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Run-time optimization defines the process of dynamically modifying an applica-

tion’s characteristics to promote desirable execution behavior. Since there is a wealth of

information available at runtime which is unavailable to static compiler analysis, run-

time optimization has substantially more potential to fully utilize processor resources.

A critical component of run-time optimization systems is the run-time profiler which

must accurately capture specific aspects of application execution behavior while main-

taining a low overhead. Unfortunately, most existing profiling approaches cannot meet

these constraints and therefore cannot feasibly be deployed in a run-time optimization

system.

While modern microprocessors can collect run-time information through on-chip

Hardware Performance Monitoring (HPM) support, it is not clear whether this tech-

nology can effectively guide a run-time optimization framework. To date the HPM

information of various processor systems has almost solely been used in post-execution

performance tools. This thesis evaluates the potential of performance monitoring hard-

ware to support profiling for run-time optimization. The trade-offs in meeting the

constraints imposed in a run-time environment are analyzed by evaluating various sam-

pling rates and analysis techniques. Altogether, the thesis characterizes the amount of

information available through PMU sampling as well as the extent in which compiler

analysis can extend PMU information. Path profiling and code coverage analysis, impor-

tant elements of run-time optimization, are evaluated to demonstrate the effectiveness

of run-time profiling with hardware support.
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Chapter 1

Introduction

Advances in programming languages and software design techniques create a trend

towards increasingly complex software interactions during program execution. Object-

oriented programming languages improve programmability but result in side effects such

as delayed binding which makes static optimization difficult. Virtual machines (VMs)

are growing in popularity but require an extra software layer in the form of a run-time

interpreter or Just-in-time (JIT) compiler. In addition, a movement towards the usage

of dynamically linked libraries (DLLs) adds extra indirection which traditional compilers

cannot optimize and account for.

With this trend of increasing software complexity, it will be difficult for future

computing systems to continue delivering performance improvements. Dynamic hard-

ware optimization techniques such as out-of-order execution require hardware resources

(i.e. instruction window and re-order buffer) which are difficult to scale. Object-oriented

programming, VMs, and DLLs introduce complexities which limit the scope of tradi-

tional static compilers. In addition, aggressive profile guided optimizations are limited

to performing optimizations specialized for specific input sets. As such, emerging run-

time optimizations systems will play a crucial role in the performance improvements of

next generation systems.

Run-time optimization systems have the unique ability to monitor application and
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system behavior to automatically adapt and optimize programs. These systems have

access to a wealth of run-time information which is not available to a traditional com-

piler. For example, run-time profile information can be used determine hot execution

paths, identify run-time data values, and examine system behavior during execution.

By analyzing profile information, the run-time system can know how to adapt sys-

tem resources as well as drive aggressive profile-based optimizations (PBOs) such as

superblock formation [26], code positioning [41], and function inlining [25].

While run-time optimization systems represent a great potential source of per-

formance improvement, open issues remain regarding the run-time profiling mechanism

for such systems. Specifically, it is unclear how the systems should determine what

information to collect, how to collect it, and how to analyze it. However, it is clear that

the success of a run-time optimizer depends greatly on a run-time profiling technology

that incurs a low overhead while accurately capture a wide range of run-time program

execution and system-level characteristics.

Unfortunately, most previous approaches at profiling are not suitable for use in a

run-time optimization system. Software-based profiling techniques have typically been

used in the traditional static compilation environment. These techniques are able to

collect accurate profile information but incur high overheads. While a high overhead is

manageable for static compilation, it is unacceptable for a run-time optimization system.

At the other end, hardware-based profiling techniques are able to collect information at

a low overhead, but are usually limited in a number of ways. First, they are limited in

the information that they collect. Second, they are limited in the analysis that can be

performed on the profile information. Complicated analysis is expensive to implement

in hardware. Last, most proposed methods for hardware-based profiling do not exist

in hardware eliminating the chance that they can be used in any current run-time

optimization system implementations.

Modern microprocessors such as the Pentium-4, Itanium, and the Power PC 970
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have begun to include support for Hardware Performance Monitoring (HPM) through

special on-chip Performance Monitoring Units (PMUs). These PMUs allow for the

configuration and sampling of hardware registers that can be used to provide run-time

feedback information at the processor and system level. Although PMUs are generally

used by software developers for performance tuning, they present a unique opportunity

for leveraging existing hardware to create a hardware-software hybrid profiling system.

In such a system, hardware is used for low overhead collect data collection and software

is used to analyze the data to generate the profile. Hardware sampling ensures a low

overhead while software allows for flexibility and deep analysis of the sampled data.

The work in this thesis utilizes the novel approach of using a compiler-aided,

PMU-based, hybrid profiling system designed to support a run-time optimization sys-

tem. In particular, the thesis uses the Itanium-2 PMU to periodically sample branch

vectors. A branch vector is a set of correlated branch addresses which effectively rep-

resent a trace of program execution. The collected branch vectors are passed into a

compiler infrastructure which is used to perform analysis on the branch vectors to cre-

ate profile information. A compiler infrastructure is utilized because it contains a view

of the entire program, as well as analysis routines, that are not available during run-

time. The construction of such a system is demonstrated and then used to perform two

case studies.

In the first case study, compiler analysis is used on the branch vectors to generate

a PMU-based estimated path profile. A path profile is a list of paths in a program

along with their associated execution counts. It can be used to determine hot paths

of execution for PBOs such as superblock formation [26]. In the second case study,

a different compiler analysis is utilized to perform code coverage analysis using the

sampled branch vector information. Code coverage information may be useful for larger

scale optimizations such as code placement [41] for improved instruction cache and

Transition Look-aside Buffer (TLB) performance.
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This thesis makes the following contributions:

(1) Characterize the information provided by sampling PMU branch vectors

(2) Characterize the amount a information a compiler infrastructure is able to add

to the sampled PMU branch vectors

(3) Demonstrate the construction of a compiler-aided PMU-based profiling frame-

work

The rest of this thesis is organized as follows. Chapter 2 provides background

information on run-time optimization systems, profiling techniques, hardware perfor-

mance monitoring and hybrid profiling systems. Chapter 3 describes the PMU-based

profiling approach in this thesis as well as methods in which the compiler can provide

valuable additional information. Chapter 4 presents experimental data related to the

first case study of generating a path profile and Chapter 5 presents the PMU-based code

coverage study. Chapter 6 outlines thoughts for future work and Chapter 7 concludes

the thesis.



Chapter 2

Background

This chapter provides background information necessary for motivating and un-

derstanding the design decisions in the profiling framework used in this thesis. First,

run-time optimizations systems are defined and then discussed to show the importance

of the run-time profiler and how its requirements differ from standard offline profiling

techniques. Next, ideal characteristics of a run-time profiler are discussed and then used

to evaluate existing software and hardware approaches to profiling. Finally, hardware

performance monitoring is discussed as well as existing hybrid profilers.

2.1 Run-time Optimization Systems

This thesis sets out to provide an efficient method of profiling for run-time opti-

mization systems. In order to do this, it is important to first define what a run-time

optimization system is as well as the requirements for the success of such a system.

Optimization systems may be divided into three major categories; static, dynamic

and continuous. These term defined below:

Static Optimization System: Static optimization implies that
the optimization of a program is done in a one-time offline fashion.
Examples of static optimization systems are classic static optimizing
compilers and post-link optimization tools such as Ispike [35].
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Dynamic Optimization System: Dynamic optimization is when
a program is optimized during run-time. Typically, the dynamic opti-
mizer monitors a specific application invocation, determines optimiza-
tion opportunities typically in the form of hot spots or traces within
the code, and then performs optimizations. The optimized traces are
usually then placed into a code cache so that subsequent executions of
the hot traces may run from the optimized forms from within the code
cache. Examples of such systems are Dynamo [4], Mojo [14], DELI [17]
and the ADORE dynamic optimizer [33].

Continuous Optimization System: A continuous optimization
system can be viewed as a persistent combination of static and dy-
namic optimization. In a continuous optimizer, programs are continu-
ously monitored and profiled. Optimizations are performed either of-
fline, during idle processes or on idle processors, or online during exe-
cution. Upon completion of optimization, the next invocations of the
programs utilize the new binary. If an instance of the program is still
running, the newly optimized binary may be hot-swapped with the old
binary. Examples are Digital Continuous Profiling Infrastructure [2]
and Kistler’s Continuous Program Optimization framework [31].

The term run-time optimization system refers to any system which effects

a binary during execution or across multiple executions of an application. Therefore,

dynamic optimization systems as well as continuous optimization systems can both fall

under the definition of being run-time optimization systems.

Run-time optimization is an interesting domain of optimization because it has a

number of benefits over traditional static optimization. There is a large amount of pro-

gram information and behavior that is only known at run-time including knowledge of

hot code, run-time values, as well as much of system state. System state will be partic-

ularly important in the upcoming chip multi-threaded and simultaneous multi-threaded

chips which share on-chip hardware units. Traditional aggressive static optimizations

attempt to optimize an application based on a test input set. If the test input does not

match the behavior of a program run, performance may not be seen. In the worst case,

performance may be decreased. Run-time optimization uses information from the cur-

rent program run for optimization. This means that the run-time optimizer effectively
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has perfect profile information. Also, run-time optimizers can be transparent and do

not require the inconvenient extra compilation phases required by static optimizers.

There are three main tasks any run-time optimization system must perform which

can contribute to run-time overhead. First, is the collection of profile information for

a program during it’s execution. Next, the profile information is used to recognize

optimization opportunities and carry out these optimizations. Third, the optimized

code is deployed so that program execution runs from the optimized code. The simple

goal is to apply run-time optimizations where the performance benefits outweigh the

overhead costs. If performed during run-time, all of these tasks are potential causes of

overhead. However, the only task which is completely necessary to perform during run-

time is the profiling. The overhead of optimization and deployment of the optimized

code may be removed either by performing them offline during idle process time, or

on a separate processor. Therefore, in lowering the overhead of a run-time optimizer,

it is critical to focus on efficient low-overhead techniques for the collection of profile

information.

