

Electrical Engineering and Computer Science Department

Technical Report

NWU-EECS-10-09

August 20, 2010

The End User in Computer Architecture and Systems Research

Alex Shye

Abstract

The ultimate goal of a computer design is to satisfy the end user. However, the design

and optimization of computer architectures have largely left the user out of the loop. In

this dissertation, I make the case that with modern computer architectures it is becoming

increasingly important to take the end user into account. I then propose three specific

aspects of the end user that should be explored when incorporating the end user into loop;

(1) user perception, (2) user state, and (3) user activity.

First, I show that that computer architects should study the end user’s perception of

performance relative to actual hardware performance. User studies show that for

satisfaction across different users. This variation represents opportunity for optimizing

computer architectures subject to individual user satisfaction. Second, I make the case for

measuring user state via empathic input devices, input devices providing a computer with

information about user state. I demonstrate that three example empathic input devices

(eye tracking, a galvanic skin response sensor, and force sensors) can be useful for

understanding changes in user satisfaction for driving power optimizations. Third, I show

that computer architects should begin studying the activity of the end user as an important

part of the workload. I study real user activity on Android G1 mobile phones and to show

that it can be important in characterizing power consumption, and developing new power

optimizations.

Overall, this work points towards a new approach to computer architecture and systems

research that incorporates the end user into the loop. The findings show that if we place

the end user into the design and optimization process, we can significantly improve the

effciency of current computer architectures and systems, while maintaining or even

improving individual user satisfaction at the same time.

Keywords: Human Factors, Power Management, Computer Architecture, Mobile Computing

NORTHWESTERN UNIVERSITY

The End User in Computer Architecture and Systems Research

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical and Computer Engineering

By

Alex Shye

EVANSTON, ILLINOIS

June 2010

2

c© Copyright by Alex Shye 2010

All Rights Reserved

3

ABSTRACT

The End User in Computer Architecture and Systems Research

Alex Shye

The ultimate goal of a computer design is to satisfy the end user. However, the design

and optimization of computer architectures have largely left the user out of the loop. In

this dissertation, I make the case that with modern computer architectures it is becoming

increasingly important to take the end user into account. I then propose three specific

aspects of the end user that should be explored when incorporating the end user into loop;

(1) user perception, (2) user state, and (3) user activity.

First, I show that that computer architects should study the end user’s perception

of performance relative to actual hardware performance. User studies show that for

modern interactive and multimedia applications, there exists a significant variation in user

satisfaction across different users. This variation represents opportunity for optimizing

computer architectures subject to individual user satisfaction. Second, I make the case

for measuring user state via empathic input devices, input devices providing a computer

with information about user state. I demonstrate that three example empathic input

devices (eye tracking, a galvanic skin response sensor, and force sensors) can be useful

4

for understanding changes in user satisfaction for driving power optimizations. Third,

I show that computer architects should begin studying the activity of the end user as

an important part of the workload. I study real user activity on Android G1 mobile

phones and to show that it can be important in characterizing power consumption, and

developing new power optimizations.

Overall, this work points towards a new approach to computer architecture and sys-

tems research that incorporates the end user into the loop. The findings show that if we

place the end user into the design and optimization process, we can significantly improve

the efficiency of current computer architectures and systems, while maintaining or even

improving individual user satisfaction at the same time.

5

Acknowledgements

They say it takes a whole village to raise a child. It feels like it has taken several

whole villages to raise this child. I am very fortunate to have many people who have

played a significant role in my life and career. They have offered great advice (although I

sometimes don’t listen!), sweat in the lab with me (including a few too many all-nighters),

consoled me during tough times (getting a Ph.D. is no cakewalk), and challenged me to

be a better person and researcher (I’m getting there.. slowly but surely :).

First and foremost, I thank my dissertation advisor, Prof. Gokhan Memik, for his

support 1 during my time at Northwestern University. He has taught me more than I

can describe here, but I am most thankful for his constant encouragement to follow my

interests, even when it takes being courageous with research topics. I thank Prof. Peter

Dinda and Prof. Robert Dick for their great guidance and feedback. They both played

a large role in my positive experience at Northwestern, and in shaping the work in this

dissertation. In addition, I thank Prof. Seda Memik, Prof. Russ Joseph, and Prof. Nikos

Hardavellas, Prof. Bryan Pardo, Prof. Darren Gergle for their assistance, encouragement,

feedback, and advice. I thank Prof. Daniel A. Connors for giving me my first crack at

research many years ago. I would not be where I am right now without his support and

1Of course, this includes financial support. This work is in part supported by DOE Awards DE-FG02-05ER25691 and

DE-AC05-00OR22725 (via ORNL), NSF Awards CNS-0720691, CNS-0721978, CNS-0715612, CNS-0551639, CNS-0347941,

CCF-0541337, CCF-0444405, CCF-0747201, IIS-0536994, IIS-0613568, ANI-0093221, ANI-0301108, and EIA-0224449, by

SRC award 2007-HJ-1593, by Wissner-Slivka Chair funds, and by gifts from Symantec, Dell, and VMware.

6

guidance. I also thank Prof. Manish Vachharajani for his valuable feedback and advice

over the years.

I am lucky to have several hosts and colleagues within industry that have provided me

with valuable industry research experience. I thank Evelyn Duesterwald, Calin Cascaval,

Robert Wisniewski, and Peter Sweeney for my time at IBM Research. I thank John

Pieper for mentoring me at Intel, and Brad Chen for hosting me at Google. And, I give

a big thanks to the DynOpt group (Mark Herdeg, Anton Chernoff, Joyce Spencer, Tony

Tye, Michael Bedy, Roland Ouellette, Rick Gorton, Joe Martin, and Walter Carrell) for

a wonderful 2-year co-op at AMD.

I sincerely thank all of my collaborators: Arindam Mallik, Berkin Ozisikyilmaz, Yan

Pan, J. Scott Miller, Benjamin Scholbrock, Lei Yang, Xi Chen, and Bin Lin at North-

western University; Tipp Moseley, Vijay Janapa Reddi, Matthew Iyer, Joseph Blomstedt,

Joshua Kihm, Alex Settle, Dan Fay, and Dave Hodgdon at the University of Colorado. We

worked hard, sweated it out in lab, pulled all-nighters, and, most importantly, had a great

deal of fun in the process. All of the work would not have been possible without your con-

tributions. In addition, I would like to thank the rest of the Microarchitecture Research

Lab and the related labs at Northwestern for being a sounding board with research, and

tolerating my antics at Northwestern.

I thank Arty Plengsirivat for her companionship during the entire Ph.D. process –

celebrating with me during the good times, consoling me during the tough times, and

balancing out my life to keep me sane.

7

Last, but certainly not least, I thank my family; my father Ken Shye, my mother Shou

Shye, and my brother Michael Shye. Thank you for believing in me all of these years;

your constant support means the world to me.

8

Table of Contents

ABSTRACT 3

Acknowledgements 5

List of Tables 11

List of Figures 12

Chapter 1. Introduction 16

1.1. The Forgotten End User 17

1.2. Why Care About the User Now? 20

1.3. Putting the End User into the Loop 23

1.4. For Reference 27

Chapter 2. User Perception: Leveraging Individual User Satisfaction 28

2.1. Hardware Performance Counters 31

2.2. User Study Setup 32

2.3. Correlation Between User Satisfaction and Hardware Counters 34

2.4. Leveraging User Variation with Predictive Power Management 38

2.5. Experimental Results 45

2.6. Summary 52

2.7. Appendix: Correlating HPC Metrics and User Satisfaction 53

9

Chapter 3. User Physiological Traits: Implicitly Learning User Satisfaction 55

3.1. Empathic Input Devices 58

3.2. User Study Setup 63

3.3. Correlating Human Physiological Traits with User Satisfaction 64

3.4. Using Physiological Traits for Dynamic Voltage and Frequency Scaling 70

3.5. Experimental Results 76

3.6. Summary 82

3.7. Raw Data from Motivational User Study 83

Chapter 4. User Activity: Studying User Behavior to Drive Optimization 85

4.1. Experimental Setup 88

4.2. Power Estimation Model 91

4.3. Studying the User for Guiding Optimization 102

4.4. User-Aware Optimization 108

4.5. Experimental Results 112

4.6. Summary 118

Chapter 5. Related Work 119

5.1. The Empathic Systems Project 119

5.2. Other User-Related Work 120

5.3. Measuring the End User 122

5.4. Power Modeling 122

5.5. Dynamic Voltage and Frequency Scaling 123

5.6. Screen Optimizations 124

10

Chapter 6. Conclusion 125

References 127

Vita 135

11

List of Tables

2.1 Hardware counters used in experiments. 32

2.2 User trend categorization, the number of users in each category for

different applications. 37

2.3 Correlation of hardware counters and user satisfaction. 54

3.1 Outcomes of manually comparing t-test results and the user satisfaction

ratings. Success means that the t-test outcome matches the user rating.

