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Abstract

In profiling, a tradeoff exists between information and
overhead. For example, hardware-sampling profilers incur
negligible overhead, but the information they collect is con-
sequently very coarse. Other profilers use instrumentation
tools to gather temporal traces such as path profiles and hot
memory streams, but they have high overhead. Runtime and
feedback-directed compilation systems need detailed infor-
mation to aggressively optimize, but the cost of gathering
profiles can outweigh the benefits. Shadow profiling is a
novel method for sampling long traces of instrumented code
in parallel with normal execution, taking advantage of the
trend of increasing numbers of cores. Each instrumented
sample can be many millions of instructions in length. The
primary goal is to incur negligible overhead, yet attain pro-
file information that is nearly as accurate as a perfect pro-
file.

The profiler requires no modifications to the operating
system or hardware, and is tunable to allow for greater
coverage or lower overhead. We evaluate the performance
and accuracy of this new profiling technique for two com-
mon types of instrumentation-based profiles: interprocedu-
ral path profiling and value profiling. Overall, profiles col-
lected using the shadow profiling framework are 94% accu-
rate versus perfect value profiles, while incurring less than
1% overhead. Consequently, this technique increases the vi-
ability of dynamic and continuous optimization systems by
hiding the high overhead of instrumentation and enabling
the online collection of many types of profiles that were pre-
viously too costly.

1 Introduction

Profile-guided optimization (PGO) uses dynamic infor-
mation obtained from a program’s execution to decide upon
a strategy for optimization. PGO systems fall roughly into
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two categories, dynamic and static, though there is not al-
ways a clear dichotomy. Dynamic optimization systems
gather profile information as a program executes and ap-
ply optimizations during the same run of the program. This
technique is becoming common for managed runtime en-
vironments such as Java [8], and is being applied to na-
tive programs as well [6, 23]. More traditionally, static
PGO collects profiles offline and directs the recompilation
of an entire program from source. Other methods, such
as Spike [13], employ static binary modification to apply
feedback-directed optimization.

For any PGO system to be effective, it must be aware
of both what and how to effectively perform optimiza-
tion. For deciding what to optimize, sampling just the pro-
gram counter (PC) at a high rate is enough information to
detect hot code and even deduce which instructions stall
the pipeline [1]. Hardware performance monitoring units
(PMU) can be used to gather richer information such as
cache miss and branch mispredict PCs. Such information
is valuable to programmers when deciding where to focus
optimization efforts, and it is also useful for JIT compil-
ers to apply the most aggressive and costly optimizations
to the hottest regions of code. However, deciding how to
optimize is a considerably harder problem. Many profiling
techniques that are used to decide how to optimize incur un-
desirable overhead because they require instrumentation to
record temporal fraces of events. For profiling to be worth-
while, its benefit must outweigh its cost. Therefore, much
effort must be spent on ensuring that profiling has low over-
head.

One of the most common feedback-directed optimiza-
tions is improving code layout and superblock formation
using Ball-Larus path profiling [4]. Path profiling is popu-
lar because it delivers good performance improvement and
the instrumentation overhead can be as low as 30-40% for
highly optimized, compiler-based instrumentation. Other
types of profiles, such as hot data stream profiling [12] and
value profiling [9] have been used to apply optimizations



that achieve gains of over 20%, but they can also result
in substantial overheads that are tens or hundreds of times
slower than the original program.

Such high overheads can be prohibitive to profiling, so
methods for sampling-based instrumentation have recently
become more popular. Low-overhead instrumentation is
particularly desirable for dynamic optimization, where the
profiling cost must be amortized over time and by the opti-
mizations performed. Arnold [2] and Hirzel [18] both de-
scribe techniques for reducing the cost of instrumented code
via sampling. The technique, known as “bursty tracing”,
periodically alternates between normal and instrumented
code.

Shadow profiling is a novel technique for performing in-
strumentation sampling of detailed traces. It differs from
previous techniques in that instrumented code is executed
in parallel with a program’s execution. Instead of instru-
menting an application directly, a shadow process is pe-
riodically created and instrumented while the parent con-
tinues normal execution. By leveraging the copy-on-write
mechanism available in modern operating systems, the child
process is a mostly-deterministic replica of the parent. Al-
though forking replicates the virtual address space, it does
not protect against other potential system side effects in-
volving files and shared memory. Issues with safety and
non-determinism are addressed in Section 3.