2.2 Types of Profiles

The main purpose for collecting profiles is to understand program behavior and

to use them uncover optimization opportunities to drive PBOs. However, depending on

the specific PBO being deployed, different types of profile information are often needed.

Profiling information can generally be split up into three main categories; event counts,

point profiles, and advanced fine-grained profiles. These are described in the following

subsections.

2.2.1 Event Counts

The simplest type of profile is one which keeps counts of coarse-grained events dur-

ing program execution. These coarse-grained events may be microarchitectural events
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such as branch mispredicts and cache misses, or system level events such as page faults.

The counts are typically sampled periodically and used to represent program behavior

over time.

Profiles with event counts can provide very useful high level information. One

such application is determining phase behavior of a program. Programs are known

to execute in distinct phases [42] where different phases represent different execution

behavior patterns. Run-time optimization systems often attempt to determine phase

transitions to know when to collect information and apply optimizations. Event counters

have been shown to be successful in capturing phase information [19]. Event counters

have also been shown to be effective in characterizing and showing correlations between

system level and microarchitectural events [23, 44, 47].

2.2.2 Point Profiles

A point profile is one which locates specific points in a program to profile. The

points may include individual instructions, branches, or functions. The majority of past

research in PBO actually utilizes point profiles – specifically edge profiles [6, 11, 12,

22]. An edge profile is a profile in which branch bias information is captured for each

branch executed within a program. It is simple to implement because it only requires a

mechanism for maintaining counts for each time a branch is taken or not taken.

One use of point profiles is to determine hot paths for optimizations such as trace

scheduling [22] or superblock formation [26]. Hot edges are commonly placed together to

estimate hot paths in a program. Also, point profiles may be used to derive code coverage

information such as function coverage, branch coverage or statement coverage. Coverage

information may be used to for a high level of code placement such as placement of code

onto pages. Another form of point profile utilization is for generating a call graph. If

function calls are counted, they can represent call graph information and be used to

drive inter-procedural optimizations such as function inlining [25].
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2.2.3 Fine-grained Profiles

Fine-grained profiles refer to more sophisticated types of profiles which generally

require more advanced hardware features and often more robust software algorithms.

An example of a more advanced fine-grained profile is the path profile [5]. A path

profile is a profile which contains a set of paths enumerated from the original control

flow graph as well as their associated execution counts. As far as hot trace layout

optimizations are concerned, path profiles have been shown to be more effective than

edge point profiles [7].

Figure 2.1, which shows a control flow graph (CFG) annotated with edge profile

information, provides an example of the difference between an edge profile and a path

profile. The edge counts in the CFG indicate that the hot path contains basic blocks

ABDFG. However, suppose that all of the paths through blocks ACD continued down

through blocks F and G. In this case, the count for path ABDFG would be 50, and

would not be the 70 suggested by an edge profile. While a edge profile can only provide

estimated hot paths which may be misleading, an actual path profile provides accurate

counts of paths.

70

A

B C

D

E F

G

80 20

30

Figure 2.1: An example CFG with edge profile annotations.
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A cache-miss profiles are another example of a more fine-grained profiling tech-

nique. In this case, more robust hardware features are required for collecting this type

of information such as the Event Address Registers (EARs) on the Itanium-2 PMU [28].

PMUs are discussed in more detail in Section 2.5. The EARs can be used to sample

instruction and data addresses for cache or TLB misses as well as their associated laten-

cies. This information can be used to identify critical load instructions which frequently

causes cache misses. This knowledge can then be used to drive memory optimizations.

An example, is the ADORE dynamic optimization system [33] which uses the Itanium-2

PMU to collect a data cache miss profile to dynamically determine locations to insert

memory prefetch instructions.

2.3 Ideal Run-time Profiling Characteristics

Now that run-time optimization systems and background on profiling has been

discussed, it is time to discuss the characteristics which a profile mechanism for a run-

time optimization system should have. The ideal characteristics for such a profiling

system are listed and then detailed below. These characteristics are later used to eval-

uate previous profiling approaches.

• Low overhead

• High accuracy

• Broad applicability

• Transparency

• Low hardware cost and complexity

Low overhead is perhaps the most important of the characteristics. Low over-

head is crucial because all overhead costs must be outweighed by performance gains.
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Overhead is defined as the total amount of time necessary during program run-time for

profiling.

High accuracy is defined as a profile’s ability to reflect run-time execution.

The accuracy of profile information is crucial to the success of PBOs. An accurate

profile will uncover many optimizations opportunities for PBOs which can lead to drastic

performance improvements. On the other hand, a poor profile can cause PBOs to

perform poor optimizations which may lead to a decrease in performance.

Broad applicability refers to the ability to collect various granularities and

types of profiles. This is important as run-time systems need to apply a wide range of

optimizations at many different levels and granularities.

Transparency is the ability for the profiling system to collect information with-

out perturbing the original application execution. This is important to different degrees

depending on the type of profile needed. For example, if instrumentation code is in-

serted, it would not make a difference if a basic block profile is desired. However, if

an instruction cache miss profile is needed, than the additional code fragments would

perturb the cache and become an issue.

Low hardware cost and complexity is defined by the impact the profiling

mechanism has on the hardware design cycle of a processor. There are two issues here.

The first is the hardware real estate required. A larger design consumes more power

and may take longer to design. The second issue is hardware complexity. The more

complex the hardware, the longer the design as well as verification time.

2.4 Previous Profiling Approaches

Past profiling approaches can be split into three broad categories; 1) software,

2) hardware and 3) hybrid. As the name implies, software techniques employ a com-

plete software solution for gathering profile information while hardware techniques are

implemented entirely in hardware. Hybrid techniques typically use hardware to collect
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Categories Profiling Approaches
Software Static Instrumentation

Dynamic Instrumentation
Most Recently Executed Tail (MRET)

Hardware Conte’s BTB Profile Buffer
Hot Spot Detection

Programmable Path Profiler
Hybrid Digital Continuous Profiling Infrastructure (DCPI)

Continuous Program Optimization (CPO)
OProfile
ProfileMe

Vertical Profiling
ADORE Dynamic Optimizer

Table 2.1: Existing approaches to profiling split into categories.

information and software to perform analysis. Table 2.1 shows the three categories

of profiling techniques and the previous approaches which fit into each category. The

hardware and software techniques are discussed in detail in this section. The hybrid

techniques are discussed in the following section (Section 2.5) with the discussion on

hardware performance monitoring.

2.4.1 Static Instrumentation

A common method of gathering profile information is through static software-

based instrumentation. The program is initially compiled with the insertion of code

fragments, or instrumentation code. The binary is then run to collect profile informa-

tion. Static instrumentation is useful because it can be used to obtain highly accurate

profiles. The reason for this is that any arbitrary instrumentation code may be placed

at arbitrary locations in order to collect any information that is desired. An alternative

to having a compiler insert instrumentation is to use a static instrumentation tools such

as ATOM [21] which inserts instrumentation prior to program execution.

While software instrumentation can gather accurate profiles, a large disadvantage
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is that it typically incurs a high profiling overhead. This occurs for two reasons. First,

execution time is required for the insertion of instrumentation code. Second, during

the profile run of the program, the instrumentation code must be run with the original

code. The overhead due to simply running the instrumentation code itself can be quite

large. For example, studies [6] show that instrumentation for a collecting an edge profile

incurs about a 21% overhead. Note that this is just for a point profile. More advanced

profiles such as path profiles would incur a higher overhead.

Because path profiles are a superior form of profile for hot trace layout opti-

mizations, path profile instrumentation algorithms have been a very popular topic of

research. The original path profiling algorithm was proposed by Ball and Larus [5].

In this algorithm, the CFG is divided into regions which are typically along function

boundaries. Loop-back branches are removed, and replaced with a dummy edge from

the head of the CFG to the loop header and another dummy edge from the loop exit

to the exit of the CFG. The replacement of loopback edges with the dummy edges ef-

fectively creates a directed acyclic graph (DAG) from each region in which loop paths

can be distinguished from full paths in the CFG. A single counter per region is then

used in conjunction with a edge numbering algorithm to determine points of instrumen-

tation that can be used to define distinct paths of execution. This added algorithmic

complexity often causes path profile collection to require a larger overhead than simple

edge profile collection. The Ball and Larus path profiler averaged a 31% slowdown, with

slowdowns as high as 97% for gcc.

Targeted Path Profiling (TPP) [29] and Practical Path Profiling (PPP) [8], ex-

tensions of Ball and Larus path profiling, make an effort to decrease overhead in the

context of staged dynamic optimization systems. Both are based on the idea that an

edge profile from a previous stage of dynamic optimization can be carried into a path

profiling stage, and used to locate obvious paths that do not need to be instrumented

for path profiling. TPP lowers overhead to around 16% by ignoring these obvious paths.
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PPP is an extension of TPP which ignores more paths and decreases overhead to an

average of 5%. While these overhead numbers may seem low, remember that they do

require information from an edge profile. This means that an extra stage is needed to

compile for the edge profile and an additional extra stage is needed to run the edge pro-

file enabled binary. Therefore, the overhead is much higher than the run-time overhead

percentages suggest.

While static instrumentation is able to provide a highly accurate profile, the

insertion of instrumentation code creates a high overhead and also results in non-

transparency. The applicability is limited to information that can be collected by code

insertion. Architectural behavior such as branch mispredicts and cache misses cannot

be profiled by using instrumentation. While instrumentation also limits profiling to the

application, more information can be collected if the kernel as well as the libraries are

instrumented [23, 44, 47].