False negatives occur when the t-test falsely predicts a difference and

false positives occur when the t-test falsely predicts similarity with the

highest frequency. 67

4.1 Parameters used for linear regression in our power estimation model. 92

12

List of Figures

1.1 The (a) traditional computing stack, and the (b) computing stack

including the end user. 18

1.2 The evolution of computer architectures. Each generation through

the years is because more “personal”, increasing the importance of

incorporating studies of the end user. 22

1.3 The end user in the computing loop. 23

2.1 Framework of the predictive user-aware power management. 38

2.2 Figure 2. Frequency traces using iDVFS and Windows power

management schemes for (a) Java Game and (b) Video. 43

2.3 Windows DVFS algorithm. 46

2.4 Reported user satisfaction for the (a) Web Browsing, (b) Game, and (c)

Video applications. 48

2.5 System power measurement setup. 52

2.6 Figure 6. Improvement in energy consumption, user satisfaction, and

energy-satisfaction product for the Shockwave application. 53

13

3.1 The biometric sensors used in our experiments: (a) an eye tracker,

(b) a custom-made galvanic skin response sensor, and (c) force sensors

attached to the arrow keys on the keyboard. 59

3.2 GSR traces of a user that capture (a) the long-term change in the GSR

while a user is resting, and (b) the short-term effects when playing the

Need for Speed game. The existence of the long-term effect motivates

the use of the delta GSR metric for measuring user arousal. 60

3.3 (a) Mean pupil movement, (b) maximum arrow force, and (c) maximum

delta GSR for the same 20 seconds of game play at a good performance

level, and at a bad performance level. Mean pupil movement and

maximum arrow force significantly decrease. Maximum delta GSR has

more variation across users indicating different responses to a drop in

performance. 65

3.4 Averages of the three best individual sensor metrics and the user

satisfaction ratings across all 20 users. The three sensor metrics have a

very strong correlation with the reported user rating. 68

3.5 The average confidence provided by the t-test between a frequency and

the highest frequency across all 20 users and all sensor metrics. A high

confidence indicates a difference. As frequency difference increases, the

sensor metrics differentiate better, except for the lowest frequency. 69

3.6 Trace of sensor metrics and the frequency during the training phase of

the PTP algorithm. When sensor readings are compared for 1.2Ghz and

14

2.2Ghz, the majority of the sensors result in a high t-test, indicating

that the user’s state changes. As the algorithm adjusts to test 1.6 GHz,

the physiological traits show less change. PTP chooses 1.6Ghz for the

rest of the experiment 72

3.7 Frequency that aPTP and cPTP settle on for the Need for Speed, Tetris,

and Word applications. cPTP for Word is omitted because it results in

very little change in power savings and user satisfaction. 77

3.8 User satisfaction and power consumption for the Need for Speed, Tetris,

and Word applications. The left two bars per cluster show the user

satisfaction for aPTP and the Adaptive DVFS schemes. The right bar

in each cluster shows the total system power savings. 80

3.9 User satisfaction and power consumption of cPTP for the Need for

Speed and Tetris applications. Word is not included because power

savings and user satisfaction levels are nearly identical to aPTP. The

left two bars per cluster show the user satisfaction of cPTP and the

Adaptive DVFS schemes. The right bar in each cluster shows the total

system power savings. Using cPTP, we trade-off a decreased power

savings with improving user satisfaction when compared to aPTP. 81

3.10 Physiological traits and user satisfaction when randomly changing to

multiple frequencies at different points in Need for Speed. 84

4.1 High-level overview of the target mobile architecture. 88

15

4.2 Error of logger when building the power estimation model on one ADP1

and validating with logs from another ADP1 device. 98

4.3 Cumulative distribution of power estimation error. 99

4.4 Cumulative total energy error. 100

4.5 Power consumption timeline. 100

4.6 Power consumption breakdown for traces that stress specific hardware

units. 101

4.7 Power consumption breakdown from real user traces. 104

4.8 Screen durations based upon user activity. 107

4.9 Total system power savings for each of the optimizations as estimated

by our power model. 113

4.10 Reported user satisfaction for the (a) Web Browsing, (b) Game, and (c)

Video applications. 115

16

CHAPTER 1

Introduction

“Focus on the user and all else will follow.”

Google, #1 principle in Google Philosophy

The ultimate goal of a computer design is to satisfy the end user. This statement

may sound simple – perhaps even obvious – but it is a very powerful statement. It means

that after all the work we put into design and optimization, we can evaluate a computer

system by putting it into the hands of the end user. If the user is happy with it, we have

done a good job. If not, perhaps we can do better.

This statement regarding the importance of the end user is not a new idea in the

computer industry. Google understands this statement. As quoted in the beginning of

this introduction, the number one principle in their corporate philosophy is to focus on the

end user [47]. This focus is clear in their products, and pervades the entire user experience,

from their crisp home page, to the responsiveness and quality of their web search. Apple

understands this statement. Apple’s focus on the user for designing simple and intuitive

user interfaces has revolutionized the computer industry. Engineers and researchers in

several other computing-related fields understand this statement. For example, at the

application level, multimedia experts study the perceptual quality of a media [28, 29, 61,

85, 90], and human-computer interaction researchers develop applications for improving

the human condition [24, 25, 26].

17

However, despite the importance of the end user, computer architects and systems

designers have largely ignored the end user. The work in this dissertation argues that

this should not be the case. User experience matters more than ever. Decisions at the

architecture- and systems-level impact the user experience, and must be made with end

user in mind. If we take the user into account during the architectural design process, we

can improve the efficiency and performance of computer architectures, while maintaining,

or even improving, user satisfaction.

1.1. The Forgotten End User

The design and optimization of computer architectures has typically left the end user

out of the loop. It is not difficult to understand why this is the case.

Where would the end user fit with respect to computer design? Traditionally, the term

“computer” refers to a programmable machine. The Merriam-Webster Online Dictionary

defines a computer as, “a programmable, usually electronic device, that can store, retrieve,

and process data”. Other definitions do not stray too far from this general idea. Thus,

computer design has typically focused on three tasks: (1) specifying a set of instructions

for data access/manipulation, (2) designing the circuits/hardware for implementing the

instructions, and (3) developing systems software and tools to provide an environment for

running different mixes of instructions. None of these tasks involve the end user.

Where would the end user fit with respect to optimizing computers? At the core,

optimization involves (1) choosing a performance metric, and (2) an iterative loop of do-

ing a baseline performance measurement, implementing/tuning an optimization, doing

18

Circuits

Microarchitecture

Operating System

Application

Software

Hardware

Architecture

(a) Traditional computing stack.

Circuits

Microarchitecture

Operating System

Application

End User

Software

Hardware

Architecture

Environment

(b) Computing stack with the end user.

Figure 1.1. The (a) traditional computing stack, and the (b) computing
stack including the end user.

another performance measurement, and crossing your fingers for a performance improve-

ment. There are many traditional performance metrics typically used: instructions per

second, transactions per second, energy consumption, soft error rate, failures in time, av-

erage system up time, etc. However, none of the traditional performance metrics typically

involve the end user.

Of course, there is an end user involved with a computer. After all, we did invent

and create computers to do work for us. So, where does the end user fit into the picture?

And, where does the end user fit into computing research?

To answer these questions, it may be helpful if we observe the textbook computing

stack, as shown in Figure 1.1(a). This traditional computing stack includes (1) the cir-

cuits and microarchitecture at the hardware level, (2) the architecture for specifying the

hardware-software interface, and (3) the software layers, with the operating system (OS)

and application. Note that this computing stack only accounts for hardware and software.

Clearly, the end user is neither hardware or software. Thus, there is no room for the end

user in this picture. However, computation does not occur in a vacuum. If we expand our

scope, we can add the environment to the top of the computing stack, to account for all

19

of the characteristics and factors of the environment that may interact with computation.

The end user naturally fits into the environment at the top of the computing stack, as

shown in Figure 1.1(b) 1.

Now that we have the end user in the computing stack, where is the end user with

respect to computing research? If we look at the interaction between layers in the comput-

ing stack, we arrive at an explanation for the state of the end user in current computing

research. The design of a computer can be very complex. To manage complexity, we use

abstraction by specifying an interface for accessing low-level details. For example, logical

operators, such as AND and OR gates, specify the interface between circuits and the

microarchitecture. The instruction set architecture is the interface between the microar-

chitecture and software. System calls specify the interface between the operating system

and the application. Abstraction allows engineers to design to interfaces, without needing

to know the gory details under the hood. It also means that the majority of research lies

within a single layer, or spans adjacent layers in the stack that interact with each other.

The layers of the computing stack show us that with respect to the end user, it is

most natural for computer researchers to study the interactions of the end user with the

application 2. There are many important questions in this area. How should end users

interact with applications? Which hardware devices are most natural and intuitive for

users? How can application interfaces designed to improve usability? These questions, and

many more, have spawned an entire field of research, human-computer interaction (HCI).

1There may be many other factors in the environment (e.g., perhaps the energy source, room temperature,
etc.). In this dissertation, the main focus is the end user, and thus, we do not discuss other potential
aspects of the environment.
2Studying the end user within its own layer is most likely best left for psychologists.

20

The computing stack also shows us what low-level hardware and software designers

usually think of as the “end user” – the application software. We usually think of the

application as interacting with the hardware and systems software. Thus, it becomes

our proxy for the end user. Instead of studying the user, we study the behavior of an

application. To model a “average” user, we use mixes of representative applications as

benchmarks. A look at most any modern architecture or systems research paper will show

the use of benchmarks for evaluating a proposed technique.

In summary, although a computer is ultimately designed to satisfy the end user, there

is currently a disconnect between the design of the low-level hardware/software and the

end user. Most of the user-related research occurs at the application level, or in the

interaction between the application and the end user. The levels in the computing stack

have largely ignored the end user. Instead, we have abstracted away the end user. All

that remains is a representative set of applications.

1.2. Why Care About the User Now?

This dissertation makes the case that it is time to expand the role of the end user in

computer architecture and systems research. In particular, three trends are converging

that increase the role of the end user in modern computer systems:

(1) The importance of user experience. Batch applications are not the sole

workloads for most architectures. Modern multimedia applications, video games,

web browsers, and server-side applications interact directly with the end user.

Applications on mobile devices are inherently interactive. Although traditional

21

metrics (i.e., instructions per second) may be important in evaluating these ma-

chines and applications, the most important thing is whether is user is satisfied or

not. To ensure a good user experience, we must move beyond traditional metrics,

and develop user-related performance evaluation techniques for understanding

the impact of architectural and optimization decisions on user satisfaction.

(2) Architectural trade-offs are directly exposed to the end user. All aspects

of an architecture, including performance, power consumption, temperature, and

lifetime reliability, are now directly exposed to the end user. For example, the

end user can determine when the performance of a computer is satisfactory, but

is also painfully aware when the operating temperature of a laptop is too high,

or when the battery life is surprisingly short. To balance these tradeoffs effec-

tively, architects must take the end user into account when tuning and optimizing

architectures.

(3) The end user drives the workload. The first step to optimization is often

to understand the workload. As modern applications become increasingly inter-

active, their workload will become increasingly dependent upon the actions and

behavior of the end user. Treating the user as an important part of the work-

load may reveal new trends, patterns, or properties that can be leveraged for

optimization.