Shadow profiling offers the following features:

e Low overhead. The type of instrumentation injected
into the shadow process doesn’t affect the speed of the
original application. The only sources of slowdown
are paging and bus and disk contention, which are very
low in practice.

e Scalability. Many traces can be collected in parallel;
as the number of cores on die increases, idle resources
will be increasingly available for profiling.

e Tuning. The sample length of each shadow and the av-
erage number of active shadows are both configurable,
enabling a flexible method to adjust for greater cover-
age or lower overhead.

e Simplicity. The infrastructure leverages many present
technologies, so existing profilers and instrumentation
systems can be used with only slight modifications.

The rest of this paper is organized as follows. Section 2
provides background information. Section 3 describes the
design and implementation of shadow profiling. Section 4
explores tuning tradeoffs and evaluates performance. Sec-
tion 5 discusses related work. Section 6 outlines future
work, and Section 7 concludes.

2 Background

Program instrumentation is a common way to observe
very detailed dynamic execution behavior. Instrumentation
can be applied in a number of ways and at a number of
points in a program’s life cycle. For this discussion, two
techniques are particularly relevant: probing and dynamic
instrumentation.

Probing, also known as code patching, is a technique
that works by overwriting original instructions with a jump
to a bridge that handles the saving and restoring of regis-
ters, calling analysis routines, and execution of the replaced
instructions [19, 7]. For collecting events that only occur
rarely, probing is a low-overhead alternative to binary trans-
lation. Therefore, probes are most commonly used at func-
tion entry points, function call sites, and system calls. Some
instruction sets, such as IA32, are not amenable to prob-
ing because of variable length instructions. Therefore, great
care must be taken to ensure that probe-based instrumenta-
tion does not corrupt the original instructions.

Alternately, other instrumentation techniques recompile
an entire application to interleave instrumentation with orig-
inal program instructions. Some tools, such as ATOM [33],
employ static object file rewriting to accomplish this goal.
Others, such as Pin [24], Dynamo [6], and Valgrind [26],
actually have much in common with a virtual machine.
The shadow profiling infrastructure is implemented using
the Pin system. Pin is a just-in-time (JIT) dynamic com-
piler that is capable of inserting arbitrary instrumentation
into unmodified binary programs for Intel® IA32, EM64T,
Itanium® , and ARM instruction set architectures. Pin does
not rely on static compiler support and also has other ad-
vanced features, such as a low-overhead PinProbes mode,
the ability to begin JITing at any point during execution, and
the ability to attach to a program that is already running.

Since Pin is a dynamic compiler, it must store traces
into a code cache as they are compiled. The instrumen-
tation code is aggressively optimized with register realloca-
tion and inlining of analysis routines. As a result, the instru-
mented code is very fast. One drawback to this approach is
that short-running programs take noticeably longer to ex-
ecute because most of the time is spent compiling traces
that are only executed a few times. For longer-running pro-
grams, the compilation cost is amortized as the code cache
is filled and hot code is reused.

To somewhat mitigate this overhead, Pin has a persis-
tence infrastructure developed by Janapa Reddi [27]. Per-
sistence uses an on-disk cache to store compiled traces for
future runs of a program. When a new process begins, it
loads in an old code cache from disk, so traces that have
been previously executed don’t have to be recompiled. Then
when the process exits, it updates persistent copy on disk. If
there are multiple processes active, there may be race con-



ditions for the persistent cache, so it is protected by a read-
write file lock. This method has been shown to dramatically
improve the startup time of applications running under Pin.

Monitor

Original
Application
fork() fork()
Profiling Profiling
Instrumentation Instrumentation
(X X J

Shadow Shadow

Application Application

Figure 1. Components of the shadow profil-
ing system.