2.4.2 Dynamic Instrumentation

Instead of inserting instrumentation at statically, instrumentation can also be in-

serted during run-time using dynamic instrumentation. Dynamic instrumentation tools

such as Pin [34], DynamoRIO [9] and Dyninst [10] may be used to inject arbitrary code

fragments into arbitrary points in a running executable. While dynamic instrumenta-

tion removes the initial compilation phase for inserting instrumentation, it often results

in higher run-time overhead due to the dynamic interpretation or compilation. PIN-

instrumented binaries average slowdowns of 2.8x (up to 20x slowdowns) [34] for simple

basic block counting of integer benchmarks.

Dynamic instrumentation is similar to static instrumentation in that it is able to

provide highly accurate profile information, it has a high overhead, and is not trans-

parent. It also has most of the same limitations as static instrumentation except that
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since each instruction can be viewed and instrumented dynamically, instrumentation

can extend to library code.

2.4.3 Most Recently Executed Tail (MRET)

Interpretation-based dynamic optimization systems such as Dynamo [4] and Mojo [14]

have developed a speculative version of path profiling known as Most Recently Executed

Tail (MRET) [18]. The goal of this techniques is to attempt to locate hot traces of code

with minimal profiling.

MRET begins by marking special basic blocks as potential trace heads. In Dy-

namo [4], the targets of backwards branches as well as the targets of trace exits are

marked as trace heads. Once a basic block is marked as a potential trace head, a

count is associated with each execution. Once a trace head’s execution count reaches

a predetermined threshold, the next dynamic execution path from that trace head is

recognized as a hot path, optimized, and placed in the code cache. MRET is built

upon the premise that if a trace of execution is hot, choosing the next executed path

will statistically be the correct hot path. This method has two main drawbacks. First,

the next dynamic execution path may not be the hot trace, causing this method to be

overly speculative. Also, MRET is not able to distinguish between traces once they are

determined to be hot. A hot trace that only executes ten more times should be treated

and marked differently from a trace that continues to execute millions of times.

It should be noted that the idea of MRET is not limited to software-based pro-

filing techniques. However, since MRET is typically been used in interpretation-based

systems, it is placed in the software category in Table 2.1. Compared to instrumentation-

based path profilers, MRET results in a lower overhead because the only the trace heads

must be monitored. In addition, the accuracy is decreased due to its speculative nature

and it is not a transparent profiling mechanism.
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2.4.4 Hardware-based Profiling

A number of hardware-based techniques have been proposed in attempts to reduce

profiling overhead. Conte [15] proposes the sampling of a profile buffer which is coupled

with the branch prediction hardware in processors. The branch information in the

profile buffer is used to fill out an edge profile. Merten [36, 37] discusses using a branch

behavior buffer in his hot spot detection scheme which is essentially a hardware table for

storing branch addresses and counts for the branch directions. The information in the

branch behavior buffer, which is effectively edge profile information, is used to locate

hot spots of execution during run-time. More recently, Vaswani [45] proposed hardware

support for collecting path profile information by using a path stack and a hardware

table for storing paths and their execution counts.

The proposed hardware techniques mentioned above would all substantially de-

crease overhead as compared to the software-based techniques. In fact, the overhead can

be completely removed if the profiling hardware is ensured to be off the critical path.

Because all the profiling is performed in hardware, the program execution behaves as

it normally would without profiling resulting in transparency. Hardware techniques

are usually very limited in their applicability. For example, Conte’s and Merten’s, ap-

proaches are limited to collecting edge profiles. Hardware can only perform what it is

designed for and nothing more. In addition, hardware cost and complexity becomes an

issue.

2.4.5 Summary of Hardware and Software Profiling Techniques

Software and hardware techniques attack profiling from two opposite ends of the

spectrum. Software profilers typically are high overhead, non-transparent, but very
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flexible allowing for the collection of multiple types of profiles. On the other hand,

hardware-based profiling techniques are usually low overhead and transparent but lim-

ited in functionality. They are especially limited in analysis of the collected information

because complicated algorithms are expensive and not feasibly implemented in hard-

ware. Hardware techniques also require hardware costs which impacts the design cycle

of a processor.

Because of their high overhead costs, software-based profiling systems are not

viable for run-time optimization systems. This leaves hardware profiling as the other

option. There are two problems with this. One is the limited flexibility and analysis

possible with hardware. The other is that none of the hardware proposed in Section 2.4.4

exist in hardware. However, a different type of hardware unit (PMU) is making its way

onto modern processors. These are being utilized in hybrid profiling techniques which

effectively bridge the gap between hardware and software approaches. The emergence

of PMUs and hybrid profiling systems are discussed in Section 2.5.

2.5 Hardware Performance Monitoring

In practice, chip designers have been hesitant to include hardware for performance

monitoring on processors. A large reason for this that hardware real estate, as well as

manpower for design and verification, would be needed for a unit of hardware that

does not directly translate into processor performance. Time-to-market pressures in

industry dictate that manpower be focused on designing and validating elements vital

to functionality of the processor – performance monitoring hardware often does not fit

into this picture.

Fortunately, modern microprocessors are beginning to be designed with support

for HPM capabilities that can be used to provide feedback on architectural and system-

level events. Software developers have found HPM support useful for performance tun-
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ing of an application. For example, HPM can easily be used to indicate where an

application is taking performance penalties such as high branch misprediction or cache

miss rates. This information can be used to influence the software design if performance

is critical. Developers of processor simulators also often use the information from HPM

to validate their simulators. While HPM has mostly been motivated for performance

tuning and validation, they are beginning to be used to drive hybrid profiling systems

as well as run-time optimizers. This section describes capabilities and limitations of

HPM as well as the hybrid profiling systems which leverage this technology.

2.5.1 Performance Monitoring Units

To provide feedback information on how an application and the operating sys-

tem are performing, modern systems provide support for HPM through on-chip PMUs.

Processors such as the Pentium-4 [43], Itanium [28], and Power PC 970 [27] all contain

PMUs that allow for the configuration and collection of various hardware performance

monitoring registers. However, because a standard for performance monitoring does not

exist yet, there is a lot of variation between the features that are supported on PMUs

across different processors.

PMU features can be roughly divided into two main categories; coarse-grained

and fine-grained features. Coarse-grained features reflect high level architectural or

system-level behavior and are fairly common across PMUs. All existing PMUs support

a number of event counters which can be configured to count coarse-grained events

such as branch mispredicts, cache misses, TLB misses, page faults or pipeline flushes.

Some PMUs support more events than others. For example, the Pentium-4 supports 18

counters and 45 events while the Itanium-2 supports only 4 counters but 497 events. The

fine-grained performance monitoring features vary greatly across PMUs. They collect

more detailed information such as branch execution or cache miss behavior.
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Feature Description
Event Counters A set of four counters that can be figured to count any of 497

events including cpu cycles, branch mispredicts, L1 instruc-
tion cache misses, etc.

BTB The Branch Trace Buffer registers are a set of eight registers
that act as a circular buffer. Each branch instruction inserts
its instruction address and target address which effectively
creating a circular buffer of the last four branches executed.

BTB Specific Filters: Taken/Not Taken, Target Ad-
dress Predicted Correct/Incorrect, Branch Predicted Cor-
rectly/Incorrectly, Branch Type (non-return indirect, re-
turns, IP-relative branches, or all)

I-EAR Instruction Event Address Registers, can be configured to
sample instruction cache misses or I-TLB misses. Holds in-
struction cache line address and latency for a single sample.

D-DEAR Data Event Address Registers may be configured to sample
a data cache load miss, FP load, L1 D-TLB miss, or ALAT
misses. Holds instruction address, data address, and latency
for a single miss.

Filters Description
Opcode Matching Can be used to match specific opcodes or types of bundle

instructions (ex. M, I, or B)
I-RR Supports up to four separate instruction address range re-

strictions.
D-RR Up to four data address range restrictions may be configured

to filter for data specific counts or samples.

Table 2.2: Itanium-2 PMU features and the filters available for each of the features.

Table 2.2 shows an example of the capabilities provided with the Itanium-2

PMU [28] which is used for the experiments in this thesis. It shows each of the features

of the PMU as well as the filters available for use with each of the features. First, it

contains four simple event counter registers which can be configured to count any of

the 497 events. It also supports a number of more fine-grained features such as the

Branch Trace Buffer (BTB) which is a circular buffer allowing for the sampling of the

last four branches executed. This set of branches is defined as a branch vector and

can be used to effectively represent a trace of program execution. The BTB allows for

a number of BTB specific filters which are shown in the table. In addition to the BTB,
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it also supports instruction and data EARs for sampling information on cache, TLB or

Advanced Load Address Table (ALAT) misses. Filters may be used with any of these

PMU features. These filters include opcode matching and address range restrictions.

Because early PMUs were fairly crude with a few event counters and typically

used for processor validation purposes, the specifications were usually not released for

public use. More recently, PMUs have been designed with more convenient interfaces for

outside use. Tools such as the perfmon interface [20, 24] (which is used in this thesis),

the CHUD Tool package [3], and the PAPI interface [40] have been developed as tools

and interfaces for easier access, configuration, and usage of PMUs.

