of program
execution, the BTB traces and their respective occurrence
counts are written to a file to be used by the off-line analy-
sis tool.

3.2 Partial Path Creation

Forming partial paths The first profiling step interpo-
lates a set of BTB traces to form the corresponding set of
partial paths. Apartial path is simply a BTB trace mapped
onto the original CFG including two enhancements. First, it
infers the fall-through edges between taken branches. Sec-
ond, it extends the path above the first edge and below the
last edge until a point of uncertainty is reached.

Figure 2 shows an example of partial path creation. The
numbers 1 through 4 indicate the four taken branches from
the BTB Trace. These four branches are related back to
the CFG while following fall-through edges between the
branches to produce an initial partial path shown by the
solid line. The partial path can then be extended upward
and downward to a point of uncertainty. For example, the
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Figure 2. Extending Partial Paths

top of the initial partial path can be extended up until a join
point in the CFG and the bottom can be extended down un-
til a branch point. These extensions help to provide longer
partial paths while ensuring that they are unique. Partial
path extensions increase the probability that the partial path
will span multiple regions. Region-based path discovery,
the next stage of the off-line phase, is discussed in the fol-
lowing subsections.

Splitting partial paths After partial paths creation, they
are split along function boundaries and loop backedges. We
must perform this splitting because these partial paths are
later compared to region-based paths. Our current imple-
mentation of regions constrains them to function and loop
boundaries.

Complications Due to the nature of the PMU, several
complications can arise in obtaining BTB traces. First, the
branch instruction addresses entered into the PMU are in-
exact. From what we can gather, this is because proces-
sor performance was prioritized over accuracy of the PMU.
Second, branch addresses are occasionally entered without
a target. If the branch addresses were exact, this would not
be a problem. However, it means that a bit of guesswork
may be required to build a partial path from a list of BTB
entries. In the rare situations where we cannot safely guess
the path of execution, the BTB trace is discarded.

3.3 Region-based Path Discovery

Unlike instrumented path profiling, sampled path profil-
ing introduces the problem ofpath ambiguity. Under the
random sampling assumption, samples do not have guaran-
teed starting points, and due to the inexact nature of current
performance monitoring hardware, sampled paths contain
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Partial Count Matches Inc Total
Path
IJLMO 100 AFG IJLMO +50 50

AFH IJLMO +50 50
BCE 50 BCE +50 50
AFGIJ 300 AFGIJ LMO +150 200

AFGIJ LNO +150 150
LMO 200 AFGIJLMO +50 250

AFHIJLMO +50 100
AFGIKLMO +50 50
AFHIKLMO +50 50

Table 1. Example of path matching of partial
paths to region-based paths

an inconsistent number of edges. To mitigate these chal-
lenges we proposeregion-based paths.

First, we define relevant terms used in the description of
our algorithm. Our terminology is consistent with Ball’s
study [5].

Definition 3.1 Let R(V,E) be a sub-graph of the directed
graph G(V,E) with a unique entry vertex RENTRY , a set
of body vertices RBODY , and a set of exit vertices REXIT

all of which are reachable from RENTRY . An edge e =
v → w connects source vertex v (denoted by src(e)) to
target vertex w (denoted by tgt(e)).

A partial path in R is represented as a sequence of edges
E(p) = [e1, e2, ..., en], where src(ei) ∈ RBODY . A
full path in R is a partial path with the added constraints

src(e1) = RENTRY and tgt(en) ∈ REXIT . The set of
paths from RENTRY to REXIT in which edge e appears is
denoted by P (e).

Under the paradigm of region-based path discovery, a
CFG is divided into regions of basic blocks such that given
a partial pathp we can accurately derive the set of full paths
M that contain all the edges ofp. Thus, the following rules
govern the formation of a regionR:

1. R can only be entered via its entry vertex

2. RBODY must not contain basic blocks both inside and
outside a loop

3. The total number of paths fromRENTRY to all
REXIT vertices must be less than some limitN .

4. RBODY should contain as many basic blocks as pos-
sible.

To form regions within these limitations, we use a greedy
algorithm. This method begins with the single regionR
containing just one vertexentry of the CFG. In a breadth-
first mannerR is expanded along the target edges of its exit
vertices. When the algorithm can no longer expandR, it
marks all verticesREXIT as the entry vertices for new re-
gions. The algorithm is repeated for these vertices and so on
until all the basic program within the CFG have been added
to regions.