Underlying these trends is a continual shift towards delivering the end user an ever-

more personal computer experience. In the past few decades, we have seen a dramatic

evolution in computer architectures, as shown in Figure 1.2. We have seen a giant leap

22

ENIAC

1946

IBM System/360

1964

Apple II

1977

IBM Thinkpad 700

1992

1950 1960 1970 1990 1940 2000 2010 1980

Media players, PDAs, smartphones, netbooks

Today

Figure 1.2. The evolution of computer architectures. Each generation
through the years is because more “personal”, increasing the importance
of incorporating studies of the end user.

from the supercomputing era (e.g., room-sized vacuum-tubed-based computers, main-

frames) to the personal computing era (e.g., desktop computers). We are currently in the

midst of another significant leap to the portable computing era (e.g., netbooks, PDAs,

smartphones). Technology has advanced to a point where computation and communi-

cation can be effectively integrated into small handheld devices. Users are integrating

a mix of these mobile devices into their daily lives, making these devices their source

of on-the-go computation, hub of communication, and portal to the growing wealth of

information on the web. We can expect the personalization of computers to continue

beyond the portable computing era, into what many dub the pervasive computing era,

where computers pervade all aspects of our daily lives, including our utilities, our clothes,

23

Computer Input

Computer Output

User Action

User Perception

User State Computer State

Figure 1.3. The end user in the computing loop.

and even our brains. As we progress further into the portable computer era, and reach

into the pervasive computing era, the three previously mentioned trends will to continue,

and grow in importance.

1.3. Putting the End User into the Loop

We begin incorporating the end user by taking a high-level view of the traditional

interaction between the end user and the computer (shown in Figure 1.3).

The interaction from the side of the computer is familiar. The computer receives

input, e.g., a keystroke or mouse movement. It then executes instructions based upon

the input and alters computer state, e.g., the contents of memory and disk. Finally, any

computer state of interest to the end user may be output, e.g., through the display or

speakers.

This dissertation focuses on the other side of this interaction. It focuses on the human

side of the human-computer interaction, and what it means to the decisions that should

be made at the architecture- and system-level. By observing the interaction from the

perspective of the end user, we find three key points of interest in the computer design

process: (1) user perception, (2) user state, and (3) user activity. These three points are

24

the main focus of this dissertation. They are described briefly below, and in detail in each

of the following chapters.

1.3.1. User Perception

The first point of interest is the end user’s perception of computer behavior/performance.

Note that it is not the actual input we are interested in. We distinguish the actual

stimulus from the perception of the stimulus. This is an important distinction. When

focusing on the experience of the user, it is really the perception of the stimulus that is

most important, not necessarily the stimulus itself.

Chapter 2 studies user perception of computer performance relative to raw hardware

performance. We perform real user studies to study user satisfaction (a verbal user rating

of perceived computer performance) relative to raw hardware performance. We present

three main contributions.

(1) First, I show that the relationship between user satisfaction and hardware perfor-

mance is often a complex non-linear relationship that is application dependent,

and more importantly, user dependent. Our results show that there is no average

user . Instead, there exists a variation in perceived performance across individual

users. We refer to this variation as user variation.

(2) Second, I unveil a relationship between hardware performance counters on mod-

ern microprocessors. We show that we can learn this relationship by mapping

hardware counter values to user satisfaction, and then use this mapping as a

proxy for predicting user satisfaction.

25

(3) Third, I show that these hardware-satisfaction models can be leveraged to op-

timize subject to user variation. I demonstrate Individualized Dynamic Voltage

and Freqency Scaling (iDVFS) a system that uses a per-user model to drive dy-

namic voltage and frequency scaling (DVFS) on CPUs based upon the preferences

of the individual user.

1.3.2. User State

The second point in the human-computer interaction we are interested in is user state. We

use the term ‘user state’ broadly to account for all user-related factors that may represent

the state of the user, including bodily position, emotions, intentions, physiological traits,

etc. With respect to user state, we are particularly interested in any user state that may

indicate whether the user is satisfied with decisions at the architecture- or systems-level.

Chapter 3 presents a study of leveraging user state for optimizing computer architec-

tures. We make three main contributions in this chapter.

(1) I propose new empathic input devices to measure human physiological traits and

provide the computer with information on user state. Specifically, I propose

using eye trackers, a galvanic skin response sensor, and force sensors as potential

empathic input devices.

(2) I present two user studies to show evidence that these empathic input devices

can be used to reason about changes in user satisfaction.

(3) I augment an existing DVFS scheme to make decisions based upon human phys-

iological traits, and demonstrate success at improving energy efficiency for inter-

active applications.

26

1.3.3. User Activity

The third point in current human-computer interaction we are interested in is essentially

user output. I treat user output as the activity of the end user, e.g., keystrokes, mouse

events, turning the computer on, etc. As computers become increasingly personal, and

pervade our society, the activity of individual users, as well as users in general, will become

an increasingly important characteristic of the computer workload. Thus, studying trends,

patterns, and properties of user activity may be useful in characterizing the workload, as

well as driving future optimizations.

Chapter 4 studies user activity for perhaps the most personal of current computer

architectures, mobile smartphones. I show that studying user activity on a specific smart-

phone, the Android G1 phone, can be instrumental in understanding the power consump-

tion of smartphones in the wild, and in unveiling new user-activity-related properties for

developing power optimizations. I make the following contributions:

(1) I present a logger application for collecting data from remote smartphones, and a

validated power model driven to traces from the logger applications for estimating

the power consumption of remote smartphones.

(2) I demonstrate that user activity plays a significant role in the activity, and power

consumption breakdown, of mobile smartphones. Along the way, I show that the

CPU and screen consume significant power in mobile smartphones and are good

candidates for power optimization.

(3) I observe that screen on time is dominated by a small number of long screen

durations and propose an optimization for long screen intervals that leverage

change blindness, a phenomenon where humans are often unable to perceive

27

changes in a given stimulus. We show that change-blindness-based optimizations

may show promise, especially for the screen.

1.4. For Reference

For reference, the main contributions presented in this dissertation have previously

appeared in the following conference publications:

• Alex Shye, Berkin Ozisikyilmaz, Arindam Mallik, Gohkan Memik, Peter A. Dinda, Robert P.
Dick, and Alok N. Choudhary. Learning and Leveraging the Relationship Between
Architecture-Level Measurements and Individual User Satisfaction. In proceedings
of the International Symposium on Computer Architecture, June 2008. [91] (Chapter 2)

• Alex Shye, Yan Pan, Benjamin Scholbrock, J. Scott Miller, Gokhan Memik, Peter A. Dinda,
and Robert P. Dick. Power to the People: Leveraging Human Physiological Traits
to Control Microprocessor Frequency. In proceedings of the International Symposium on
Microarchitecture, December 2008. [92] (Chapter 3)

• Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the Wild: Studying Real
User Activity Patterns to Guide Power Optimizations for Mobile Architectures. In
proceedings of the International Symposium on Microarchitecture, December 2009. [93] (Chap-
ter 4)

As the citations show, the work in this presentation is a collaborative work with several

co-authors who have made critical contributions to the work. Thus, any mentions of “we”

in the subsequent chapters refer to myself as well as my co-authors.

28

CHAPTER 2

User Perception: Leveraging Individual User Satisfaction

Any architectural optimization (performance, power, reliability, security, etc.) ulti-

mately aims at satisfying the end-user. However, understanding the happiness of the user

during the run of an application is complicated. Although it may be possible to query the

user frequently, such explicit interaction will annoy most users. Therefore, it would be

beneficial to estimate user satisfaction using implicit metrics. Traditionally, computer ar-

chitects have used implicit metrics such as instructions retired per second (IPS), processor

frequency, or the instructions per cycle (IPC) as optimization objectives. The assumption

behind these metrics is that they relate in a simple way to the satisfaction of the user.

When two systems are compared, it is assumed, for example, that the system providing

a higher IPS will result in higher user satisfaction. For some application domains, this

assumption is generally correct. For example, the execution time of a long running batch

application is largely determined by the IPS of the processor. Hence, increasing IPS will

result in an increase in user satisfaction. However, in this chapter we show that the re-

lationship between hardware performance and user satisfaction is complex for interactive

applications and an increase in a metric like IPS does not necessarily result in an increase

in user satisfaction. More importantly, we show that the relationship between hardware

performance and user satisfaction is highly user-dependent. Hence, we explore the feasi-

bility of estimating individual user satisfaction from hardware metrics, develop accurate

nonlinear models to do so, and use these models for run-time power management.

29

Driving architectural decisions from estimates of user satisfaction has several advan-

tages. First, user satisfaction is highly user-dependent. This observation is not surprising.

For example, an expert gamer will likely demand considerably more computational power

than a novice user. In addition, each user has a certain “taste”; for example, some users

prefer to prolong battery life, while others prefer higher performance. If we know the

individual users satisfaction with minimal perturbation of program execution, we will be

able to provide a better experience for the user. Second, when a system optimizes for

user satisfaction, it will automatically customize for each application. Specifically, a sys-

tem that knows the users satisfaction with a given application will provide the necessary

performance to the user. For interactive applications, this may result in significant advan-

tages such as power savings or increased lifetime reliability. For example, one of our target

applications exhibits no observable change in performance when the frequency of the pro-

cessor is set to its lowest level. In this case, our system drastically reduces the power

consumption compared to traditional approaches without sacrificing user satisfaction.

Ultimately, our goal is to map microarchitectural information to user satisfaction.

Such a map can then be used to understand how changes in microarchitectural metrics

affect user satisfaction. Modern microprocessors contain integrated hardware performance

counters (HPCs) that count architectural events (e.g., cache misses) as well as a variety

of events related to memory and operating system behavior [4, 54, 55]. In this work,

we aim at finding a mapping from the HPC readings to user satisfaction. We first show

that there is a strong correlation between the HPCs and user satisfaction. However, the

relationship between the two is often non-linear and user-dependent.