2.5.2 Implications of Hardware Sampling

There are several barriers to address in using sampled hardware monitoring infor-

mation for program analysis. First, there is a strong relation between sampling period

and the overhead incurred by sampling period. Each sample requires the transfer of

processor control to a system call which reads from the PMU registers. Aggressive

sampling rates can interfere with execution time. Deficient sampling rates may miss

important program execution related to the second issue of sample aliasing. This

occurs when important execution or program phases are missed due to the sampling

period. For example, if an important phase of execution happens to always begin and

end between sampling periods, it will always be missed. A solution to this problem is to

use randomized sampling where a random sampling period within a specified range is

determined for each sampling period. Third, these systems are limited by the amount

of information the PMU can provide. For example, information from branch vectors

are limited number of branches that are collected per sample (e.g. 4 for the Itanium

processor). If a PMU does not support branch vectors, it would be limited to simple

program counter (PC) sampling which only corresponds to a single basic block.
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2.5.3 Hybrid Profiling

With PMUs resident on modern processors, a new hybrid profiling systems have

been developed that combine ideas from both hardware and software techniques. Hybrid

profilers lower overhead by gathering much of their information from PMUs. Some

information, such as library calls and system-level events, may not be available at the

PMU level. Software instrumentation is sometimes used to gather information in these

cases. Hybrid profilers are not completely transparent but can be close. The PMU is

used to gather most of the information. However, occasionally, there is an interrupt

which is used to gather the PMU information. Any software instrumentation, which is

usually minimal in hybrid systems, also perturbs the original application execution. The

accuracy of these systems may suffer a bit because they rely on sampled information.

Instead of collecting an entire profile, pieces of the whole pictures are sampled and

software analysis is used to piece them together. Software can perform analysis which is

expensive in hardware and can also be used to transform one type or profile to another.

By using both hardware and software, a broad profiling applicability can be attained.

2.5.3.1 Hybrid Profiling Systems

Digital Continuous Profiling Infrastructure (DCPI) [2] is a system-wide hybrid

profiler which utilizes the PMU on Digital Alpha processors to monitor running ap-

plications and shared libraries. DCPI periodically uses an interrupt to stop program

execution, note the current PC and event counters, and then analyze these samples

for profile information. It uses PMU event counters for branch mispredict and cache

miss information in an estimated cycle accounting algorithm. OProfile [39] is a similar

system wide profiler for Linux inspired by DCPI.

ProfileMe [16] is another hybrid profiler which utilizes a different form of HPM.
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Instead of sampling events, ProfileMe samples random individual instructions through

the processor pipeline. Event are captured from each of these instructions through the

pipeline and software algorithms extract useful profile information.

IBM’s vertical profiling [23, 44, 47] infrastructure is yet another example of a hy-

brid profiler. Vertical profiling collects information across all system layers ranging from

hardware to a running Java VM. A PMU is used for architectural profile information

while instrumentation is used in libraries, the kernel, and the Java VM.

2.5.3.2 Hybrid Profilers and Run-time Optimization

Hybrid profilers utilizing PMUs are beginning to be deployed in actual run-time

optimization systems. For example, the Continuous Program Optimization frame-

work [31] is a continuous optimization system which uses PMU samples to drive re-

compilation during run-time. When the new binary is finished compiling, it is hot-

swapped with the old binary.

The ADORE dynamic optimizer [33] is the first dynamic optimization system

which exploits a PMU for profiling and monitoring. Previous dynamic optimizers have

used interpretation or instrumentation-based techniques to run and monitor applications

which incur a higher overhead than hardware sampling. ADORE uses the Itanium

BTB registers for hot trace selection [13] and the Data EARs to capture a data cache

miss profile in order to insert prefetches [32] for improving memory performance. The

work in this thesis builds off of ideas in the ADORE optimizer performing further

characterization of sampled BTB data; specifically pertaining to extrapolating PMU

path profiling and PMU code coverage information with the sampled BTB registers.



Chapter 3

PMU-based Profiling

This chapter presents the hybrid PMU-based profiling system for extrapolating

run-time code behavior. It begins with an overview of the entire framework and then de-

scribes the details of each part of the framework. After that, various compiler techniques

are discussed which may be used to extend the PMU information.

3.1 Overview of PMU-based Profiling System

Figure 3.1 shows a high level overview of the entire compiler-aided, PMU-based

profiling system. The system consists of two main phases; an online PMU collection

phase, and an offline analysis phase. The online collection phase configures the PMU and

periodically samples and stores branch vectors. An offline compiler-aided phase then

performs analysis on the sampled branch vectors. Note that there are two consequences

of performing the offline software analysis. First, the usage of software for analysis allows

for deeper analysis. There is a lot of information available in a compiler infrastructure

that is not readily available during run-time. Second, it helps to decrease overhead.

The only part of profiling which is required during run-time is collection of run-time

information. The analysis portion of the profiling scheme can theoretically be decoupled

from the collection of the profile information and be performed offline, during idle

processes, or even on a completely separate processor.
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Figure 3.1: Overview of compiler-aided, PMU-based profiling framework.

3.2 Program Annotation

The BTB registers on the Itanium-2 PMU provide branch vectors which are

simply a set of branch instruction addresses and branch target addresses. A problem

arises in that there must be a method of mapping the addresses in the collected branch

vectors back to instruction in the offline phase. In this case, the addresses must be able

to be mapped back to the compiler low-level intermediate representation (IR) of the

code. To manage this, programs must be compiled with an extra annotation phase. The

annotation phase should be performed last during code generation to attach a specific

label to each assembly instruction which is generated. The label provides information

that can be used to map the instruction back to its representation in the compiler

infrastructure. By annotating each instruction in a binary, an address map can be

generated which is a direct map from program address to compiler IR instruction.
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3.3 Collection of Branch Vectors

The online phase of PMU-based profiling consists of configuring, sampling, and

storing branch vectors. While previous profiling systems like DCPI [2] use PC-sampling

techniques to infer run-time code information, more robust PMUs support the collection

of branch vectors. A branch vector is a set of correlated branch instruction addresses and

branch targets that can be used to represent the a trace of program execution. A single

PC can only provide information for a single instruction and at most can guarantee the

execution of a basic block. By using branch vectors, the execution of multiple basic

blocks can be inferred as well the specific path of execution along the basic blocks.

The experiments in this thesis utilize the Itanium-2 PMU which implements

branch vector sampling through its BTB registers (described in Section 2.5.1). The

BTB is configured to sample only taken branches since fall through branches can eas-

ily be followed with knowledge of the original CFG in a compiler infrastructure. By

sampling branch vectors of four taken branches it is possible to gather longer paths per

branch vector by inferring fall through branches which corresponds to the collection of

more run-time information per sample.

A kernel buffer is set up which is able to store N total samples from the BTB. At

each sampling period, the BTB registers are sampled and placed into a kernel buffer.

When the kernel buffer fills up after N sampling periods, an interrupt occurs. On this

interrupt, the N branch vectors in the kernel buffer are copied into user space data

structures and stored in a specialized hash table. The hash function of the hash table

is a combination of shifts and XOR operations on the branch vector addresses. The

branch vector hash table collects and maintains counts for duplicate branch vectors.

Upon the completion of program execution, the hash table contents of branch vectors

and their respective occurrence counts are written to a file that is to be used in the

offline analysis phase. In a system wide PMU-based profiling system, the hash table



26

contents could be written to a database of performance monitoring data. It should be

noted that although this section describes the configuration and usage of the Itanium-2

PMU, the methods can be applied to any PMU which supports the sampling of similar

branch vectors.

3.4 Partial Path Creation

The first step in the offline analysis phase is to associate each of the branch vec-

tors back to the original CFG within the low-level IR of the program within a compiler

framework. A branch vector mapped to low level IR instructions in the compiler frame-

work is defined as a partial path. This mapping is enabled by used specially annotated

binaries as discussed in Section 3.2. Partial paths contain the same basic blocks in-

dicated by their corresponding branch vectors with one significant difference: the fall

through branches are inferred and added to the partial path.

A low-level compiler IR instruction is similar to an assembly instruction as it is

the lowest-level of the ISA-independent IR. This low-level IR is appropriate for PBO

optimizations such as inlining [25] or superblock formation [26] and can also be raised

to higher levels of IR or even source code if necessary. However, such work is not the

focus of this thesis.

3.5 Compiler Analysis

Once all the branch vectors are mapped back to partial paths, the PMU infor-

mation is in a form that the compiler can easily analyze and manipulate. At this point,

analysis and tools within the compiler infrastructure can be leveraged to extend the

amount of information provided per hardware sample. The addition of compiler-aid

is crucial because much of the information and analysis available at the compiler level

is either not available at run-time or would incur a high overhead and would not be
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feasible to perform at that time. There are three main compiler extensions utilized; 1)

partial path extensions, 2) dominator analysis and 3) path profile generation.

3.5.1 Partial Path Extensions

Vector

Join Point

Branch Point

Branches

Partial Path w/ Extensions

1

2

4

3

1−2−3−4
Branch Vector: 4 Taken

Partial Path from Branch

Figure 3.2: Example showing a branch vector, the corresponding partial path, and the
extended partial path.

Compiler information can be used to extend the length of partial paths under

certain conditions. For example, if the head of a partial path only has one source flow

coming into it, then the partial path can be extended up the source flow and include the

corresponding basic block. This process can be repeated until a point of uncertainty is

reached; in this case, a join point. The tail of the partial path may also be extended

if there is only a single destination flow. The extensions may continue until a branch

point is reached.

Figure 3.2 shows an example of partial path extensions. Suppose the branches

numbered 1 through 4 show the four taken branches in a particular sampled branch
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vector. The blocks circled by the solid line indicate the partial path corresponding to

the branch vector. Here, a partial path of six basic blocks can be formed by using

4 taken branches and inferring fall through targets. The dotted lines show the basic

blocks that can be added to by extending partial paths until a point of uncertainty. In

this example, a partial path extensions can be used to increase the partial path length

from six to ten basic blocks.

3.5.2 Dominator Analysis
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Figure 3.3: Partial path creation and path extension based on dominator analysis.

A number of compiler optimizations and transformations rely on dominator anal-

ysis [1] to determine guaranteed execution relationships of blocks in a control flow graph.

There are two commonly analyzed dominator relationships: dominance and post domi-

nance. Terms commonly used in dominator analysis are defined below:

Dominance: Basic block u dominates basic block v if every path
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from the entry of the CFG to basic block v contains basic block u.