Figure 3 provides a simple example of region formation.
The algorithm begins with basic block A. Basic block B
cannot be added into the region because it belongs to a loop.
But the algorithm is able to include basic blocks F, G, H, I,
J, K, L, M, N, and O. Basic block P cannot be included
because it would break the first rule that a region may only
have one entry. This region is shown as Region 2 in the
figure. The loop including basic blocks B, C, D and E forms
another region shown as Region 1 and naturally, basic block
P begins a new region.

When a CFG has been converted to its composite re-
gions, the full paths in each region are enumerated and
stored in memory. Each full path within a set of CFGs can
be accessed by a unique identifier. During the stage of path
enumeration, we also implement the functionP (e) by using
a hash table.

3.4 Path Profile Generation

At this point in our off-line analysis we have built a set
of partial paths from BTB traces and divided the entire CFG
of the application into regions. We extrapolate each partial
path into its matching set of full paths as described below.



Definition 3.2 Given a single partial path p, the minimum
matching set M of full paths which contain p is the inter-
section of all P (e) for each edge of p. That is, for partial
path p consisting of edges [e1, e2...en],

Mp =
⋂k

i=1 P (ei)

Depending on the number of edges withinp and the char-
acteristics of the CFG, the matching setM may contain an
indeterminate number of paths. The next step of our al-
gorithm assigns weights to each path ofM based on the
following assumptions:

1. Equal probability of execution of each path withinM

2. Random sampling of actual program flow

3. Adequate samples to clearly distinguish frequently ex-
ecuted paths

Given these assumptions equal weights to every match-
ing full path can be assigned; however, enough sam-
ples must be available in order to distinguish hot paths
from cold. For example, consider partial paths and their
occurrence counts from the CFG in Figure 3 and Ta-
ble 1: IJLMO(100), BCE(50), AFGIJ(300), and
LMO(200). IJLMO matches bothAFGIJLMO and
AFHIJLMO and assigns a weight of50 to both. The
intra-loop partial-pathBCE yields a unique match and
needs not distribute its weight. The third path,AFGIJ ,
matches bothAFGIJLMO and AFGIJLNO and dis-
tributes a weight of150 to each. Finally,LMO matches
the four pathsAFGIJ LMO, AFHIJ LMO, AFGIK LMO,
andAFHIK LMO and assigns each a weight of50. The hot
pathAFGIJLMO becomes prominent due to continued
random sampling of paths within the region.

Once all partial paths have been matched and weighted
as described above, the sampled path profile is sorted by
path weight and the paths whose total program flow exceed
an arbitrarily-defined hot threshold are extracted. These
hot paths are ready for immediate use in path-profile based
compiler optimization.

4 Experiment

4.1 Methodology

For our experiments, we explore this path profiling tech-
nique on applications that have not yet been highly opti-
mized. The reason for this is to show that this technique
can be used as a stand-alone profiler. Studying highly op-
timized code implies that a previous profile run has been
used. We are interested in the effects of optimizations on
the quality of profiles but leave this exploration up to future
work.

The experiments use theSPEC 2000 benchmarks com-
piled with the base configuration of the OpenIMPACT Re-
search Compiler [19]. The benchmarks are compiled with
classical optimization but without more aggressive profile-
guided optimizations. The PMU collection tool developed
using the perfmon kernel interface and libpfm library [10]
initiates and samples the Itanium-2 PMU BTB registers on
individual SPEC programs. The PMU samples are analyzed
off-line with an OpenIMPACT module to generate the path
profile.

4.2 Effect of PMU Sampling Period

Figure 4 shows the effect of sampling rate on run-time
overhead as well as the number of unique paths discovered
by the PMU for a few benchmarks. The sampling rate is
varied from 50K to 10M clock cycles. Naturally, a lower
sampling rate decreases the overhead but provides a lower
number of unique paths while a high sampling rate increases
the overhead but provides more unique paths.

PMU sampling overhead remains relatively low, less
than 10%, from 10M all the way down to around 500K.
When the sampling rate is decreased further, the percentage
overhead increases quickly up to∼50% for a sampling pe-
riod of 50K. The number of unique paths discovered by the
PMU rises steadily for each decrement in sampling rate.

4.3 Partial Paths

Once branch samples are collected, they are analyzed
and related back to the IMPACT low-level intermediate rep-
resentation(IR) to create partial paths. The nature of PMU
sampling allows these partial paths to span function bound-
aries, stretch across loopback edges, and even extend from
the user program into shared libraries. However, the system
ignores paths in libraries and splits partial paths at function
boundaries as well as loopback edges in this initial infras-
tructure.