3 Shadow Profiling Infrastructure

The components of the system are shown in Figure 1. A
probe-based application monitor is injected into the original
application when it begins. The probes allow the monitor
to observe certain system calls, yet still permit the appli-
cation to execute natively without incurring overhead. Pe-
riodically, the monitor will fork a shadow process that is
to be instrumented and profiled. After the fork occurs, Pin
switches from probe mode to JIT mode and after that point
every instruction is executed from the code cache.

Figure 2 shows a chronological view of how a profiled
run might proceed. In this example, the instrumented code
is three times slower than native. At time 1, the first shadow
is forked and is migrated to CPU 2 by the operating sys-
tem. While the shadow is duplicating the behavior that oc-
curred during that timeslice, the original application pro-
ceeds ahead 3 time units. At the beginning of time 4, the ap-
plication monitor recognizes that shadow 0 has completed,
so another shadow is created. In this example, shadows 0
and 1 are shown to be scheduled on different CPUs, but they
could also be scheduled sequentially on the same CPU at the
operating system’s discretion. Some programs may require
greater coverage, while others may require less. Therefore,
many shadow processes may execute in parallel, or they can
instead be created less frequently.

The rest of this section describes the technical details
involved in creating shadow processes and making them
transparent to the original application.

Ideally, after a fork, two processes would be exact repli-
cas of each other and both could continue execution without
interference. The most significant problem, duplicating the
address space, is conveniently handled by the copy-on-write
paging system common to most modern operating systems.
However, there are a number of other issues that must be
considered: shared memory, memory-mapped files, system
calls, and threading. The handling of each issue is described
in context below.

3.1 Application Monitor

The application monitor first takes control of an applica-
tion from invocation or by attaching to an existing process.
Since the shadow is not allowed to execute certain system
calls, their effects need to be logged so that they may be em-
ulated. The original program runs natively, so each time an
image is loaded, probes must be placed on particular system
calls to log their effects.

Using just probes, the monitor is only activated when a
system call occurs. However, it is desirable to be able to
create shadows at arbitrary points in time, not just at system
call boundaries. After the monitor gains control, it registers
a signal handler that will be invoked on a timer interrupt. By
default, the SIGPROF signal is used, but since applications
can use signals in unconventional ways, the signal number
used to profile is configurable via a command-line parame-
ter. Likewise, a regular timer interrupt must be configured.
One option is to use the setitimer or alarm system calls, but
this could interfere with many applications’ normal behav-
ior. Instead, a separate process, called the signaler, is cre-
ated to signal the monitor and then sleep for a predefined
period. The signaler remains active until the original appli-
cation completes. Note that the monitor itself has an un-
measurably small effect on the program’s performance.

3.1.1 Managing Overhead

When the monitor receives a signal, its only action is to de-
cide if a shadow should be created. To control the amount
of processor time given to shadow processes, the user may
specify the load parameter, given as a floating point num-
ber. For example, a load value of 1.0 means that there will
always be a single shadow actively profiling. The user may
also specify values like 0.5, meaning that only half of the
time a shadow will exist, or 2.0, meaning that two shadows
will exist concurrently. Each time the monitor receives a
signal, it updates a running average of the number of active
shadows. When the average falls below the desired load,
a new shadow is forked. After the fork, the parent returns
control to the running program.
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Figure 2. A chronological example of shadow profiling execution.

3.2 Shadow Profiler

After a fork, the child process must switch from probe to
JIT mode in Pin. This is done with the PIN_ExecuteAt API,
which directs Pin to begin instrumenting from an arbitrary
processor context. Since this is all done from inside the
signal handler, the architectural context, including the PC,
is conveniently available. Once Pin begins instrumenting
the program, profiling begins. The shadow will execute a
predefined number of instructions, usually many thousands
or millions, before exiting. Execution and instrumentation
proceed as a normal Pintool, but the shadow must be re-
stricted from actions that cause side effects in the original
process or the rest of the system.

One way the shadow can affect the original process is
through shared memory pages (attained in UNIX via mmap
or shmat system calls) and memory-mapped files that have
write access. Thus, after a fork, write access to such pages
is revoked in the child process. Since the shadow will fault
when attempting to write to shared pages, it can either chose
to skip the faulting instruction or terminate and create a new
shadow. In practice, this issue has not arisen since none of
the SPEC CPU2000 benchmarks use shared pages. They do
tend to be more common in database and webserver appli-
cations, but they are still written to infrequently.