Immediate Dominator: Basic block u is the immediate dominator
of basic block v if u dominates v and is the closer in the CFG to v than
any other basic block which dominates v.

Post Dominance: Basic block u post-dominates basic block v if
every path from v to the exit of the CFG contains basic block u.

Immediate Post Dominator: Basic block u is the immediate post
dominator of basic block v if u post dominates v and is closer in the
CFG to v than any other basic block which post dominates v.

Tree representations of the information summarize the dominance and post-

dominance relationships. A dominator tree is a directed graph created by starting

at the entry block of a graph. Each block is connected to its immediate dominator to

form a tree where the basic block for every node in the tree dominates all of its child

nodes. Likewise, a post-dominator tree is simply a tree starting at the exit block

of a graph where each basic block node is connected to its immediate post dominator.

Each node in the post-dominator tree post dominates all of its child nodes. Examples of

dominator and post-dominator trees for the control flow graph of Figure 3.3 are shown

in Figure 3.4(a) and Figure 3.4(b).

The hierarchy of the trees indicate transitive relationship of dominance. For

example, node A is at the top of the Figure 3.4(a) as it dominates every node in the

graph. Specifically this means that prior to executing any other block in the graph,

node A is guaranteed to execute. Further, from Figure 3.4(a) it can be inferred that

when any block in the list [D,E, F, G,H, I, J, L,M,N ] execute, both A and B must have

also been executed. The post-dominator tree (Figure 3.4(b)) indicates the relationship

between executing a block in the CFG and executing another block before reaching the

exit block of the graph. For example, execution of block C will guarantee the execution

of all nodes above it in the tree, namely that corresponding blocks S, P,O,K execute

before exiting the graph.
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Figure 3.4: (a) Dominator and (b) post dominator trees for control graph in Figure 3.3.
Partial path blocks and blocks added from dominator analysis are shown.

By leveraging compiler support for dominator analysis, PMU-based branch vector

information can be extended. The partial path (blocks D,E,G, J, L,N) created from

branch vector information in Figure 3.3 illustrates an example of this. By assessing

the dominator tree in Figure 3.4(a) with the partial path, it is asserted that blocks

A and B dominate the partial path and therefore are guaranteed to execute. Using

the post dominator tree shown in Figure 3.4(b), it is likewise known that blocks P

and S both post-dominate the partial path and are guaranteed to execute. It is clear

that by sampling branch vectors and performing dominator analysis, more information

can be extracted out of each sample. Overall, in this example, dominator analysis

helps guarantee the execution of four additional program blocks for PMU-generated

information, collectively indicating the execution of ten basic blocks.
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Partial path extensions and dominator analysis are related in they they both

provide additional basic blocks which are guaranteed to execute. Basic blocks added by

partial path extensions are a subset of the blocks which are known to execute through

dominator analysis. The difference is that partial path extensions show blocks that are

guaranteed to execute and are constrained to be connected to the original partial path.

Therefore, partial path extensions and dominator analysis should be used in different

contexts. If specific path information is of interest, partial path extensions should be

utilized. If any kind of code coverage analysis the subject of interest, then dominator

analysis should be used to maximize the information added by the compiler.

3.5.3 Path Profile Generation

The last compiler algorithm used is this thesis is path profile generation. A path

profile consists of a set of program paths and their associated counts or weights. The goal

here is to use the compiler infrastructure to analyze partial paths and map them back

to pre-determined paths to create a path profile. The original Ball-Larus path profiling

scheme [5] used pre-determined paths which started at function and loop heads and

ended at loopback edges and function returns.

Due to the nature of partial paths, there are a number of issues to deal with when

trying to match partial paths back to pre-determined paths in the path profile. One

issue is that partial paths have the ability to span loopback edges as well as function

boundaries. They represent exact traces of program execution while typically paths in

a path profile represent paths through the CFG of a given function or region. The only

way to map partial paths back to the paths in the compiler view of the CFG is to split

partial paths along function boundaries and loopback edges.

Another issue is that of path ambiguity. After the partial paths are split, they

are still not guaranteed to match up with the pre-determined paths. Branch vectors
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are randomly sampled meaning that they can start and end anywhere in the CFG and

therefore are not constrained to the beginnings and endings of the pre-determined paths.

To overcome this, an algorithm is necessary for matching and crediting the actual paths

in the path profile by using partial paths.

The last issue, which is generic to all path profiling techniques, is that the number

of paths in a given CFG grows exponentially. There may exist resource complications

when dealing with large CFGs. The OpenIMPACT Research Compiler [38], as well as

most other compiler infrastructures, handle CFGs at the function granularity. Problems

can arise in trying to enumerate all paths in large functions. In fact, there are cases

where the number of paths in a function exceeds the limit of using a 64-bit path ID. This

problem is managed by limiting CFGs to regions which are guaranteed avoid resource

complications.

Path profile generation consists of the following steps. First, functions are split

into manageable regions. Partial paths are split along these region boundaries. After-

wards, a path matching and path crediting algorithm is used for filling out the weights

of paths in the path profile by using partial paths. These steps are discussed in more

detail in the following subsections.

3.5.3.1 Region Formation

The first step in path profile generation is to create regions to guarantee CFGs

which are manageable in size. Before describing the region formation algorithm used

for these experiments, a few relevant terms must first be defined. The terminology used

in these definitions is consistent with Ball’s study [7].

Let Region R(V,E) be a sub-graph of the directed graph G(V,E) with
a unique entry vertex RENTRY , a set of body vertices RBODY , and a
set of exit vertices REXIT all of which are reachable from RENTRY . An
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edge e = v → w connects source vertex v (denoted by src(e)) to target
vertex w (denoted by tgt(e)).

A Partial Path in R is represented as a sequence of edges E(p) =
[e1, e2, ..., en], where src(ei) ∈ RBODY .

A Region-based Path in R is a partial path with the added con-
straints src(e1) = RENTRY and tgt(en) ∈ REXIT . The set of paths
from RENTRY to REXIT in which edge e appears is denoted by P (e).

A Threshold T exists such that any region R may not contain more
than T number of region-based paths.

Thus, according to the definitions above, the following rules govern the formation

of a region R:

(1) R can only be entered via its single entry vertex

(2) RBODY is constrained by loop boundaries. It may not contain basic blocks

outside of a loop body as well as basic blocks which are inside a loop body

(3) The total number of paths from RENTRY to all REXIT vertices must be less

than a threshold T

(4) RBODY should contain as many basic blocks as possible.

To form regions within these limitations, a greedy region formation algorithm

is implemented. The algorithm begins with the single region R containing just one

vertex: the entry of the CFG. In a breadth-first manner R is expanded along the target

edges of its exit vertices. When the algorithm can no longer expand R, it marks all

vertices REXIT as the entry vertices for new regions. The algorithm is repeated for

these vertices and so on until all the basic blocks within the CFG have been added

to regions or the size of the CFG reaches a pre-determined threshold and contains an

unmanageable number of paths.
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Figure 3.5: Example of region formation.

Figure 3.5 provides a simple example of region formation. The algorithm begins

with basic block A. Basic block B cannot be added into the region because it belongs

to a loop. But the algorithm is able to include basic blocks F , G, H, I, J , K, L, M ,

N , and O. Basic block P cannot be included because it breaks the first rule that a

region may only have one entry. This region is shown as Region 2 in the figure. The

loop including basic blocks B, C, D and E forms another region shown as Region 1

and naturally, basic block P begins a new region. When a CFG has been converted

to its composite regions, the full paths in each region are enumerated and stored in

data structures which are later used for the path matching and crediting (discussed in

Section 3.5.3.3).
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3.5.3.2 Region-based Paths

The reason for creating regions is to limit the number of paths in a given CFG to

a manageable number of paths. In order to accomplish this, all paths must be confined

to region-based paths. There are a couple of implications of constraining paths to region

boundaries that must be discussed.

First, using region-based paths means that paths are limited at function bound-

aries and loop boundaries. This means that original partial path correlations between

region boundaries are lost once they are split. If regions are not created well, than it is

possible that the hot region-based paths may be as effective as full Ball-Larus [5] paths

when used to drive code layout PBOs. However, because a high percentage of program

execution exists within loops, it makes sense to build regions around loop boundaries.

Splitting paths on region boundaries creates slightly different paths than Ball-

Larus paths used in most previous path profiling studies. For example, in the example

CFG shown in Figure 3.5, the path ABCEP is a Ball-Larus path but is not a path

found with region-based paths as it spans multiple regions. On the other hand, path

AFGIJLMO is a region-based path but would not be considered a path using the Ball-

Larus algorithm. Again, because programs spend most their execution in loops, it may

be acceptable to limit paths to region-based paths. The effects of different algorithms

for discovering paths should be explored and is left for future work.

3.5.3.3 Region-based Path Profile Generation

Once regions are formed and region-based paths are discovered and enumerated,

the next task is to use partial path information to add counts to the paths to create the

path profile. Each partial path can be extrapolated to a matching set of region-based
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paths as described below:

Given a single partial path p consisting of edges [e1, e2...en], the min-
imum matching set M of region-based paths which contain p is the
intersection of the set of all region-based paths P (e) for each edge of p.