Table 2 shows the average length of partial paths initially,
after partial path extensions, and after splitting on function
boundaries and loopback edges. Path lengths are measured
in number of low level IR instructions. On average, the
system locates paths∼38 instructions long. Partial path ex-
tensions increase the average length by about 20%. After
splitting, the average path length drops about 40% from the
extended length to∼27 instructions.

Table 3 characterizes partial paths in relation to the num-
ber of procedure boundaries crossed by the partial path. A
surprisingly large number partial paths not only cross one
function boundary, but span across multiple boundaries. In
particular, a large majority of partial paths in 186.crafty
and 197.parser cross at least one function boundary. This
indicates that had our infrastructure been able to account
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Figure 4. Overhead and number of unique paths for various sampling periods

Benchmark Initial Ext Func Loop
164.gzip 28.9 34.8 22.8 20.4
175.vpr 41.8 50.5 30.6 19.6
177.mesa 44.6 53.8 35.3 33.0
179.art 29.5 34.7 32.1 22.9
181.mcf 32.0 38.8 33.7 25.5
183.equake 65.8 75.1 66.8 54.5
186.crafty 36.0 45.2 31.7 31.1
188.ammp 31.3 39.5 36.4 28.5
197.parser 28.7 35.2 14.7 12.7
256.bzip2 38.8 45.8 33.4 22.7
300.twolf 37.8 46.5 32.5 25.4
Average 37.7 45.4 33.6 26.9

Table 2. Average length of partial paths in
instruction count initially, after partial path
extensions, and after splitting on function
boundaries and loopback edges

for paths spanning across function boundaries and loopback
edges, it would have been able to utilize better path infor-
mation. Future work is planned to integrate function and
loopback correlation into our infrastructure.

4.4 Aggregating Data from Multiple Runs

The profiling infrastructure enables aggregate profile in-
formation to be collected from multiple runs of a program.
By gathering PMU information over separate runs, analysis
of lost paths due to statistical sampling can be measured.

Func. Boundaries Spanned
Benchmark 0 1 2 3 4
164.gzip 187 149 35 2 0
175.vpr 234 171 162 65 12
177.mesa 75 50 27 7 0
179.art 230 29 7 1 0
181.mcf 1106 237 96 26 1
183.equake 231 31 24 1 0
186.crafty 1367 2281 968 154 13
188.ammp 298 123 42 5 2
197.parser 488 654 599 224 40
256.bzip2 532 353 279 55 9
300.twolf 1293 514 467 55 7

Table 3. Breakdown of partial paths spanning
function boundaries(500K Sampling Period)

In Figure 5 shows the effects of aggregating the PMU BTB
samples from multiple runs of a few benchmarks with the
same input. Additional runs increase the number of unique
PMU paths. The greatest increase occurs from combining
up to 10 runs. There is a slight leveling off after 10 runs. It
is possible that the paths collected from multiple runs will
fill in missed important partial paths in other runs.

4.5 Accuracy Results

To measure accuracy of the PMU-generated paths, we
generate a full path profile with a PIN tool. The PMU path
profile is compared to the full path profile using a method
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Figure 5. Number of unique paths found by aggregating data from runs with same input set

Benchmark # Hot Paths % Total Flow
164.gzip 30 98.96%
175.vpr 29 96.05%
177.mesa 8 97.99%
179.art 50 99.60%
181.mcf 52 97.84%
183.equake 24 98.53%
188.ammp 33 96.73%
197.parser 168 82.41%
256.bzip2 78 96.52%
300.twolf 80 92.55%

Table 4. Number of actual hot paths and per-
cent of total flow they account for

similar to Wall’s weight matching scheme [22]. In this pa-
per, accuracy is defined as

Accuracy of Pestimated =

∑
p∈(Hest.∩Hactual)

Fact.(p)∑
p∈Hact.

Fact.(p)

In this equationF (p) is the flow of a path. This is de-
fined as the path’s count divided by the count of all the paths
added together. This represents the percentage of the all
counts that path p accounts for.Hactual is the set of paths
in the full path profile which are above a set threshold. We
use 0.125% as this threshold is used previous path profiling
studies [5, 6].Hestimated is then the created by selecting
the hottest paths in our path profile equal to the number of
paths inHactual.