A much more common way that the shadow process can
cause side-effects is through system calls, which occur ap-
proximately 35 times per second on our experimental con-
figuration. Fortunately, the majority of system calls are be-
nign, can be emulated, or can be simply ignored. In our
experiments, around 5% of dynamic system calls cannot be
handled safely and terminate the shadow process. The fol-

lowing is a list of dynamic execution frequency, examples,
and solutions for different groups of system calls.

e Benign (49%): e.g. getrusage, time, brk, munmap, fs-
tat, etc. These system calls may be allowed to execute
since they do not have side effects on the system.

e Output (39%): e.g. write, ftruncate, writev, rename,
unlink, etc. These system calls are not allowed to exe-
cute because they change the state of the system. They
can be emulated with success assumed, and execution
continues.

e Input (5%): e.g. read, readyv, etc. These depend on the
type of descriptor that is being accessed. Since the ker-
nel’s file pointer is not duplicated across a fork, open
files must be closed, reopened, and “seeked” to the
previous position. Pipes and sockets are more com-
plicated; the original process must transmit data read
from pipes and sockets to the shadow process so that
the calls can be emulated.

e Miscellaneous (2%): e.g. open, creat, mmap, mpro-
tect, fentl, Iseek, etc. There are some special cases,
depending on the arguments, but usually these may be
allowed to execute.

e Unsafe (5%): e.g. ioctl, because its behavior is device-
specific. Also some cases of mmap, which is often
used to dynamically load libraries. In this case, the
shadow terminates and signals the process monitor.

The key concept to keep in mind is that the goal is to attain
many small samples of execution, so each shadow will only
execute for at most a few hundred million of instructions.



Therefore, many shadows will not encounter a single sys-
tem call, and most will only encounter one or two. Since
unsafe system calls are rare, most shadow processes termi-
nate themselves when the desired number of instructions
has been profiled. In the event that an unsafe (or unknown)
condition is encountered, the monitor simply creates a new
shadow to replace it.

Since Pin’s code cache is local to the process execut-
ing, each shadow process begins compiling from scratch
and compiled traces are lost when a process exits. This re-
sults in a profiling tradeoff between the number and length
of shadows. Shorter-running shadows will have high JIT
overhead and result in more total profiled segments, but
a lower total number of profiled instructions. Conversely,
longer-running shadows will take advantage of hot code in
the code cache, allowing for more instructions to be exe-
cuted and fewer unique segments. To somewhat alleviate
this overhead, we enable Pin’s code cache persistence fea-
ture.

3.3 Multithreaded Programs

Threads are a particularly complicated issue. In our
development system, a Linux 2.6 kernel, with the native
POSIX thread library (NPTL), if one thread in a multi-
threaded program calls fork, only that thread survives in
the new process. This behavior is common to all other
threading libraries that we are familiar with. Following
a fork, the address space is duplicated as usual, but the
architecture context and corresponding kernel threads are
lost. This is a bit unintuitive, but it is reasonable since a
multithreaded fork would require the synchronization of all
threads. Synchronization could be very slow, and the typ-
ical usage model is to call execve shortly after forking, so
it is not surprising that this is how fork naturally behaves.
Unfortunately, different behavior is necessary for shadow
profiling to work on multithreaded programs. It would be
relatively simple to implement a multithreaded fork in the
operating system, but that approach would be cumbersome
and non-portable. Instead, we are currently working on a
userspace solution to emulate the desired behavior by syn-
chronizing each thread in a signal handler and reproducing
the context in the child process. This method will work as
follows:

1. Barrier all threads in the program and store their CPU
state.

2. Fork the process and recreate (clone) threads for those
that were destroyed. Remember, the address space is
identical. Only the CPU contexts are lost.