Mp =
⋂k

i=1 P (ei)

The first step in the path profile generation algorithm is to generate the matching

set for each of the partial paths. Depending on the characteristics of the partial path

and the corresponding CFG, the matching set M may contain an indeterminate number

of region-based paths. After generating the matching set for a partial path, the next

step is to increment the count of each of the paths in the set of matching region-based

paths. The distribution of the partial path counts across the matching set is done with

the following assumptions:

(1) There is an equal probability of execution of each path within M

(2) Random sampling of actual program flow

(3) Adequate samples are collected to clearly distinguish frequently executed paths

Partial Count Matches Inc Total
Path
IJLMO 100 AFGIJLMO +50 50

AFHIJLMO +50 50
BCE 50 BCE +50 50
AFGIJ 300 AFGIJLMO +150 200

AFGIJLNO +150 150
LMO 200 AFGIJLMO +50 250

AFHIJLMO +50 100
AFGIKLMO +50 50
AFHIKLMO +50 50

Table 3.1: Example of path matching of partial paths to region-based paths.
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Given these assumptions, the distribution of counts across the matching set be-

comes simple; the count is equally distributed across every matching path. This algo-

rithm may falsely attach weights of a partial path to all of its matched paths but given

enough sampled partial paths placed randomly across the CFG, the hot paths within a

region can still be distinguished.

For example, consider partial paths and their occurrence counts from the CFG

in Figure 3.5 and Table 3.1: IJLMO(100), BCE(50), AFGIJ(300), and LMO(200).

IJLMO matches both AFGIJLMO and AFHIJLMO and assigns a weight of 50 to

both. The intra-loop partial-path BCE yields a unique match and needs not distribute

its weight. The third path, AFGIJ , matches both AFGIJLMO and AFGIJLNO and

distributes a weight of 150 to each. Finally, LMO matches the four paths AFGIJLMO,

AFHIJLMO, AFGIKLMO, and AFHIKLMO and assigns each a weight of 50. The

hot path AFGIJLMO becomes prominent due to continued random sampling of paths

within the region.

Once all partial paths have been matched and weighted as described above, the

sampled path profile is sorted by path weight and the paths whose total program flow

exceed an arbitrarily-defined hot threshold are extracted as hot paths. These hot paths

are ready for immediate use in path-profile based compiler optimization.

3.6 Profile Information

After the compiler analysis of the partial paths, profile information can be gen-

erated. But, what profile information should be generated? The type of profile which

is necessary is dependent on the type of optimization which is to be performed. For

example, path profile information is great for superblock formation [26] but terrible

information for function inlining [25]. One of the advantages to using a hybrid profil-

ing technique is that the hardware samples can be used in different ways to produce

different profiles by simply varying the software analysis techniques employed. This
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thesis presents two case studies illustrating this. Compiler analysis is performed on the

sampled branch vectors to produce a PMU-based path profile and perform PMU-based

code coverage analysis. The implementation and results for these studies are presents

in Chapter 4 and Chapter 5.

3.7 Experimental Methodology

The experiments in this paper are performed using a set of the SPEC CPU 2000

benchmarks compiled with the OpenIMPACT [38] Research Compiler on an Itanium-2

with Redhat Advanced Workstation 3.0 and the 2.6.10 kernel. The applications are

compiled with the base OpenIMPACT configuration which include many classical op-

timizations and but do not include more aggressive profile-directed optimizations. The

PMU collection tool used during the run-time monitoring phase is developed using the

perfmon interface and libpfm-3.1 library [20, 24] with the kernel buffer size set to hold

64 complete sets of BTB entries. The tool configures the PMU to sample only taken

branches every sampling period. Fixed sampling periods are generally used. Random-

ized sampling periods are only used when mentioned in the experimental data. During

each sampling period, the PMU tool collects branch vectors, and inserts them into a

specialized branch vector hash table. The off-line compiler-aided analysis phase is ac-

complished by feeding the branch vectors back into an OpenIMPACT module which

performs the code coverage analysis.

The actual path profiles and actual code coverage for the benchmarks used for

comparison are generated using Pin Tools [34]. One Pin Tool generates the region-

based paths and their counts, and another Pin Tool finds all instructions executed in a

program as well as the number of times each was executed for comparison in the code

coverage study.



Chapter 4

PMU-based Path Profiling

This chapter presents the first case study in this thesis which utilizes sampled

branch vectors to generate path profile information. For trace layout optimizations

such as trace scheduling [22] or superblock formation [26], a path profile is the most

sought over type of profile. As discussed in Section 2.2.3, it can be used to provide more

accurate path information than point-based profiles such as edge profiles. The rest of

this chapter describes the method of producing an estimated path profile from sampled

branch vectors and then presents experimental results for this path profiling approach.

4.1 Generating an Estimated Path Profile

An estimated path profile is generated by using the hybrid profiling framework

discussed in Chapter 3 with the compiler analysis section tailored to creating a path

profile. The branch vectors are first mapped to partial paths using the address map.

Next, the compiler analysis attempts to lengthen each partial path as much as possible

by performing partial path extension on each of the partial paths. After that, the path

profile generation algorithm discussed in Section 3.5.3 is applied by creating regions,

splitting partial paths on region boundaries and using the path matching and crediting

algorithm. The following sections of this chapter discuss the experimental results of this

path profiling approach.
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4.2 Effect of Sampling Period

There exists a strong tradeoff between sampling period and overhead. On one

hand, it is desirable to collect as much information as possible which calls for a small

sampling period. However, if the sampling period is too low, it can cause significant

run-time overhead. On the other hand, if the sampling period is increased by too much,

there may be a considerable loss in information.

Percent Overhead vs. Sampling Period
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Figure 4.1: Overhead of run-time collection of branch vectors and number of unique
branch vectors for various sampling periods.

Figure 4.1 shows the effect of sampling period on the overhead associated with

the run-time collection of branch vectors. The sampling period is varied from 50K to

10M clock cycles. This graph shows that the percent overhead decreases as the sampling

period is increased with a significant point in the curve occurring at a sampling period

of around 500K to 1M clock cycles. At this point, the overhead increases dramatically

with an overhead of around 40-50% at a sampling period of 50K. Increasing the sampling

period above the point shows a leveling with an overhead of less than 1% at a sampling

period of 10M or above.



41

There are three main causes which contribute to the overhead incurred by col-

lecting and storing the PMU information. The first cause is that an interrupt occurs

every sampling period which copies the BTB registers into a kernel buffer. As the sam-

pling period increases, this causes the overhead to increase because interrupts are more

frequent. The second cause is upon kernel buffer overflow, the sampled data must be

copied between the kernel buffer and user space. The third major cause of overhead

relates to the processing time of storing PMU samples from the user buffer into the

specialized branch vector hash table. The hashing mechanism uses a hash formed by

operating a sequence of 16-bit shifts and XOR operations on the 64-bit addresses which

compose the branch vector.

It should be noted that the infrastructure implemented for the experiments are

designed in a research environment to allow for flexibility in exploring various designs.

Therefore, the overhead numbers shown here can be viewed as an upper bounds. If

implemented in a production system, it is possible to remove much of the overhead by

optimizing the collection system. For example, the extra user buffer could be removed

as well as the hash table if the sampled data was simply dumped to a file or piped to

a different process or processor for manipulation and storage. However, with the PMU

collection system described here, the percent overhead is still relatively low. Even at

the lower sampling periods(40-50% overhead), the overhead is acceptable if compared

to interpretation or instrumentation systems.

4.3 Aggregating Data from Multiple Runs

By decoupling the PMU sample collection and the analysis phases, a unique

opportunity exists of analyzing aggregate data from multiple runs of a program. This

can be implemented by simply concatenating output files together before using the

offline analysis tool. By aggregating multiple runs, it is possible to collect run-time

information from one run that was missed in previous runs. Figure 4.2 shows the effects
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Figure 4.2: Number of unique paths found by aggregating data from runs with same
input set.

of aggregating the PMU BTB samples from up to 20 different runs of a few benchmarks

with the same input. The graph shows four benchmarks but all of the benchmarks

experimented with exhibit similar characteristics. It can be seen that additional runs

clearly does increase the number of unique paths or branch vectors discovered. The

greatest increase occurs from combining up to 10 runs. There is a slight leveling off

after 10 runs but still a steady increase in unique paths found. This shows that there is

promise in using PMU samples from multiple runs to drive the offline analysis phase of

PMU-based profiling.

4.4 Partial Path Characteristics

An important note is that because of the nature of PMU sampling, partial paths

are capable of spanning across loopback edges, function boundaries and may even extend



43

between the user program and shared libraries. For the experiments in this thesis,

addresses that are outside of the user program are ignored and thrown away. However,

in a different context, this extra PMU information could be leveraged to profile across

these function and library boundaries. Unless the partial path analysis phases are able

to support partial paths that span these boundaries, the partial paths must be split.

Due to limitations in the base compiler infrastructure, the partial paths are split along

function boundaries as well as loopback edges.

Benchmark Initial Ext Func Loop
164.gzip 28.9 34.8 22.8 20.4
175.vpr 41.8 50.5 30.6 19.6
177.mesa 44.6 53.8 35.3 33.0
179.art 29.5 34.7 32.1 22.9
181.mcf 32.0 38.8 33.7 25.5
183.equake 65.8 75.1 66.8 54.5
188.ammp 31.3 39.5 36.4 28.5
197.parser 28.7 35.2 14.7 12.7
256.bzip2 38.8 45.8 33.4 22.7
300.twolf 37.8 46.5 32.5 25.4
Average 37.9 45.5 33.8 26.5

Table 4.1: Average length of partial paths (number of instructions) initially, after partial
path extensions, and after splitting on function boundaries and loopback edges.
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Table 4.1 shows the average length of partial paths initially (Initial), after partial

path extensions (Ext), after splitting on function boundaries (Func) and after splitting

on loopback edges (Loop). Path lengths are measured in number of low level IR instruc-

tions. On average, the system locates paths about 38 instructions long. Partial path

extensions can significantly improve partial paths increasing their average length by

about 20%. However, after splitting along function boundaries and loopback edges, the

average path length drops about 40% from the extended length to about 27 instructions.