30

A good estimate of user satisfaction derived from microarchitectural metrics can be

used to minimize power consumption while keeping users satisfied. Although utilizing

user satisfaction in making architectural decisions can be employed in many scenarios, in

this work, we focus on dynamic voltage and frequency scaling (DVFS) [19], which is one of

the most commonly used power reduction techniques in modern processors. DVFS make

decisions online to change microprocessor frequency and voltage according to processing

needs. Existing DVFS techniques in high-performance processors select an operating

point (CPU frequency and voltage) based on the utilization of the processor. Like many

other architectural optimizations, DVFS is pessimistic about user satisfaction and assumes

that the maximum processor frequency is necessary for every process that has a high CPU

utilization. We show that incorporating user satisfaction into the decision making process

can improve the power reduction yielded by DVFS. Specifically, our contributions in this

work follow:

• We unveil a strong relationship between HPCs and user satisfaction for interactive

applications;

• We show that this relationship is often non-linear, complex, and highly user-

dependent;

• We show that individual user satisfaction can be accurately predicted using neural

network models;

• We design Individualized Dynamic Voltage and Frequency Scaling (iDVFS),

which employs user satisfaction prediction in making decisions about the fre-

quency of the processor; and

31

• We implement and evaluate iDVFS on Windows with user studies that show it

reduces power consumption compared to Window DVFS.

The chapter is organized as follows. In Section 2.1, we give an introduction to hardware

counters. Section 2.2 describes our user study process. Section 2.3 presents results showing

the relationship between user satisfaction and hardware counters. The predictive user-

aware power management scheme is described in Section 2.4. Section 2.5 presents the

results obtained from user studies. Section 2.6 summarizes our contributions.

2.1. Hardware Performance Counters

Modern microprocessors include integrated hardware performance counters (HPC) for

non-intrusive monitoring of a variety of processor and memory system events [4, 54, 55].

HPCs provide low-overhead access to a wealth of detailed performance information related

to CPU’s functional units, caches, main memory, etc. Even though this information is

generally statistical in nature, it does provide a window into certain behaviors that are

otherwise impractical to observe. For instance, these events include various counts of

instructions, cache activity, branch mispredictions, memory coherence operations, and

functional unit usage. Several tools and microprocessors have extended this functionality

beyond simple event counting. For example, Intel’s Itanium processors [55] have features

that allow monitoring specific events based on an instruction or data address range, a

specific instruction opcode, or execution at specific privilege levels.

Current microprocessors support a limited number of HPCs. For example, the IA-64

architectures only support counting four events at a time [55]. In our experiments, we

use the Pentium M processor which only supports two counters at a time. As a result,

32

PAPI counter Description
PAPI TOT INS Instructions issued
PAPI RES STL Cycles stalled on any resource
PAPI TOT CYC Total cycles
PAPI L2 TCM Level 2 cache misses
PAPI BTAC M Branch target address cache misses
PAPI BR MSP Conditional branch instructions mispredicted
PAPI HW INT Hardware interrupts
PAPI L1 DCA Level 1 data cache accesses
PAPI L1 ICA Level 1 instruction cache accesses

Table 2.1. Hardware counters used in experiments.

it is not possible to collect all hardware information simultaneously. One workaround is

to time multiplex sets of counters and then scale the values appropriately. Azimi, Stum,

and Wisniewski [11] show that time multiplexing up to 10 sets of counters provides

statistically significant counter values. Despite this limitation, the low-overhead access to

low-level architectural information provided by HPCs is very useful and is often leveraged

in run-time profiling and optimization systems [7, 69].

We use WinPAPI, the Windows variant of PAPI [21], to access the HPCs present in

the processor. In our study we concentrate on the nine specific performance metrics listed

in Table refperception:tab:hpcs. These counters are manually selected as a representative

set of the HPCs available on the Pentium M. The choice of using only nine counters

is due to a WinPAPI limitation. We collect counter values every 100 ms. WinPAPI

automatically time multiplexes and scales the nine event counters.

2.2. User Study Setup

To explore the relationships between different microarchitectural parameters and user

satisfaction, we conduct two sets of studies with 20 users. Our experiments are done

33

using an IBM Thinkpad T43p with a 2.13 GHz Pentium M-770 CPU and 1 GB memory

running Microsoft Windows XP Professional SP2. The laptop is tethered to the power

outlet during all experiments. Although eight different frequency levels can be set on

the Pentium M-770 processor, only six can be used due to limitations in the SpeedStep

technology. For both user studies, we experiment with three types of applications: a 3D

Shockwave animation, a Java game, and high-quality video playback. The details of these

applications follow:

• Shockwave: Watching a 3D Shockwave animation using the Microsoft Internet

Explorer web browser. The user watches the animation and is encouraged to

press the number keys to change the cameras viewpoint. The animation is stored

locally. Shockwave options are configured so that rendering is done entirely in

software on the CPU.

• Java Game: Playing a Java based First Person Shooter (FPS). The users have

to move a tank and destroy different targets to complete a mission. The game is

CPU-intensive.

• Video: Watching a DVD quality video using Windows Media Player. The video

uses high bandwidth MPEG-4 encoding.

Since we target the CPU in this paper, we picked three applications with varying

CPU requirements: the Shockwave animation is very CPU-intensive, the Video places a

relatively low load on the CPU, and the Java game falls between these extremes.

Our user studies are double-blind, randomized, and intervention-based. We developed

a user pool by advertising our studies within Northwestern University. While many of

34

the participants were CS, CE, or EE graduate students, our users included inexperienced

computer users as well.

2.3. Correlation Between User Satisfaction and Hardware Counters

The primary objective of our first user study is to explore the correlation between

HPCs and user satisfaction. The monitored hardware counters are listed in Table 2.1. In

this first set of experiments, the users are asked to carry out the three application tasks as

described in Section 2.2. During execution, we randomly change the frequency and ask the

users to verbally rank their experience on a scale of 1 (discomfort) to 10 (very comfortable).

Users typically provided a satisfaction rating within 5–10 seconds. These satisfaction levels

are then recorded along with the HPC readings and analyzed as described in the next

section. Then we compute the maximum, minimum, average, range, and the standard

deviation of the counter values for up to 5 seconds within the given interval. The end

result is a vector of 45 metrics for each satisfaction level reported by the user. Note

that since we have performed the user studies with 20 users and three applications, we

collected 360 user satisfaction levels.

We then find the correlation of the 45 metrics to the user satisfaction rating by using

the formula:

(2.1) rx,y =
N

∑
xy − (

∑
x)(

∑
y)√

[N
∑

x2 − (
∑

x)2][N
∑

y2 − (
∑

y)2]

Pearsons Product Moment Correlation Coefficien (r) is commonly used to find cor-

relation among two data series (x and y) and results in a value between 1 and 1. If the

35

correlation is negative, the series have negative relationship; if it’s positive, the relation-

ship is positive. The closer the coefficient is to either 1 or 1, the stronger the correlation

between the variables. Thus, the magnitude of these correlations allows us to compare the

relative value of each independent variable in the predicting the dependent variable. The

correlation factors for each of the 45 parameters and the user rating are presented in Sec-

tion 2.7. In summary, we observe a strong correlation between the hardware metrics and

user satisfaction rating: there are 21 parameters that correlate with the user satisfaction

rating by a factor above 0.7 (all these 21 parameters have a factor ranging between 0.7

and 0.8) and there are 35 parameters with factors exceeding 0.5. On one hand, this result

is intuitive; it is easy to believe that metrics representing processor performance relate

to user satisfaction. On the other hand, observing the link between such a high-level

quantity as measured user satisfaction and such low-level metrics as level 2 cache misses

is intriguing.

We classify the metrics (and their correlations with user satisfaction) based on their

statistical nature (mean, maximum, minimum, standard deviation, and range). The mean

and standard deviation of the hardware counter values have the highest correlation with

user satisfaction rating. A t-test analysis shows with over 85% confidence that mean and

standard deviation both have higher r values when compared to the minimum, maximum,

and range of the HPC values.

We analyze the correlations between the satisfaction results and user. Note that the r

value cannot be used for this purpose, as the user numbers are not independent. Instead,

we repeatedly fit neural networks to the data collected for each application, attempting

to learn the overall mapping from HPCs to user satisfaction. As the inputs to the neural

36

network, we use the HPC statistics along with a user identification for each set of statistics.

The output is the self-reported user satisfaction rating. In each fitting, we begin with a

three-layer neural network model using 50 neurons in the hidden layer (neural networks

are described in more detail in Section 2.4.2). After each model is trained, we perform

a sensitivity analysis to find the effect of each input on the output. Sensitivity analysis

consists of making changes at each of the inputs of the neural network and observing the

corresponding effect on the output. The sensitivity to an input parameter is measured on

a 0 to 1 scale, called the relative importance factor , with higher values indicating higher

sensitivity. By performing sensitivity analysis, we can find the input parameters that are

most important in determining an output parameter, i.e., user satisfaction. During this

process, we consistently find that the user number input has by far the highest relative

importance factor . Averaging across all of our application tasks, the relative importance

factor of the user number is 0.56 (more than twice as high as the second factor). This

strongly demonstrates that the user is the most important factor in determining the rating.

Finally, to understand the nature of the relationship between the HPCs and the user

satisfaction, we analyze the trends for different functions for user satisfaction as provided

by the user at each of the processor frequencies.

Figure 2.2 summarizes the trends observed among different users for our three ap-

plications. The first row shows the trend curves when we plot user satisfaction against

the different frequencies (along x-axis). Most of the trends can be placed in four major

categories:

• Constant: User satisfaction remains unchanged with frequency. As a result, it

is not affected by frequency setting.

37

Table 2.2. User trend categorization, the number of users in each category
for different applications.

• Linear: User satisfaction increases linearly with processor frequency.

• Step: User satisfaction is the same for a few high frequencies but then plummets

suddenly for the remaining lower ones.

• Staircase: User satisfaction takes on discrete values that monotonically increase

with increasing frequency.