3. In each new thread, revive the previously stored CPU
state.

4. Continue execution and virtualize thread IDs for sys-
tem calls.

4 Performance Evaluation

Shadow profiling, like any sampling technique, balances
a tradeoff between information and overhead. The balance
between these can be controlled by two parameters to the
profiling tool. First, the sample size, controls the number of
consecutive instructions that a shadow should execute be-
fore exiting. A small sample size allows for more unique
samples to be taken, but because of the initial overhead of
creating a shadow process, the total number of instructions
profiled is lower. Larger samples have less overhead, but
since they have a coarser granularity, they may miss im-
portant program phases. Another parameter that affects the
profiling overhead is load, which is defined as the average
number of active shadow processes. A specific configura-
tion is defined as the tuple < sample size,load >. In
these experiments, we evaluate sample sizes of 1M, 10M,
and 100M instructions, and load values of 0.0625, 0.125,
0.25, 0.5, 1.0, and 2.0, resulting in a total of 18 different
configurations tested.

4.1 Experimental Configuration

All experiments were run on a 4-CPU system with Intel®
Xeon™ 3.0GHz processors with 4096kB L3 cache. The
system has 6GB of memory and is running Linux ker-
nel version 2.6.9. The framework is evaluated using the
SPEC CPU2000 integer benchmark suite. The floating
point benchmarks are omitted because they generally ex-
hibit highly repetitive behavior that is not as interesting
from the perspective of profiling,

Each experiment presented is the average of 3 repeated
trials. Even so, there still exists some degree of variability
in performance and accuracy due to the random points at
which shadows are created.

Pin’s ability to persistently store its code cache across
multiple runs is very important in reducing the overhead re-
quired to profile. However, there are a number of options
for how to apply this feature. JIT compilation could be en-
tirely obviated by creating persistent caches prior to running
experiments, but this would unfairly ignore one of the most
significant design challenges. For these experiments, a new
persistent cache is created each time a program is invoked.
The cache starts out empty, and each time a shadow process
terminates, it writes it code cache back out to disk. Using
this policy, the first few shadows execute very slowly be-
cause they must populate the code cache, but later shadows
execute faster because they are able to benefit from previous
traces that have already been instrumented.
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4.2 Interprocedural Path Profiling

Path profiling, first described by Ball and Larus [4], can
be used to direct the compiler or a dynamic optimizer to
improve code layout and create superblocks. When the in-
strumentation is inserted by the compiler, it can be highly
optimized because the entire control flow graph is known.
This type of instrumentation typically results in overheads
of 30-40%. In a dynamic instrumentation system, indirect
branch targets are not known, so every basic block must be
instrumented and the overhead is a bit higher. Furthermore,
Ball and Larus only examine intraprocedural acyclic paths.
This study examines interprocedural paths, or those that
span multiple functions. Our Pintool for collecting these
paths incurs an overhead of about 3000%. While there are
opportunities for optimizing the profiler itself, evaluating a
naive implementation exemplifies one of the key benefits of
shadow profiling: simplicity.

The accuracy of the partial path profile can be at-

tained by comparing the sampled profile with a perfect pro-
file. We use a method similar to Wall’s weight matching

scheme [36]. In this paper, accuracy is defined as

Epe(HogtNHaer) Fact ()

Accuracy of Pest = (1)

YpeHaes Fact(p)

In this equation, F'(p) is the flow of a path. This is de-
fined as the path’s count divided by the count of all the paths
added together, and represents the weight that path p ac-
counts for. H,, is the set of paths in the perfect path profile
which are above a set threshhold. We use the top 5% as the
threshhold in this study. H.g; is then defined by selecting
the hottest paths in the partial profile equal to the number of
paths in H,;.

4.3 Value Profiling

To further demonstrate the robustness of the shadow pro-
filing framework, we choose an instrumentation-based pro-
file that has a considerably higher overhead. Value profiling
can be used to locate variables and instructions that have
predictable or invariant values at run-time, but cannot be
identified with compiler analysis [9]. A value profile can
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Figure 5. Slowdown versus native execution for shadow-based value profiling. The x-axis denotes
configuration combinations of load and sample size.
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Figure 7. Dynamic instruction coverage for shadow-based value profiling. The x-axis denotes con-

figuration combinations of load and sample size.

be used to create specialized code for the observed com-
mon case of execution, and has been observed to achieve
up to 21% speedup improvements in programs. However,
collecting a full value profile is very expensive; our imple-
mentation has an overhead of up to 10,000%.