When partial paths are split along function boundaries, not only are the length

of partial paths substantially decreased on average, but correlation is lost between func-

tions. This correlation could be used to drive inter-procedural optimizations such as

function inlining [25]. Figure 4.3 shows the inter-procedural characteristics of the initial

partial paths in Table 4.1. It shows the number of partial paths per benchmark that

span between zero and four function boundaries. The zero column shows the number

of partial paths which are intra-procedural. All the other partial paths span at least

one function boundary. A surprisingly large number partial paths not only cross one

function boundary, but span across multiple function boundaries. In particular, a large

majority of partial paths in 197.parser cross at least one function boundary. This

indicates that by splitting on function boundaries, there is a great deal of information

that is lost within partial paths. These function correlations could be stored to drive

inter-procedural optimizations. This exploration is reserved for future work.

4.5 Actual Hot Paths

Table 4.2 shows the number of actual hot paths in each benchmark as determined

be the path profiling Pin Tool. Hot paths are determined by identifying flows above a

hot threshold regarding the percent of total execution flow that the hot paths account

for. Flow is defined as the path’s count divided by the sum of all counts of paths. The

hot threshold is set to 0.125% as used in previous path profiling studies [7, 8]. The data
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Benchmark # Hot Paths % Total Flow
164.gzip 30 98.96%
175.vpr 29 96.05%
177.mesa 8 97.99%
179.art 50 99.60%
181.mcf 52 97.84%
183.equake 24 98.53%
188.ammp 33 96.73%
197.parser 168 82.41%
256.bzip2 78 96.52%
300.twolf 80 92.55%

Table 4.2: Number of actual hot paths and their percent of total.

indicates that using a hot threshold of 0.125% indeed provides a relatively low number

of hot paths corresponding to a very high percentage of total program flow. 197.parser

is the exception with a larger number of hot paths contributing to a lower amount of

total program flow. In the rest of the benchmarks 80 or fewer paths account for over

90% of the total flow within the run of the program.

4.6 Accuracy Results

The estimated PMU path profile is compared to the full path profile using a

method similar to Wall’s weight matching scheme [46] which defines accuracy as:

Accuracy of Pestimated =
∑

p∈(Hest.∩Hactual)
Factual(p)∑

p∈Hact.
Factual(p)

In this equation F (p) is the flow of a path. Hactual is the set of paths in the full

path profile which are above a set threshold. Hestimated is then the created by selecting

the hottest paths in the path profile equal to the number of paths in Hactual.

Figure 4.4 shows accuracy results with respect to various sampling periods ranging

from 50K to 500M clock cycles. In general, at low sampling periods, this path profiling

technique achieves fairly high accuracy. As sampling period increases, the accuracy
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Accuracy Vs. Sampling Period

Sampling Period
50K 100K 500K 1M 5M 10M 50M 100M 500M

P
er

ce
nt

 A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100
164.gzip

175.vpr

177.mesa

179.art

181.mcf

183.equake

188.ammp

197.parser

256.bzip2

300.twolf

Figure 4.4: Accuracy versus sampling period.

remains relatively constant at around 88% until around a sampling period of 10M cycles.

This indicates that each of these sampling periods contains enough samples to locate

the important hot paths. However, once the sampling period is increased to a critical

point (around 5-10M), accuracy suffers because an insufficient numbers are samples are

collected and the hot path ratios can be estimated. However, if the sampling period is

set to 10M, 88% accuracy can be obtained at approximately 1% run-time overhead.

4.7 Summary

Path profile information is critical to path-based PBOs. While traditional meth-

ods of gathering a path profile involve high overhead software techniques, the results of

this path profiling case study indicate that PMU information looks promising in detect-

ing hot paths for optimization. Partial path extensions are able to extend branch vector

by around 20% in length and that path profile generation is able to detect hot paths

well; if the sampling period is configured to be around 10M clock cycles, it is possible
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to obtain around an 88% accuracy with respect to hot path detection with only a 1%

run-time overhead.



Chapter 5

PMU-based Code Coverage

This chapter presents the second case study which applies compiler-aided anal-

ysis to branch vectors to perform code coverage analysis. While the first case study

focuses on the determination of hot paths within a program, this code coverage study

produces profile information at a coarser granularity. Specifically, it generates a list of

the instructions that are known to execute based on branch vector information as well

as an estimated count of how often the instruction was executed. This coarse-grained

information can be useful for larger scale code placement optimizations such as code

placement for improving instruction cache or instruction TLB performance.

5.1 Code Coverage Methodology

The PMU-based code coverage tool is very similar to the overview of PMU-based

monitoring shown in Figure 3.1. The only significant note is that the compiler-aided

analysis used is dominator analysis. Dominator analysis is performed for each basic

block in each partial path to indicate additional basic blocks that are guaranteed to

execute. Each time an instruction is encountered, either through a partial path or

through dominator analysis, a count is incremented. In this manner, an code coverage

statistics as well as an estimated probability distribution function can be generated.
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5.2 Actual Code Coverage

Benchmark # Ops # Covered Ops
164.gzip 6,466 3,063 (47%)
175.vpr 23,573 12,229 (52%)
177.mesa 89,006 7,390 (8%)
179.art 2,201 1,515 (69%)
181.mcf 1,973 1,401 (71%)
183.equake 3,033 2,265 (75%)
188.ammp 19,562 5,835 (30%)
197.parser 17,541 11,271 (64%)
256.bzip2 5,095 3,138 (62%)
300.twolf 40,490 15,705 (39%)

Table 5.1: Number of instructions per benchmarks and actual code coverage.

Before exploring code coverage data, it is important to get an idea of the size of

the benchmarks as well as their run-time instruction footprints. Table 5.1 shows the

size of each benchmark in number of low-level IR instructions as well as the number of

these instructions that are actually covered during run-time. Code size varies greatly

in this set of benchmarks ranging from 181.mcf with 1,973 instructions to 177.mesa

with 89,006 instructions. The number and percentage of covered instructions also ranges

greatly from 8% coverage for 177.mesa to 75% coverage for 183.equake.

5.3 PMU Code Coverage of a Single Run

For the rest of the code coverage experiments, code coverage percentage is defined

as the percentage of actual covered instructions (shown in Table 5.1) that is discovered

with compiler analysis of branch vectors. Therefore, a code coverage percentage of

100% would mean that PMU-based code coverage has covered all the instructions that

have actually been executed. Code coverage analysis is broken down into four main

categories; Single BB, Single BB w/ Dominator Analysis, Branch Vectors, and Branch
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Vectors w/ Dominator Analysis.

Single BB: In this case, the first basic block of each branch vector
is used for marking covered instructions. This is used to simulate the
effect of gathering a PC each sampling as a PC can only be related back
to a basic block.

Single BB with Dominator Analysis: Again, only the first basic
block indicated by a branch vector is used to simulate PC-sampling.
Dominator analysis if performed on the single basic block to mark other
basic blocks as covered.

Branch Vectors: Here, branch vectors are use for code coverage
analysis. The branch vectors are mapped to partial paths every in-
struction within the partial path is marked as a covered instruction.

Branch Vectors with Dominator Analysis: Branch vectors are
mapped to partial paths and then dominator analysis is performed on
every path to extend the amount of coverage information per partial
path.

Figure 5.1 shows the code coverage percentage of for multiple sampling periods

(100K, 1M, 10M and 100M clock cycles) for the Single BB, Branch Vectors and Branch

Vectors with Dominator Analysis categories. To get an idea of the effect of Single BB

with Dominator Analysis, Figure 5.2 shows code coverage for all four coverage types

at a sampling period of 100K. The data in Figure 5.1 shows that the Single BB leaves

much to be desired in terms of code coverage. Even at a low sampling period of 100K

cycles, the highest code coverage percentage is barely over 50% for 181.mcf, 164.gzip,

175.vpr and 300.twolf perform particularly poorly with only around 21-22% of the

code coverage. The percentage only decreases as the sampling period increases for each

benchmark.

By sampling branch vectors and mapping them back to partial paths, there are

substantial increases in the percentage of covered code that can be discovered using

PMU-based code coverage. At the lowest sampling period, the percentage increases



51

Code Coverage
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Figure 5.1: Code coverage across different sampling periods (100K, 1M, 10M 100M)
showing the effects of 1) using a single basic block per sample, 2) using branch vectors
to create partial paths and 3) extending partial path information by using dominator
analysis.
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by an average of 14%. However, the usage of branch vectors has a range of effect of

code coverage based on application. 183.equake has the greatest improvement due to

using branch vectors at around 30% improvement in coverage percentage. By observing

Table 4.1, this can be expected as 183.equake contains by far the largest number of

instructions per partial path.

Combining the techniques of using branch vectors with compiler-aided domina-

tor analysis, it is possible to considerably extend the amount of coverage information

provided by each sample. By observing the data in Figure 5.1, it can be seen that the

number of instructions or percentage of code coverage is typically more than doubled by

using dominator analysis to extend hardware-collected branch information. Dominator

analysis significantly extends the amount of code coverage information. As shown in

Figure 5.1, for the lower sampling periods it consistently provides an additional 15-25%

to the code coverage percentage. The exception is 177.mesa which improves less that

10% for all sampling periods. Figure 5.2 indicates that dominator analysis also improves

code coverage significantly if used with PC samples instead of branch vectors. On aver-

age the effect of dominator analysis on PC samples is about equivalent to the effect of

sampling branch vectors. However, the combination of branch vectors and dominator

analysis still provides the most code coverage information.

5.4 PMU-based Code Coverage Stability

A side effect to hardware sampling is that the branch vectors collected from a

run of a program are non-deterministic. This means that different runs of the same

program with the exact same input and sampling period will yield different results

based on run-time system behavior. Figure 5.3 shows the variation in code coverage

percentages over 20 runs of each benchmark. The bars show the average percentage

while the thin lines show the maximum and minimum percentages. The variation in

code coverage percentage is typically within 5-10% indicating that although each run is
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Variation in Coverage Over 20 Runs
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Figure 5.3: Stability of percent of code coverage matched over 20 runs of each bench-
mark. Thick bars show the average coverage while the thin lines show the minimum
and maximum percentages over the 20 runs.

non-deterministic, code coverage across different runs is fairly stable in regards to the

amount of code covered.