User satisfaction functions that do not match any of the above categories are labeled

Other. Usually, this is due to user feedback which provides a non-monotonic function

These results reveal several important trends. First, user satisfaction is often non-

linearly related to processor frequency. The majority of users provide functions that are

categorized as Constant, Step, or Staircase. Note that although Constant is a linear func-

tion, it does not follow the regular assumption that an increase in a given metric results

in an increase in user satisfaction. Second, user satisfaction is application-dependent. For

example, for the Video application, almost all of the users report a Constant function. On

the other hand, the trends for the Java game are distributed among various categories.

Finally, user satisfaction is user-dependent. For example, in both the Java game, and the

38

Figure 2.1. Framework of the predictive user-aware power management.

Shockwave animation, users specify utility functions that span multiple categories. This

shows that different users have significantly different expectations for the system.

As we will discuss in the next section, these observations have an important effect on

the modeling technique we use for learning and predicting user satisfaction. Overall, this

motivational study indicates that

• Hardware counter have a strong correlation with user satisfaction;

• The individual user is the most important factor in determining user satisfaction;

• The relation between hardware performance and user satisfaction is often non-

linear; and

• User satisfaction is both application dependent and user dependent.

Based on these observations, we design, implement, and evaluate a DVFS scheme that

is based on individual user preferences.

2.4. Leveraging User Variation with Predictive Power Management

Based on the initial user study results presented in Section 2.3, we develop a power

management scheme that sets the frequency of the processor based on estimates of user

39

satisfaction. This section presents this predictive user-aware power management scheme,

called Individualized Dynamic Frequency and Voltage Scaling (iDVFS). To implement

iDVFS, we have built a system that is capable of predicting a users satisfaction based

on interaction with the system. The framework can be divided into two main stages as

depicted in Figure 2.1:

• Learning Stage: The system is initially trained based on reported user satis-

faction levels and HPC statistics as described in Section 2.3. Machine learning

models, specifically artificial neural networks, are trained offline to learn the

function from HPC values to user satisfaction.

• Runtime Power Management: Before execution, the learned model is loaded

by the system. During run time, the HPC values are sampled, entered into the

predictive model, and then the predicted user satisfaction is used to dynamically

set the processor frequency.

2.4.1. Learning Stage

In its learning stage, our algorithm builds a predictive model based on individual user

preferences. The model estimates user satisfaction from the HPCs. In this stage, the

user is asked to give feedback (user satisfaction level) while the processor is set to run at

different frequency levels. The nature of this training stage is similar to the user study

described in Section 2.2 and Section 2.3. Note that the user study and its survey are

repeated for each application. While a user study runs, the nine performance counters

are collected and the 45 statistical metrics computed from them are extracted. The

40

combination of these values and the user feedback are used to build the model that will

later be used online.

2.4.2. Predictive Model Bulding

The learning stage helps us gather data that associates an individual users satisfaction

with different hardware performance counter readings and statistics. These instances are

then used to build a predictive model that estimates the satisfaction of a particular user

from the HPCs. We use neural networks to learn this model. We have also experimented

with regression models and decision trees, but the neural networks provided the highest

accuracy.

An artificial neural network (ANN) is an interconnected group of artificial neurons

that uses a mathematical or computational model for information processing based on a

connectionist approach to computation. An ANN maps a set of p input variables x1, ...,

xp to a set of q response variables y1, ..., yq. It works by simulating a large number of

interconnected simple analog processing units that resemble abstract versions of a neuron.

Each processing unit (or neuron) computes a weighted sum of its input variables. The

weighted sum is then passed through the sigmoid function to produce the units output.

We use a three-layer ANN model with one input layer, one hidden layer, and one output

layer. The well-known backpropagation algorithm is used to train the neural network from

instance data. In the backpropagation algorithm, the weights between the neurons begin

as random values. During the learning phase, training inputs are provided to the ANN

and the associated output errors are used to adjust neuron weight functions to reduce

error.

41

Our experiments represent an interesting case for machine learning. Typically, ma-

chine learning algorithms are extensively trained using very large data sets (e.g., thousands

of labeled training inputs). We would like to use ANNs for their ability to learn complex

non-linear functions, but do not have a very large data set. For each application-user

pair, we only have six training inputs; one for each processor frequency. A training input

consists of a set of HPC statistics and a user-provided satisfaction label. When we first

began building ANN models with all 45 inputs (9 HPC counters with 5 statistics each),

we noticed that our models were overly conservative, only predicting satisfaction ratings

within a narrow band of values. We used two training enhancements to permit the con-

struction of accurate ANN models. First, we simplified the ANN by limiting the number

of inputs. Large ANNs require large amounts of training data to sufficiently learn the

weights between neurons. To simplify the ANN, we used the two counters that had the

highest correlation, specifically PAPI BTAC M-avg and PAPI TOT CYC-avg (as shown

in Section 2.7). Second, we repeatedly created and trained multiple ANNs, each beginning

with different random weights. After 30 seconds of repeated trainings, we used the most

accurate ANN model. These two design decisions were important in allowing us to build

accurate ANN models.

2.4.3. HPC-based Frequency Control Algorithm

iDVFS uses ANN models to determine the frequency level. The decision is governed by the

following variables: f , the current CPU frequency; µUS, the user satisfaction prediction

for the last 500 ms of execution as predicted by the ANN model; ρ, the satisfaction

tradeoff threshold; αf , a per-frequency threshold for limiting the decrease of frequency

42

from the current f ; M , the maximum user comfort level; and Ti, the time period for

re-initialization.

iDVFS employs a greedy approach to determine the of M , iDVFS predicts that the

frequency is in a satisfactory state. If µUS−1, the previously predicted user comfort, is also

of M , the system determines that it may be good to decrease the processor frequency; if

not, then the system of M , then the system determines that the current performance is

not satisfactory and increases the operating frequency. iDVFS uses the αf thresholds as a

hysteresis mechanism to eliminate the ping-pong effect between two states. If the proces-

sor rapidly switches between two states N times in a short time interval, the appropriate

αf threshold is decreased to make it harder to decrease to the lower frequency level. This

feature of the algorithm ensures that iDVFS can adjust to a set of operating conditions

very different from those present at initialization but at a rate that is maximally bounded

by Ti. The constant parameters (ρ = .15, N = 3, Ti = 20 seconds) were set based on the

experience of the authors using the system. αf thresholds are initialized to 1 for each of

the frequency level and is decremented by 0.1 at each frequency boost

Ideally, we would like to empirically evaluate the sensitivity of iDVFS performance

to the selected parameters. However, it is important to note that any such study would

require having real users in the loop, and thus would be slow. Testing four values of

four parameters on 20 users would require 256 days (based on 20 users/day and 25 min-

utes/user). For this reason, we decided to choose the parameters based on qualitative

evaluation by the authors and then “close the loop” by evaluating the whole system with

the choices.

43

Figure 2.2. Figure 2. Frequency traces using iDVFS and Windows power
management schemes for (a) Java Game and (b) Video.

Figure 2.2 illustrates the performance of the iDVFS algorithm for two of the three ap-

plications in our study. Each graph shows, as a function of time, the CPU frequency for a

randomly-selected user when playing the Java Game and watching the Video. First, note

that the frequency transitions in the two example traces differ greatly from the decisions

that Windows XP DVFS makes. The reason is that Windows XP DVFS alters frequency

based upon CPU utilization while iDVFS alters frequency based upon predicted user sat-

isfaction. iDVFS reduces the frequency significantly in the Video application. In this

case, the user has indicated high satisfaction with all levels of performance. As shown

in Figure 2.2, the Video has the least variation in user satisfaction values at lower fre-

quencies. As a result the iDVFS algorithm can reduce CPU frequency without affecting

user satisfaction. In both cases, the frequency level follows the satisfaction levels reported

by the user and minimizes power consumption with little impact on satisfaction. These

traces show that iDVFS can successfully adjust the clock frequency throttle according

to the user satisfaction derived from the HPCs. For a highly compute-intensive appli-

cation (such as the Java Game), the reduction in the frequency is minimal because any

change in frequency causes a significant reduction in userperceived performance. For other

44

applications (such as the Video), frequency can be drastically reduced without affecting

user satisfaction.

2.4.4. Implementation, Integration, and Limitations

Currently, we have not integrated iDVFS with the operating system (OS). Instead, we

have implemented client software that runs as a Windows toolbar task, and manually

activate iDVFS for our user studies. The client is implemented in a manner that is similar

to profile-directed optimization. An initial calibration stage is used for building a model

that is used to predict user satisfaction during run time. The current implementation

requires direct user feedback in a calibration stage for each user and each application.

While this may be cumbersome, there are two points we would like to make. First, we

believe that the current system is practical for some users (e.g., heavy gamers will not

mind a few minutes of calibration). Second, we argue that explicit user feedback is a viable

option. Future work in limiting the feedback and learning effectively from explicit/implicit

mechanisms will allow such schemes to be deployed widely.

iDVFS has a few limitations that will be eliminated once it is integrated into the

OS. First, we provide the client software with per-user, per-application neural network

models tailored to the application we are about to invoke. Second, iDVFS is currently

only intended for interactive applications. The OS has knowledge of users, as well as

active applications, and could automatically load the appropriate prediction models for

interactive applications during context switches.

WinPAPI only supports system-wide HPC sampling; this includes other programs,

background processes, and kernel execution. For our work, we run a single workload on the

45

machine at a time; hence HPC samples correlate to the workload directly. Ideally, the HPC

interface would include thread-specific information as well as distinguish between user level

and kernel level applications. Other HPC interfaces (i.e., perfmon2 for Linux [53]) also

include this support.

The performance of iDVFS is largely dependent upon good user input. While this

may be a limitation for a current user and application, the user is free to provide new

ratings and recalibrate iDVFS if the resulting control mechanism causes dissatisfaction.

2.5. Experimental Results

In this section, we evaluate the predictive user-aware power management scheme with

a user study, as described in Section 2.4. We compare iDVFS with the native Windows XP

DVFS scheme and report reductions in CPU dynamic power, as well as changes in mea-

sured user satisfaction. This is followed by a trade-off analysis between user satisfaction

and system power reduction. We report the effect of iDVFS on the power consumption

and user satisfaction.