Table 4 shows the number of hot paths in each bench-
mark which have flows above the hot threshold as well as

the percent of total execution flow that the hot paths ac-
count for. The percentages indicate that using a hot thresh-
old of 0.125% indeed provides a relatively low number of
hot paths corresponding to a very high percentage of to-
tal program flow. 197.parser is the exception with a larger
number of hot paths contributing to a lower amount of total
program flow.

Figure 6 shows accuracy results with respect to various
sampling periods ranging from 50K to 500M clock cycles.
In general, at low sampling periods, this path profiling tech-
nique achieves fairly high accuracy with one set of bench-
marks in the high 90%s and another set in the 80%s. As
sampling period increases, the accuracy remains relatively
constant for a while. This is because each of these sampling
periods contains enough samples for our technique to locate
the important hot paths. However, once the sampling period
is increased to a certain point(around 5M), accuracy suffers
because we are not able to collect enough samples to recre-
ate the hot paths. By observing this behavior, a sweet spot
can be seen around a sampling rate of 5M-10M. If the sam-
pling period is set to 10M, 88% accuracy can be obtained at
∼1% run-time overhead.

4.6 Incorrectly Identified Hot Paths

Although the method of assigning equal weights to
multiply-matched partial paths allows for accurate identi-
fication of the hottest paths in an individual region, we sac-
rifice the ability to correctly identify the hot paths among all
regions in a routine. To illustrate this flaw, we first define
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Figure 6. Accuracy vs. Sampling Period

the matching ratio for a region as the average size of the
matching setM for all partial paths in the region.

Now consider an extremely hot regionR whose paths
represent a large percentage of total program flow. As-
sume that the matching ratio forR is significantly greater
than one. In other words, attempts at matching partial paths
within R are unable to uniquely identify full paths.

In this scenario, a substantial number of paths within the
region have been falsely matched. SinceR represents a
large percentage of total program flow, all of the falsely-
matched paths ofR are likely to be incorrectly identified
as hot paths. This phenomenon occurs frequently in large
regions of code due to high matching ratios within them.
Amplifying the over-matching problem is that applications
tend to frequently execute code within large regions.

We are looking at several different ways to detect and
correct for the over-matching problem such as cold-edge
elimination and obvious path elimination [14, 6], redistri-
bution of weights based on heuristics, and adaptive weight
distribution.

5 Related Work

The profiling approach for trace selection in the ADORE
dynamic optimization system [7, 16] is very similar to our
technique for profiling. ADORE uses the Itanium-2 PMU
for collecting profile information aimed at improving data
cache performance Our work can be viewed as an extension
from their approach with a few differences. The goal of
the ADORE optimizer is to use the PMU to detect a small
amount of hot traces for optimization. Our work differs
in that we use the PMU to gather and build a path pro-
file. While ADORE is only interested in a few traces to

optimize during run-time, we are interested in as gathering
as much information as we can from the PMU, correlat-
ing these PMU samples and characterizing the nature of the
PMU information with respect to gathering a path profile.

Other sampling ideas stem from continuous profiling and
optimization systems [1, 15]. These systems sample perfor-
mance monitors for profile information to drive feedback
driven optimizations. They typically utilize simple event
counters or PC sampling techniques. Our work could be
an important addition into continuous optimization systems
provided future processors are designed with more robust
hardware monitoring units.

6 Future Work

As this paper presents the initial results and findings of
PMU-generated path profiling, there a number of areas of
work to make PMUs a viable profiling mechanism for run-
time optimization. Future work involves the following:

• Region Formation - Regions represent a potential
representation for effectively limiting the number of
matches of PMU generated data. Judging from the
characteristics of partial paths, it is important that fur-
ther work investigate regions that span hot function
boundaries and loop iterations.

• Noise Elimination - Path crediting may introduce
noise into generated path profile weights creating false
hot-path profiles. It is important to qualify and assess
this occurrence in PMU generated profiles and explore
algorithms for reducing path accreditation noise.

• Effects of Optimization - Aggressive optimizations
previously performed will impact the characteristics of



PMU-based path profile information. The details of
the impact of a program’s optimization on PMU pro-
files will be investigated.

• Aggregating Multiple Runs - Analysis of multiple pro-
files of different input sets per application may reveal
opportunities to deploy persistent optimizations in a
run-time system.