A general value profile is collected by instrumenting any

instruction that has a destination register, including loads,
arithmetic, and comparison operations. The profiler keeps
a 50-entry top-N-value (TNV) table for each instruction.
Each entry in the TNV table is a tuple containing the value
and the number of times it has been observed. Each time
a relevant instruction occurs, its TNV table is updated. To



allow for new values to make their way into the table, the
lower half of the table is periodically flushed.

Sampled profiles are compared to perfect profiles by cal-
culating the difference in invariance of top values (Diff-
Top). This metric describes the weighted difference in in-
variance between two profiles for the top-most value in the
TNV table for instructions that exist in both profiles. The
invariance of an instruction is calculated as the number of
times the top-most value was observed divided by the num-
ber of times that instruction executed. Each instruction’s
difference is included in an averaged weighted by the exe-
cution frequency in the perfect profile.

4.4 Profiling Accuracy

The profiling accuracy for shadow-based path profiling is
shown in Figure 3. For all configurations tested, the average
accuracy ranges from 83-93%, and most of the benchmarks
achieve above 90% coverage in every experiment. The main
trend that can be observed is that increasing load and sam-
ple size has a positive impact on accuracy. For these appli-
cations, all of the sample sizes do well, and a configuration
of < 100M, 0.25 > results in 93% accuracy with about 1%
overhead.

One benchmark that exhibits these trends very well is
176.gcc. At < 1M,0.0625 >, it achieves only 28% accu-
racy, but it quickly increases to over 94% with longer sam-
ple sizes. This effect is caused by the fact that 176.gcc has
a very large code footprint, and therefore Pin spends more
time compiling traces than in other applications. Longer
samples and higher load increase code cache efficiency. An-
other interesting benchmark is 186.crafty because it has mil-
lions of unique paths. In fact, the perfect profiler cannot
complete without pruning a large number of cold paths be-
cause it runs out of memory. 186.crafty exhibits trends sim-
ilar to 176.gcc, though slightly less amplified.

Overall, path profiling accuracy shows that shadow pro-
filing achieves good, representative coverage of a program’s
dynamic instruction mix. To further demonstrate its effec-
tiveness, we evaluate value profiling, which requires much
more rigorous instrumentation that previously could not
have been considered for a dynamic optimization system.
Figure 4 shows the difference in invariance versus a per-
fect profile. A lower difference in invariance indicates a
greater similarity to the perfect profile. Again, nearly all of
the benchmarks perform very well, and there is slightly less
variation than with path profiling. On average, the accuracy
remains within 4-8% of a perfect profile.

In both examples, the data shows that by sampling a
relatively small portion of execution, representative pro-
files can be collected. Interestingly, the average accuracy
isn’t greatly affected by the varying profiling parameters,
although individual benchmarks that are more difficult to

profile are more dependent on the abundance of profile data
collected.

4.5 Performance Overhead

Now that shadow profiling has been shown to achieve
good, representative coverage versus perfect profiles, we
examine the overhead incurred by the framework. Figure 5
shows the slowdown experienced by the original program
for value profiling, defined as the profiled execution time
divided by the native execution time. The overhead for path
profiling is not presented, but it highlights the same trends
and is slightly higher.

The two trends that are expected to occur can be ob-
served in the figure. First, increasing the number of active
shadow processes, or profiling load, results in an increase
in overhead. Second, lengthening the sample size results
in a decrease in overhead because the application will fork
less often. Hence, low profiling load combined with long
samples will result in the lowest overhead.

Although shadow profiling can be tuned to incur very
low average overhead, some of the configurations tested
caused the original program to slow down by up to 20%. In
the experimental system, there are two man sources of over-
head: copy-on-write paging and bus bandwidth contention.
Disk contention is not a factor since all of the applications
easily fit in memory. Figure 6 shows the increase in page
fault rate (page faults per second) observed by the origi-
nal program when shadow profiling is enabled. Unlike the
overall performance results, this graph is very regular and
predictable, yet it corresponds well with performance over-
head. For example, 186.crafty and 300.twolf have among
the lowest paging rate increases and also the lowest over-
head. Note that the increase in page faults is due to memory
copies, not faults to disk.