5.5 PMU Entropy Analysis

Figure 5.4 shows the probability distribution graphs for the code execution of

application 164.gzip determined by both complete coverage (a) and PMU-based cov-

erage (b). Although sampling in PMU-base coverage may miss program behavior, the

instruction execution distributions appear similar. However, more detailed analysis can

assess the overall ability of PMU code coverage data to accurately characterize the

actual coverage. The relative entropy (Kullback-Leibler divergence [30]) defines the dis-

tance between two probability distribution functions. Let a discrete distribution have

probability function pk, and let a second discrete distribution have probability function

qk. Then the relative entropy of p with respect to q is defined by:

d =
∑n

k=0 pklog2(pk
qk

)
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(a) 164.gzip: Actual Distribution Graph
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(b) 164.gzip: Estimated Distribution Graph
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Figure 5.4: Instruction execution distribution for 164.gzip (a) actual and (b) PMU.

Figure 5.5 presents the relative entropy numbers between actual and PMU code

coverage. Three sampling rates are examined: 100K, 1M, and 10M. Results indicate

that the average divergence between the actual and PMU distributions is about five.

While the number is relative, it can be used to quantify the deviation of system pa-

rameters on gathering complete code coverage results. For instance, for applications

175.vpr, 181.mcf, and 256.bzip2 the divergence over the sampling rates increase by

3-4, indicating that sampling will have a direct role in the coverage accuracy. While the

divergence of 164.gzip, which has a smaller code execution footprint, is not effected

by sampling rate. These results indicate that code coverage testing should be using

variable sampling rates to maximize the trade-off between code coverage results and

testing overhead.
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Figure 5.5: Entropy (Kullback-Leibler divergence) of actual/PMU coverage.

Coverage for Hot Instruction Thresholds
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Figure 5.6: Coverage with execution thresholds.

Since sampling program execution can miss program behavior, it is expected

that the coverage be biased to the most frequently executing section of program code.

Figure 5.6 examines the code coverage (evaluated at 100K sampling rate) in relation

to the execution frequency of code region. The leftmost data points (near 10%) on the

x-axis show the percent of the top 10% of the most frequently executed instructions that
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are discovered using PMU-based code coverage. All the benchmarks in the graph follow

the same trend. For the top 10-30% of the most frequent instructions, PMU-based code

coverage does very well usually discovering between 80-100% of all the instructions.

However, at around 40-50%, there is generally a significant drop and then some leveling

out of the coverage percentage. More specifically, for the lowest executing code portion

(90-100% on the x-axis) of 177.mesa, only 30% of the code will be detected and reported

as executed. Nevertheless the results show that even infrequent code regions can be

detected with hardware-based code coverage.

5.6 PMU Code Coverage with Multiple Runs

One opportunity to improve the quality of the PMU-code coverage approach is

to aggregate data from multiple execution runs. This is simply a matter of collecting

the PMU monitoring tool’s output from multiple runs and performing off-line analysis.

Figure 5.7(a) shows an example of aggregating up to 20 separate runs each at a regular

sampling period of 100K clock cycles. There are two general trends for the bench-

marks shown in Figure 5.7(a). The first is that some benchmarks such as 164.gzip,

197.parser, and 300.twolf significantly improve their code coverage percentage by

over 10% (164.gzip actually improves over 20%). In these cases, the aggregation of

multiple runs seems very promising. In other cases, such as 177.mesa and 181.mcf do

not result in substantial improvement.

As mentioned in Section 2.5.2, one of the issues facing periodic sampling is sam-

pling aliasing. It is possible to miss important sections of code that periodically execute

in the time between samples. Randomized sampling periods may be used in order to

account for sampling aliasing. Figure 5.7(b) shows 20 aggregated runs using randomized

sampling. The behavior of benchmarks such as 175.vpr, 197.parser and 300.twolf

are not significantly altered. However, 177.mesa and 181.mcf see substantial im-

provements. In these cases, the random sampling is able to uncover sections of code
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(a) Regular Sampling
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(b) Randomized Sampling

Number of Aggregated Runs
0 5 10 15 20

P
er

ce
nt

 C
ov

er
ag

e

0

10

20

30

40

50

60

70

80

90

100

164.gzip 175.vpr 177.mesa 181.mcf 197.parser 300.twolf

Figure 5.7: Code coverage percentage from aggregating multiple runs using (a) regular
sampling period and using (b) randomized sampling period of 100K.

that regular sampling does not discover. From these improvements, it can be seen that

randomized sampling allows for certain runs to uncover more sections of code that from

what can be seen by using a fixed sampling period.

5.7 Summary

This chapter characterized the amount of information provided by sampling branch

vectors with respect to code coverage. It is shown that a code coverage can be improved

over 50% on average by utilizing branch vectors as opposed to PC samples. It is also

demonstrated that dominator analysis is able to improve the code coverage about an-

other 50% over code coverage with branch vectors. In addition, it is shown that code

coverage is fairly stable across different runs of a program (with around 5-10% variation)

and that randomized sampling periods may be used to uncover additional sections of

code.



Chapter 6

Future Work

This thesis motivates and provides initial results in applying compiler analysis

for path profiling and code coverage analysis. While the results of this approach seem

promising, there is still much to investigate and explore. Future work includes:

• Function Correlation: As mentioned in Section 4.4, sample branch vectors

provide a great deal of function correlation. Although this information is ig-

nored here, it should be explored in providing profile data for inter-procedural

optimizations.

• Region Formation: Region Formation is proposed as a means of keeping

the number of total paths in a CFG manageable. However, as discussed in

Section 3.5.3.2, the paths formed are different from traditional Ball-Larus [5]

paths used in previous path profiling studies. The effect of using a different set

of paths is set aside for possible future work. Also, different region formation

algorithms could be explored to guarantee that most hot paths executed can be

found in a single region.

• Improved PMU Path Profiling Algorithms: The path matching and path

crediting algorithm described in Section 3.5.3.3 is overly simplistic and uses

assumptions that are not necessarily true. Although it is still able to detect hot
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paths, there is room for improvement with regards to accuracy.

• Aggregating Multiple Runs: The idea of aggregating multiple runs is mo-

tivated in this paper, but further investigation is necessary. The ability to use

data from multiple previous runs of a program could be crucial for run-time sys-

tems; especially for continuous optimization systems in which profile data and

optimizations are maintained system-wide across many runs of many programs.

• Effect of Compiler Optimizations: The work presented in this thesis uses

benchmarks which are compiled with classical optimizations but without more

aggressive profile-guided optimizations. As many aggressive optimizations such

as superblock formation [26] attempt to straight-line hot code, it is expected

that each sampled branch vector may provide further information facilitating

more accurate analysis of run-time code behavior.



Chapter 7

Summary and Conclusion

This thesis motivates and presents initial results for a utilizing a hardware-

software hybrid profiling system with the intent of driving code layout optimizations in

a run-time optimization system. The hybrid profiling scheme utilizes an online moni-

toring phase and an offline analysis phase. Run-time overhead is reduced by sampling

hardware as well as by decoupling the run-time data collection from the run-time data

analysis. Software analysis of run-time data allows the profiler to be more flexible in

the type of analysis performed and the type of profile generated.

Hybrid profiling frameworks, such as the one in this thesis, have been studied in

past research. However, this work provides two important contributions to a hybrid

profiling system. First, instead of sampling the PC like previous implementations,

PMU branch vectors are sampled. A branch vector is a series of branch addresses which

can be utilized to represent a trace of program execution. Branch vector sampling is

supported on modern microprocessors and allows for the collection of more information

when compared to simple PC-sampling for two reasons. First, a PC sample indicates the

execution of a single basic block while a branch vector indicates the execution of multiple

basic blocks. Second, the basic blocks provided by the branch vector are correlated and

provide path information.

The second contribution is the use of a compiler framework for the software
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analysis of the PMU samples. A compiler infrastructure has access to information that

is not readily available at run-time. For example, the compiler infrastructure can place

sampled information in the context of the complete program control flow. A compiler

also has the ability to perform deeper program analysis and uncover information which

is not immediately apparent from the PMU samples. Three specific forms of compiler

analysis are described in this thesis; 1) partial path extensions, 2) dominator analysis,

and 3) path profile generation.

Finally, the profiling framework demonstrated by doing two case studies. In the

first, the path information inherent in branch vectors is used to generate an estimated

path profile. In the second, the branch vectors are used for code coverage analysis. These

studies illustrate the the flexibility of the hybrid framework showing how different profile

information can be obtained by using the same hardware samples and utilizing different

software analysis routines.

Overall, this compiler-aided, PMU-based profiling technique shows promise. The

usage of branch vectors significantly improve the information provided by each hard-

ware sample. Branch vectors provide a path of around 38 instructions (Section 4.4)

and is able to improve code coverage over 50% when compared to code coverage with

PC-sampling (Section 5.3). The compiler analysis is also able to significantly improve

the amount of information per sample. Partial path extensions increase path length by

around 20% (Section 4.4) while dominator analysis can be used to improve code cover-

age another 50% when compared to code coverage using branch vectors (Section 5.3).

When this profiling infrastructure to generate path profiles, an accuracy of 88% can

be obtained at 1% overhead using a sampling period of 10M clock cycles (Section 4.6).

These results indicate that a hybrid compiler-aided, PMU-based profiling technique

using branch vectors should be able to provide high fidelity profile information to a

run-time optimization system while incurring little overhead.
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