We compare iDVFS to Windows Adaptive DVFS, which determines the frequency

largely based on CPU usage level. A burst of computation due to, for example, a mouse

or keyboard event brings utilization quickly up to 100% and drives frequency, voltage,

power consumption, and temperature up along with it. CPU-intensive applications cause

an almost instant increase in operating frequency and voltage regardless of whether this

change will impact user satisfaction. Windows XP DVFS uses six of the frequency states

in the Enhanced Intel Speedstep technology, as mentioned in Section 3. Performance

46

Figure 2.3. Windows DVFS algorithm.

requirements are determined using heuristics based on metrics “such as processor utiliza-

tion, current battery level, use of processor idle states, and inrush current events” [76].

In the Windows native adaptive DVFS scheme, decisions are made according to the algo-

rithm described in Figure 2.3. We note that this is our best interpretation of the DVFS

algorithm described in [76].

2.5.1. Analysis of User Satisfaction and Power Measurements

To analyze the effect of iDVFS on system power consumption, we perform a second set of

user studies in which the users are asked to carry out the tasks described in Section 2.2.

This time, the durations of the applications are increased: the Java Game is executed for

2.5 minutes; Shockwave and Video are executed for 1.5 minutes each. The user is asked

to execute the application twice, once for Windows XP DVFS and once for iDVFS, which

loads the individual ANN model for the user/application before the start of the execution.

Once the execution completes, the users are asked to rate their satisfaction with each of

the systems on a scale of 1 (very dissatisfied) to 5 (very satisfied).

47

During these experiments, we log the frequency over time. We use these frequency

logs to derive CPU power savings for iDVFS compared to the default Windows XP DVFS

strategy. We have also measured the online power consumption of the entire system, and

provide a detailed discussion and analysis of trade-offs between power consumption and

user satisfaction.

2.5.1.1. Dynamic Power Consumption and User Satisfaction. The dynamic power

consumption of a processor is directly related to frequency and supply voltage and can be

expressed using the formula P = V 2CF , which states that power is equal to the product

of voltage squared, capacitance, and frequency. By using the frequency traces and the

nominal voltage levels on our target processor [45], we calculated the relative dynamic

power consumption of the processor. Figure 2.4 presents the CPU dynamic power reduc-

tion achieved by the iDVFS algorithm compared to the Windows XP DVFS algorithm

for the individual users for each application. It also presents their reported satisfaction

levels. To understand the figure, consider a group of three bars for a particular user.

The first two bars represent the satisfaction levels for the users for the iDVFS (gray) and

Windows (white) schemes, respectively. The third bar (black) shows the power saved by

iDVFS for that application compared to the Windows XP DVFS scheme (for which the

scale is on the right of the figure).

On average, our scheme reduces the power consumption by 8.0% (Java Game), 27.9% (Shock-

wave), and 45.4% (Video) compared to the Windows XP DVFS scheme. A one-sample

t-test of the iDVFS power savings shows that for Shockwave and Video, iDVFS decreases

dynamic power with over 95% confidence. For the Java game, there are no statistically-

significant power savings. Correspondingly, the average user satisfaction level is reduced

48

(a) Java game.

(b) Shockwave animation.

(c) Video.

Figure 2.4. Reported user satisfaction for the (a) Web Browsing, (b) Game,
and (c) Video applications.

by 8.5% (Java Game), 17.0% (Shockwave), and remains the same for Video. A two-

sample paired t-test comparing the user satisfaction ratings from iDVFS and Windows

49

XP DVFS indicates that for Java and Video, there is no statistical difference in user sat-

isfaction when using iDVFS. For Shockwave, we reduce user satisfaction with over 95%

confidence

The combined results show that for Java, iDVFS is no different than Windows XP

DVFS, for Shockwave, iDVFS trades off a decrease in user satisfaction for a decrease in

power consumption, and for the Video, iDVFS significantly decreases power consumption

while maintaining user satisfaction.

An analysis of the results quickly reveals that the average satisfaction levels are

strongly influenced by a few exceptional cases. We have analyzed the cases where there

is a difference of more than 1 step between the user ratings. Among these, we found six

cases that require special attention. For the Java Game, the training inputs of Users 3, 6,

and 13 (solid rectangles in Figure 4) significantly mismatched the performance levels of

the processor. Specifically, these users have given their highest ratings to one of the lowest

frequency levels. As a result, iDVFS performs as the user asks and reduces the frequency,

causing dissatisfaction to the user. The cause of dissatisfaction for User 4 (dotted rectan-

gle in Figure 2.4) was different. The ANN for that user did not match the training ratings

and thus the user was dissatisfied. Similarly, for the Shockwave application, Users 6 and

10 (dashed rectangle in Figure 2.4) provided a roughly constant user satisfaction across

the various frequencies. During the user study, however, these Shockwave users high-

lighted their dissatisfaction when they were able to compare the performance of iDVFS

to the Windows scheme, which keeps the processor at the highest frequency at all times

It is important to note that such exceptional cases are rare; only 10% of the cases (6

out of 60) fall into this category. Such exceptional cases can be easily captured during a

50

learning phase and eliminated by forcing the user to retake the survey and re-train the

model, i.e., training can be repeated until successful. In addition, any dissatisfied user

can retrain until a satisfactory performance level is reached. However, our results reveal

that such cases will be rare 1

User 16s results are likely to be caused by noise and provide a good example of the

intricacies of dealing with real users. This user rated iDVFS two steps lower than the

Windows scheme for Shockwave. At the same time, he/she rated iDVFS two grades higher

for the Java Game application even though iDVFS used a lower frequency throughout

execution.

Overall, these initial results provide strong evidence that a highly-effective individual-

ized power management system can be developed. Specifically, the results from our user

study reveal that

• There exist applications (e.g., Video), for which providing customized perfor-

mance can result in significant power savings without impacting user satisfaction;

• There exist applications (e.g., Shockwave), for which the users can trade off

satisfaction level with power savings. In fact, in the next section, we provide an

analysis of such trade-offs; and

• There exist applications (e.g., Java Game), for which traditional metrics in de-

termining the satisfaction is good and iDVFS will provide the same performance

level and user satisfaction.

1We also analyzed the performance of iDVFS without considering these extreme cases. Overall, iDVFS
reduces power consumption by 5.2% (Java Game), 24.0% (Shockwave), and 45.4% (Video). User satisfac-
tion levels were increased by 4.8% (Java Game), reduced by 13.9% (Shockwave), and remained identical
for Video (where there are no exceptional cases).

51

2.5.1.2. Total System Power and Energy-Satisfaction Trade-Off. In the previous

section, we have presented experimental results indicating the user satisfaction and the

power consumption for three applications. For two applications (Video and the Java

Game), we concluded that the iDVFS users are at least as satisfied as Windows XP DVFS

users. However, for the Shockwave application, we observed that although the power

consumption is reduced, this is achieved at the cost of a statistically significant reduction

in average user satisfaction. Therefore, a designer needs to be able to evaluate the success

of the overall system. To analyze this trade-off, we developed a new metric called the

energysatisfaction product (ESP) that works in a similar fashion to popular metrics such

as energy-delay product. Specifically, for any system, the ESP per user/application can

be found by multiplying the energy consumption with the reported satisfaction level of

the user.

Clearly, to make a fair comparison using the ESP metric, we have to collect the total

system energy consumption during the run of the application. To extract these values, we

replay the traces from the user studies of the previous section. The laptop is connected

to a National Instruments 6034E data acquisition board attached to the PCI bus of a

host workstation running Windows (and the target applications), which permits us to

measure the power consumption of the entire laptop (including other power consuming

components such as memory, screen, hard disk, etc.). The sampling rate is set to 10Hz.

Figure 2.5 illustrates the experimental setup used to measure the system power.

Once the system energy measurements are collected (for both Windows XP DVFS

and iDVFS), we find the ESP for each user by multiplying their reported satisfaction

levels and the total system energy consumption. The results of this analysis are presented

52

Figure 2.5. System power measurement setup.

in Figure 2.6. In this figure, we present the reduction in system energy consumption,

increase in user satisfaction, and change in ESP for each user. Hence, the higher numbers

correspond to improvement in each metric, whereas negative numbers mean that the

Windows XP DVFS scheme performed better. Although the ESP improvement varies

from user to user, we see that iDVFS improves the ESP product by 2.7%, averaged over

all users. As a result, we can conclude that Windows XP DVFS and iDVFS provide

comparable ESP levels for this particular application. In other words, the reduction in

user satisfaction is offset at a significant benefit in terms of power savings.

2.6. Summary

Through extensive user studies, we have demonstrated that there is a strong, albeit

usually nonlinear, link between low-level microarchitectural performance metrics, as mea-

sured by hardware performance counters (i.e., “close to the metal” numbers), and user

satisfaction (i.e., “close to the flesh” numbers) for interactive applications. More impor-

tantly, we show that the link is highly user-dependent. This variation in user satisfaction

53

Figure 2.6. Figure 6. Improvement in energy consumption, user satisfac-
tion, and energy-satisfaction product for the Shockwave application.

indicates potential for optimization. Using neural networks, we learn per-user perappli-

cation functions (which might be called “metal to flesh” functions) that map from the

hardware performance counters to individual user satisfaction levels. This result in a com-

puter system that can uses small amounts of explicit user feedback, and then implicitly

learns from the feedback to make online predictions of user satisfaction. We demonstrate

the utility of this implicit feedback by employing it in a user-aware DVFS algorithm.

Experimental results, and analysis of user studies, show that there are interactive ap-

plications for which knowledge of user satisfaction permits power consumption savings.

Others present an interesting trade-off between user satisfaction and power savings. Over-

all, our system reduces the power consumption of Windows XP DVFS by over 25%, while

only affecting user satisfaction in one application.

2.7. Appendix: Correlating HPC Metrics and User Satisfaction

Table 2.3 presents the correlation between 45 metrics based on hardware counter

readings. Please see Section 4 for details of the calculation of these correlation factors.