We find that we can achieve very high accuracy (over
93%) with overhead measuring around 1%. This shows that
the framework can be tuned so that profiling overhead is
negligible, yet the accuracy is still within 93% of a perfect
profile. Therefore, shadow profiling is a viable tool for gath-
ering information in dynamic optimization systems.

4.6 Coverage

Another measurement important to instrumentation sam-
pling is dynamic instruction coverage. Figure 7 shows the
percentage of dynamic instructions captured by value pro-
filing instrumentation. A configuration of < 100M,0.25 >
captures only 0.2% of total execution, yet still is enough to
achieve over 90% accuracy for both path and value profiles,
Interestingly, 181.mcf receives four times better coverage
than average. This is because 181.mcf has a very small code



footprint and frequent misses in the data cache allow the in-
strumentation costs to be hidden by long latencies.

5 Related Work

Replica processes have traditionally been used for pro-
viding redundancy in fault tolerant systems. Systems have
been proposed that implement replica processes using a
scheme similar to shadow profiling [30].

Maintaining determinism among replica processes with
interrupts and multi-threaded execution is challenging and
still an open research problem [5, 40]. Shadow profiling
sidesteps the issue of determinism by simply not requiring
deterministic execution. The shadow processes exist only to
collect meaningful profile information and are not required
for program correctness. Also, if any unsafe or undefined
execution occurs, the shadow process can be safely exit and
be recreated. To the best of our knowledge, this is the first
use of replica processes for profiling.

Software tools such as Pin [24], ATOM [33], and Dy-
namoRIO [6] can be used to instrument an application and
collect full execution profiles. However, the overhead of in-
strumenting an entire execution is prohibitive and infeasible
when collecting detailed profiles on long-running programs.

Sampling-based instrumentation approaches can signifi-
cantly lower the overhead of profiling. For example, Arnold
and Sweeney periodically sample the call stack to to ap-
proximate the calling context tree [3]. Whaley uses similar
samples for a partial calling context tree [38]. The Arnold-
Ryder [2] instrumentation framework and ephemeral profil-
ing [34] reduce instrumentation overhead by only sampling
bursts of execution. The Arnold-Ryder framework, imple-
mented in the Jalapeno JVM, creates two versions of each
procedure. Execution alternates between one version that
contains the original code with checks at procedure entry
points and loop back edges, and another that is an instru-
mented version of the same code. When a counter decre-
ments to zero in the checking version, control transfers to
the instrumented version. Then an intraprocedural, acyclic
trace is collected, the counter is reset, and execution trans-
fers back to the checking version. Hirzel and Chilimbi
coined the term “bursty tracing” for this technique and ex-
tended it to allow longer, interprocedural traces. Also, in-
stead of Java bytecode, they apply it to IA32 binaries using
the Vulcan binary rewriting tool [18]. The sampled execu-
tion time can be optimistically estimated by:

Tiotal = Tchecking * O/Ue’rheadchecking + Tinst ¥ Overheadin st

2)
We may assume that Overhead pecking i negligible. Now
suppose that Overhead;ys is 10. Then if 1% of the pro-
gram executes in instrumented mode, T}, Will be 10%
higher than without instrumentation. Of course, as the over-

head of instrumentation and the time spent in instrumented
code increase, so does the total execution time.

Shadow profiling is partially inspired by bursty
sampling-based techniques. However, instead of executing
the instrumentation code along with the original applica-
tion code, shadow profiling shifts the instrumentation to the
shadow process which is able to run in a different hardware
context. The original application can proceed natively with-
out any slowdown due to instrumentation. This benefit al-
lows shadow profiling to scale and allow better coverage for
higher overhead instrumentation techniques.

Low-overhead software profiling techniques are often
studied for the collection of detailed profiles such as path
profiles [4, 16], value profiles [9], memory stream pro-
files [11] and whole program paths [22]. Shadow profiling
is orthogonal to profile-specific software techniques and can
be used to further improve the overhead of such techniques.