7 Conclusion

In this paper, the initial rationale and results of using a
PMU-based path profiling system in a run-time optimiza-
tion system are presented. We demonstrate the construc-
tion of a PMU-based profiling system in existing hardware
and point out challenges that need to be overcome for the
success of this profiling technique. Overall, PMU-based
path profiling shows promise as a run-time profiling tech-
nology with advantages of the speed of hardware sampling
and the ability to accurately detect hot paths. With an over-
head of only∼1%, PMU path profiling can obtain an 88%
accurate path profile when compared to a detailed software
instrumentation-based path profile.

8 Acknowledgements

The authors would like to thank Wei Hsu, Howard Chen
and Stephane Eranian for their assistance with the Itanium-2
PMU, and Hariharan Iyer and Manish Vachharajani for their
helpful advice The authors would also like to thank the Intel
Pin Team for their support and the anonymous reviewers for
their insights and comments. This work has been supported
by the Intel Corporation.

References

[1] J. Anderson and et al. Continuous profiling: Where have all
the cycles gone? InProc. of the 16th ACM Symposium of
Operating Systems Principles, pages 1–14, October 1997.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A trans-
parent dynamic optimization system. InProceedings of the
ACM SIGPLAN ’00 Conference on Programming Language
Design and Implementation, pages 1–12, June 2000.

[3] T. Ball and J. Larus. Optimally profiling and tracing pro-
grams. InACM Transactions on Programming Languages
and Systems, July 1994.

[4] T. Ball and J. R. Larus. Efficient path profiling. InProceed-
ings of 29th Annual Int’l Symposium on Microarchitecture,
pages 46–57, December 1996.

[5] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path
profiling: The showdown. InProceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 134–148, January 1998.

[6] M. D. Bond and K. S. McKinley. Practical path profiling for
dynamic optimizer. InProceedings of the 3rd International
Symposium on Code Generation and Optimization(CGO-
2005), March 2005.

[7] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y. Chen. Dy-
namic trace selection using performance monitoring hard-
ware sampling. InProceedings of the International Sympo-
sium on Code Generation and nOptimization(CGO 2003),
March 2003.

[8] T. M. Conte, B. A. Patel, K. N. Menezes, and J. S.
Cox. Hardware-based profiling: An effective technique for
profile-driven optimization.International Journal of Paral-
lel Programming, 24(2):187–206, April 1996.

[9] A. Eustace and A. Srivastava. ATOM: A flexible interface
for building high performance program analysis tools. In
Proceedings of the Winter 1995 USENIX Conference, Jan-
uary 1995.

[10] Hewlett-Packard Development Company. perfmon project
http://www.hpl.hp.com/research/linux/perfmon/.

[11] W. W. Hwu and P. P. Chang. Inline function expansion for
compiling realistic C programs. InProceedings of the ACM
SIGPLAN 1989 Conference on Programming Language De-
sign and Implementation, pages 246–257, June 1989.

[12] W. W. Hwu and et al. The Superblock: An effective tech-
nique for VLIW and superscalar compilation.The Journal
of Supercomputing, 7(1):229–248, January 1993.

[13] Intel Corporation. Intel Itanium 2 processor reference man-
ual: For software development and optimization. May 2004.

[14] R. Joshi, M. D. Bond, and C. Zilles. Targeted path profil-
ing: Lower overhead path profiling for staged dynamic opti-
mization systems. InProceedings of the International Sym-
posium on Code Generation and Optimization(CGO-2004),
March 2004.

[15] T. Kistler and M. Franz. Continuous program optimization.
In IEEE Transactions on Computers vol. 50 n. 6, June 2001.

[16] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and im-
plementation of a lightweight dynamic optimization system.
In Journal of Instruction-Level Parallelism 6(2004), pages
1–24, April 2004.

[17] C.-K. Luk and et al. Pin: Building customized program anal-
ysis tools with dynamic instrumentation. InACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, Chicago, IL, June 2005.

[18] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes,
J. C. Gyllenhaal, and W. W. Hwu. A hardware mechanism
for dynamic extraction and relayout of program hot spots.
In Proc. 2000 Int’l Symp. on Computer Architecture, pages
136–147, June 2000.

[19] OpenIMPACT Research Compiler.
http://www.gelato.uiuc.edu/.

[20] K. Pettis and R. C. Hansen. Profile guided code positioning.
In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation, pages
16–27, June 1990.

[21] PIN Dynamic Instrumentation Tool.
http://rogue.colorado.edu/pin/.

[22] D. W. Wall. Predicting program behavior using real and es-
timated profiles. InProceedings of the ACM SIGPLAN 1991
Conference on Programming Language Design and Imple-
mentation, pages 59–70, June 1991.