54

Performance Metrics Correlation Performance Metrics Correlation Performance Metrics Correlation
PAPI BTAC M-avg 0.771 PAPI RES STL-max 0.738 PAPI TOT INS-range 0.625
PAPI L1 ICA-avg 0.770 PAPI BTAC M-max 0.733 PAPI TOT INS-min 0.603
PAPI L1 ICA-stdev 0.770 PAPI TOT INS-max 0.729 PAPI L1 DCA-min 0.528
PAPI BTAC M-stdev 0.770 PAPI L2 TCM-avg 0.722 PAPI L2 TCM-max 0.525
PAPI L1 DCA-stdev 0.768 PAPI L1 DCA-range 0.721 PAPI BR MSP-min 0.503
PAPI TOT INS-avg 0.768 PAPI L2 TCM-stdev 0.709 PAPI L2 TCM-range 0.497
PAPI TOT CYC-avg 0.767 PAPI RES STL-min 0.694 PAPI L2 TCM-min 0.495
PAPI L1 DCA-max 0.767 PAPI TOT CYC-min 0.689 PAPI BR MSP-max 0.379
PAPI TOT CYC-stdev 0.767 PAPI RES STL-range 0.684 PAPI BR MSP-range 0.360
PAPI TOT INS-stdev 0.766 PAPI L1 ICA-min 0.682 PAPI BTAC M-min 0.289
PAPI L1 DCA-avg 0.766 PAPI L1 ICA-range 0.675 PAPI HW INT-max 0.131
PAPI RES STL-avg 0.761 PAPI BR MSP-avg 0.662 PAPI HW INT-range 0.119
PAPI RES STL-stdev 0.761 PAPI BTAC M-range 0.653 PAPI HW INT-min 0.112
PAPI TOT CYC-max 0.756 PAPI TOT CYC-range 0.644 PAPI HW INT-stdev 0.094
PAPI L1 ICA-max 0.749 PAPI BR MSP-stdev 0.638 PAPI HW INT-avg 0.048

Table 2.3. Correlation of hardware counters and user satisfaction.

55

CHAPTER 3

User Physiological Traits: Implicitly Learning User Satisfaction

Knowing that user variation exists is not enough. We need a method for understanding

user satisfaction during computer use. Although iDVFS (described in Section 2.4) uses a

model from hardware performance counters to user satisfaction as a proxy for predicting

user satisfaction, we still need to explictly ask the end user for their satisfaction at some

point. This explicit input may be annoying to the end user, and begs the question: is it

possible to implicitly understand user satisfaction? If we could understand the end user

without explicit feedback, we could drive user-aware optimizations, such as iDVFS, to

tune performance to an individual user without any explicit feedback.

Developing an implicit feedback mechanism for modern computers is difficult. We

assert that the design of modern architectures makes it difficult (if not impossible) to

implicitly infer and reason about the end user. One only needs to observe the current

computer usage model to understand this claim. First, the user directs the computer

explicitly via input devices (e.g., keyboard or mouse). According to user direction, the

computer executes instructions to manipulate machine state. Afterwards, the user obtains

information via output devices (e.g., display or speakers). Note that during this human-

computer interaction, there is a considerable asymmetry between the information available

to the user and information available to the computer . Although the user can direct the

computer to change/view the system state at any time, the computer executes with little

any information about the user state.

56

In this chapter, we make a case for balancing this human-computer information asym-

metry by augmenting future architectures with new input devices that provide information

on user state. Enabling a computer to sense and perceive user state has a number of ben-

efits. First, understanding user state will enable user-aware optimizations by providing

implicit user feedback. Tailoring execution to the individual users “taste” will result in

better efficiency and significant benefits in power savings or increased lifetime reliability.

In addition, decisions about resource assignment (i.e., deciding on the level of parallelism

of an application running on a chip multiprocessor) can be made more effectively. Most

importantly, computer behavior will be personalized based upon individual expectations

to improve user satisfaction.

We propose, and evaluate, the use of biometric input devices that provide information

on human state by observing physiological traits. Using physiological readings is an

intuitive first step in understanding the user; our experiments suggest that a change in

user state results in a number of measurable physiological responses. We use an eye tracker

to measure pupil dilation and eye movement, a galvanic skin response (GSR) sensor to

measure skin resistance/conductance, and force sensors to measure behavior. We begin

with two user studies to motivate the use of these additional input devices. In the first,

we drastically drop the CPU frequency at a set point while a game is being played. In the

second, we randomly vary the CPU frequency across multiple settings during game play.

We show that the CPU frequency has a significant impact on the physiological traits of

the users. We also show that the changes in the physiological traits correlate with the

satisfaction levels reported by the participants.

57

Based upon these observations, we then construct a Physiological Traits-based Power-

management (PTP) system to demonstrate an application of these biometric input de-

vices. PTP may augment any existing dynamic voltage and frequency scaling (DVFS)

scheme to make user-aware decisions. In its current implementation, PTP adjusts the

maximum frequency by incorporating human physiological readings. DVFS is a com-

mon power saving technique available on modern microprocessors that scales the fre-

quency (and voltage) of a microprocessor to reduce power consumption. By adding PTP

to a typical CPU-utilization-based DVFS scheme, we significantly decrease power con-

sumption with little to no impact on user satisfaction.

It is intuitive to imagine that the computer performance will impact the physiological

responses of users. There have been studies showing the relationships between physiolog-

ical sensor readings and reported user emotions in response to interaction with computer

programs [75, 52]. However, to the best of our knowledge, this is the first study in mea-

suring the impact of computer performance on human physiological traits. Specifically,

we make the following contributions:

• We make a case for using biometric input devices (such as eye trackers, galvanic

skin response sensors, and force sensors) in making architecture-level decisions;

• We show through two user studies that our selected biometric input devices are

able to detect changes in human physiological traits as the performance is altered

during the run of an application; and

• We demonstrate a user-aware system for augmenting DVFS and evaluate the

system with another user study.

58

The rest of the chapter is organized as follows. Section 3.1 discusses the biometric

sensors. Section 3.2 presents the setup of the user studies. Section 3.3 describes the first

two user studies correlating sensor readings to user satisfaction. Section 3.4 discusses our

prototype DVFS system for leveraging biometric input devices. Section 3.5 presents our

results, We conclude with Section 3.6.

3.1. Empathic Input Devices

To support user-aware computer architectures, computers will require a means to

understand user satisfaction. Although it is possible to explicitly ask the user for infor-

mation, this may be annoying. The ability to implicitly determine the degree of user

satisfaction would be ideal. Unfortunately, current architectures are not equipped to im-

plicitly estimate user satisfaction. This is due to a fundamental limitation of current input

devices. Traditional input devices mainly exist to allow the user to explicitly control the

machine state. However, they provide little information about physiological state. With-

out any information about user state, it is obvious that a computer cannot reason about

user satisfaction. To help bridge this gap, we make a case for the addition of biometric

sensors in future architectures. In this work, we explore three biometric sensors: eye

trackers, galvanic skin response sensors, and force sensors. These sensors are described in

the following sections.

3.1.1. Eye Tracker

Eye behavior reveals a lot of information about users state. We are particularly interested

in pupil dilation and pupil movement. Pupil dilation, or changes in the pupil radius over

59

(a) ASL MobileEye eye tracker. (b) GSR sensor. (c) Force sensors.

Figure 3.1. The biometric sensors used in our experiments: (a) an eye
tracker, (b) a custom-made galvanic skin response sensor, and (c) force
sensors attached to the arrow keys on the keyboard.

time, has been shown to correlate to many external and internal human factors. Studies

show pupil dilation to be related to mental workload [56], perceptual changes [36], and

positive/negative affect or emotion processing [82]. Pupil movement provides another

source of information. Even when viewing a still image, humans do not keep their eyes

steady. Instead, the eye constantly looks around finding interesting parts of each scene to

create a larger mental map of the whole scene. Changes in the behavior of eye movement

may also indicate higher level changes in the scenery, or human interests/state. For exam-

ple, saccades (fast simultaneous movement of both pupils) have been linked to boundaries

of event perception [98].

We use the ASL MobileEye eye tracker, shown in Figure 3.1(a), for collecting eye-

related information. The eye tracker uses video-based combined pupil/corneal reflection

to track the focus of the users right eye. A video feed is analyzed to extract the pupil

location and pupil radius. The data gathered is in pixels relative to the video feed, and

is sampled 30 times per second. Pupil dilation is measured by using the pupil radius

samples from the eye tracker. Pupil movement is measured using the Euclidean distance

between consecutive samples of the pupil X-Y coordinates.

60

(a) Resting. (b) Playing the a game.

Figure 3.2. GSR traces of a user that capture (a) the long-term change in
the GSR while a user is resting, and (b) the short-term effects when playing
the Need for Speed game. The existence of the long-term effect motivates
the use of the delta GSR metric for measuring user arousal.

3.1.2. Galvanic Skin Response

Galvanic skin response (GSR) [18] measures the skins ability to conduct electricity. GSR

is strongly, but not completely, correlated to the conductance of sweat in sweat glands

in skin [107]. GSR acts as an indicator of the autonomic nervous system reflecting

both sympathetic (e.g., fight-or-flight response) as well as parasympathetic (e.g., rest

or relaxation) response. In general, a low conductance is a sign of relaxation and high

conductance is a sign of mental, emotional, and/or physical arousal. However, different

emotions may produce discriminable waveforms [10, 105].

We use a custom-made GSR sensor which is shown in Figure 3.1(b). The GSR sensor

consists of two probes attached to velcro strips that are wrapped around the users fingers

during experiments. The two probes are wired in a voltage divider circuit for measuring

the voltage (and therefore the resistance and/or conductance) across the skin. GSR

readings show long-term and short-term effects. For example, two sample GSR traces for

one of the authors are shown in Figure 3.2; Figure 3.2(a) shows the GSR when resting

and Figure 3.2(b) shows the GSR when playing the Need for Speed computer game. At

61

rest, the GSR does not stay constant. Rather, it slowly decreases over a period of 5–10

minutes and then slowly levels out. When excited during game play, the GSR exhibits

a much more varied response. To measure short-term changes in user arousal, and filter

out the long-term trends, we employ a metric that we call delta GSR, which resembles

the metric “hash GSR” [10]. Delta GSR is computed by taking the difference between

consecutive samples and filtering out the negative values. When summed over a period

of time, the delta GSR serves as a metric for the total user arousal for the time period.