Specialized profiling hardware such as Sastry’s rapid
profiling via stratified sampling [28], Merten’s hot spot de-
tection [25], Vaswani’s programmable hardware path pro-
filer [35], and Conte’s profile buffer [14] have also been
proposed for profiling with low overhead. Zilles [41] and
Heil [17] propose co-processors specifically for profiling.
ProfileMe [15] introduces hardware for profiling the path of
specific instructions through the pipeline.

Recent microprocessors have been designed with on-
chip performance monitoring units (PMU) [20, 21, 31] con-
taining a set of performance counting registers which trig-
ger software interrupts for sampling. DCPI [1] samples the
program counter to detect stalling instructions. PMU sam-
pling has been shown to be effective in collecting path pro-
files [10, 29], cache miss profiles [23], and value profiles.

Hardware profiling mechanisms are promising but have
a few drawbacks. While software instrumentation is flexible
and portable, hardware mechanisms are limited to the fea-
tures they are designed with. Furthermore, PMU function-
ality is often very processor-specific making portability of
profiling tools difficult. More importantly, hardware design-
ers are often reluctant to include profile-specific hardware
in microprocessor designs. Profiling hardware impacts the
processor design cycle. With the increasing time-to-market
pressures, the top design priorities are hardware validation,
and processor performance. Thus, if hardware profiling is
given any attention, is is often as a “second-class citizen” in
processor design [32].

With the microarchitectural trends moving toward mas-
sive multi-threaded and multi-core processors, shadow pro-
filing aims to leverage the abundance of extra hardware is
already available in the form of extra hardware threads or
cores. Shadow profiling simply creates shadow processes
for instrumentation sampling and then allows the operating
system to schedule the processes and leverage the available
hardware resources. SuperPin [37] uses a similar approach,



but instead aims to deterministically replicate full execution
by creating “slices” of execution between each system call.

6 Future Work

Since architectural trends are forcing programming
paradigms to shift more towards multithreaded program-
ming, it is imperative that profiling research adjust accord-
ingly. To address this issue, we are currently develop-
ing a userspace implementation that transparently recreates
thread contexts since they do not live after a fork system
call. Due to both job and instruction scheduling, the shadow
will not be a deterministic replica after a fork, but it is still
suitable for the purpose of profiling.

Currently, no discretion is given to when a shadow
should be created or how much information is enough.
There are several options to explore in this domain. First,
some consideration should be given to the load on the rest
of the system. Under high system load, the profiling load
should be scaled back. To better choose phases to pro-
file, the compiler could provide insight into which regions
of code would benefit the most from profiling, and spawn
shadow processes accordingly. Alternately, a performance
counter monitoring system could detect phase changes and
profile only after phase transitions occur. In a continuous
optimization system, as more profiles are collected the data
is likely to converge. Once the profile stabilizes, the sam-
pling rate can be reduced so as only to detect when a pro-
gram’s behavior deviates from the existing profile. A sta-
tistical model, similar to that used by SMARTS [39] for ar-
chitectural simulation, could likely be applied for profiling
purposes to direct sampling frequencies and lengths. Calder
also proposed a method for convergent profiling of value
profiles [9].

7 Conclusion

This paper presents shadow profiling, a novel technique
for performing expensive, instrumentation-based analysis in
parallel with a running program. The method demonstrates
the best qualities from both instrumentation- and sampling-
based approaches; it is shown to achieve high accuracy for
interprocedural path profiles and value profiles, while incur-
ring negligible overhead on the running program. For value
profiles, shadow profiling achieves 93% average accuracy
compared to a perfect profile. Path profiling achieves sim-
ilar results, with an average of 2-7% difference in invari-
ance versus a full profile. In both cases, ideal coverage is
achieved with around 1% overhead. The tool requires no
special operating system or hardware support, and greatly
increases the viability of dynamic and continuous optimiza-
tion systems. Since profiling is done in parallel and the
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number of processor cores is likely to increase considerably
in coming years, instrumentation slowdown is no longer a
major concern. Designers can now focus less on minimiz-
ing the overhead of profiling, and more on applying opti-
mizations.
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