We sample at 30 Hz and use a period of one second.

3.1.3. Force Sensors

We also use force sensors (shown in Figure 3.1(c)) to collect behavioral information about

the user. Studies in keystroke dynamics have shown that keystroke patterns for a given

user are correlated with various emotional states [106]. However, the force of each key

press might hold additional information not captured by timing alone. For example, users

may press the keys harder to express annoyance, or during times of intense involvement

in game play. Also, for some applications, the range of keys involved is quite limited, and

force may provide more information than keystroke patterns. In this work, we study the

correlation between keystroke force and user satisfaction.

We use force-sensitive resistors to instrument each of the four arrow keys, as shown

in Figure 3.1(c). The force sensors are measured using a voltage divider circuit. The

maximum pressure value among all measured keys yields a single metric for comparison,

which we will refer to as MaxArrow . The sampling rate is 30 Hz.

62

3.1.4. Sensor Metrics

We measure four readings from the biometric input devices: pupil dilation, pupil move-

ment, delta GSR, and arrow-key force. As we gather these readings, we summarize them

using various statistics. For each reading, we consider the maximum, arithmetic mean,

and the variance of the readings every second. We define the term sensor metric to be

a specific combination of a statistic and a biometric reading. We format sensor met-

rics as follows: <statistic> <sensor>. For example, the arithmetic mean of the pupil

movement is denoted by Mean PupilMovement.

3.1.5. Sensor Extensibility, Applicability, and Cost

The intrusiveness of sensors is a major consideration for using them as biometric input

devices. Ideally, biometric input devices will (1) not impede the use of the computer in

any way, (2) require little effort by the user, and (3) not incur significant financial cost. We

select our sensors based on these principles. Consumer “remote eye tracking” products are

available which detect eye focus and pupil radius without a head-mounted system. Further

research into this area is likely to lower the cost of these systems [17]. Modern laptops

contain built-in cameras and image recognition software exists for detecting pupils [79].

The electrical components required to measure GSR are inexpensive. While the velcro-

strip contacts may be considered too cumbersome, these contacts have also successfully

been integrated into a computer mouse in a way that requires no explicit action by the

user [112]. Integrating force sensors into a computer keyboard would do little change to

the existing structure and piezoresistive force sensors are inexpensive; the force sensors

used for this work are currently available for under $15 per sensor[104].

63

3.2. User Study Setup

Our experiments are done using an IBM Thinkpad T61 with a 2.2 GHz Intel Core

2 Duo T7500 processor and 2 GB DDR2 SDRAM running Microsoft Windows XP. The

laptop is tethered to power for experiments. The processor supports seven frequency

levels using Intel Enhanced SpeedStep Technology (2.2 GHz, 1.6 GHz, 1.2 GHz, 800 MHz,

600 MHz, 400 MHz, and 200 MHz). In our experiments, we use the top five frequencies

ranging from 2.2 GHz to 600 MHz.

Data from the GSR and force sensors is collected using a National Instruments 603E

data acquisition card connected to the PCI bus of a separate workstation. The workstation

then sends the sensor information through a TCP socket to the laptop over a private LAN

connection.

In our user studies, we use the following applications:

• Need for Speed Pro Street [3]: A 3D driving game against the computer.

The game is very CPU-intensive.

• Tetris Arena [2]: A 3-D version of the classic puzzle game. The game consumes

100% of the CPU. However it exhibits little performance degradation as the

frequency is decreased.

• Microsoft Word 2000 Version 9.0 [1]: The user is given a document to

reproduce in Microsoft Word. In general, Microsoft Word is not CPU intensive.

However, we include some high-quality images into the document. Moving the

images occasionally causes short bursts of high CPU utilization.

64

We developed a user pool by advertising our studies within Northwestern University.

The participants come from a variety of backgrounds and include males and females,

engineers and non-engineers, as well as inexperienced computer users.

3.3. Correlating Human Physiological Traits with User Satisfaction

The ultimate goal of this paper is show how human physiological traits can be used

as an implicit measure for inferring user satisfaction. In this section, we present two user

studies exploring the link between human physiological readings and user satisfaction.

3.3.1. Motivating the Use of Physiological Sensors

The first user study explores whether there are changes in human physiological traits

when the performance of the processor is changed. One of our major concerns was that

the measurement noise during game play may mask any changes in physiological traits.

It is not difficult to imagine possible sources of noise. For example, in a driving game, a

difficult section of tight turns may produce different measurements than another section

with a long straightaway. Due to this concern, we first conduct a controlled initial user

study with 14 users. During the study, we ask the users to play the Need for Speed game

twice. Each time, at a predetermined position on the racetrack, we either maintain the

highest frequency, or drop the frequency to 600 MHz for 20 seconds. At 600 MHz, the

game greatly slows down. During the 20 seconds, we measure statistics from each of the

physiological sensors.

Figure 3.3 shows the data from three of the sensor metrics that display significant

changes in the initial user study. Mean eye movement (shown in Figure 3.3(a)) decreases

65

(a) Mean eye movement

(b) Maximum force on the arrow keys.

(c) Maximum delta GSR.

Figure 3.3. (a) Mean pupil movement, (b) maximum arrow force, and (c)
maximum delta GSR for the same 20 seconds of game play at a good per-
formance level, and at a bad performance level. Mean pupil movement
and maximum arrow force significantly decrease. Maximum delta GSR has
more variation across users indicating different responses to a drop in per-
formance.

for the large majority of the users. The maximum force on the arrow keys (shown in

Figure 3.3(b)) also registers a noticeable decrease for most users. The maximum delta

GSR (shown in Figure 3.3(c)) shows a relative change for many of the users. However,

it increases for some users and decreases for others. The difference in users may be

66

attributed to varying emotional reactions to a slow system: some users become annoyed

and more aroused, while others become bored and less involved. Nevertheless, the results

indicate that both arousal-based sensors (e.g., DeltaGSR) and behavioral sensors (e.g.,

MaxArrow) do indeed change significantly as application performance is decreased.

3.3.2. Physiological Sensors and User Satisfaction

With the knowledge that the sensor metrics do indeed change with performance, we

conduct a second study to explore (1) the effect of random game phases and (2) the corre-

lation between physiological readings at different performance levels and user satisfaction.

The users play the Need for Speed game. This time, the processor speed is changed to a

random frequency at a random point in the game. The change in performance lasts for

30 seconds. We randomly visit each frequency level twice; the first time we collect sensor

metric readings, and the second time we verbally ask the user for a satisfaction rating.

Users report their satisfaction as follows: 5 (Very Satisfied), 4 (Satisfied), 3 (Indifferent),

2 (Unsatisfied), and 1 (Very Unsatisfied).

A good sensor metric will report as different when the user satisfaction changes and as

similar when user satisfaction remains the same. To distinguish between sensor metrics

at different frequencies, we employ a t-test-based similiarity metric. As the physiological

sensors are noisy by nature, we use multiple samples and statistical methods. Both the

data acquisition card (collecting GSR and force information) and the eye tracker sample at

30 Hz. Each second, we compute the sensor metrics based on 30 samples. After discarding

the first and last five seconds of each 30 seconds interval, we have 20 calculated values

67

Sensor Success False False
Data Rate Positive Negative

Max PupilRadius 70.2% 14.3% 15.5%
Max MaxArrow 69.0% 13.1% 17.9%

Mean MaxArrow 69.0% 13.1% 17.9%
Mean PupilRadius 67.9% 11.9% 20.2%

Mean PupilMovement 57.1% 13.1% 29.8%
Max DeltaGSR 58.3% 9.5% 32.1%

Table 3.1. Outcomes of manually comparing t-test results and the user
satisfaction ratings. Success means that the t-test outcome matches the user
rating. False negatives occur when the t-test falsely predicts a difference
and false positives occur when the t-test falsely predicts similarity with the
highest frequency.

per sensor metric. We then use a t-test, with a 90% confidence interval, as our metric for

measuring the similarity between sets of values from different frequencies.

We now evaluate the behavior of our sensor metrics across multiple frequencies. For

every sensor metric, we use the t-test-based similarity metric to compare each frequency

with the highest frequency. The assumption is that if the user is annoyed, the t-test

should indicate that the two sets are different; if the user is not annoyed, the t-test should

indicate that the two sets are similar. We then manually compare the t-test results with

the reported user satisfaction. The sensor metric a success if (1) the t-test indicates

a difference and the user satisfaction changes, or (2) the t-test indicates similarity and

the user satisfaction does not change. False positives occur when the t-test indicates a

difference, but the user satisfaction is the same. False negatives occur when the ttest

indicates similarity, but the user satisfaction is different.

Out of our twelve potential sensor metrics (maximum, mean, and variance for pupil

radius, pupil movement, delta GSR, and force feedback), we develop a set of the six

best individual sensor metrics (shown with their respective counts in Table 3.1). The

68

(a) User Satisfaction (b) Max PupilRadius

(c) Max MaxArrow (d) Mean MaxArrow

Figure 3.4. Averages of the three best individual sensor metrics and the
user satisfaction ratings across all 20 users. The three sensor metrics have
a very strong correlation with the reported user rating.

success rates of the six sensor metrics are all above 60% with the top three predicting

similar/different user satisfaction with nearly 70% accuracy. The false positive rate ranges

from 11.9%–14.3% and the false negative rate ranges from about 15.5%–32.1% 1. These

results show that there is a strong correlation between changes in satisfaction and changes

in the physiological readings.

1The false positive rate implies a lost opportunity for reducing frequency, but no reduction in user
satisfaction. Assuming that the sensors are independent, combinations of them may be used to reduce
the false negative rate. Furthermore, any DVFS algorithm based on these sensors could treat the sensor
readings conservatively, reducing the effect of false negatives. In the system we describe in Section 3.4,
we use combinations of sensors and evaluate both aggressive and conservative uses of their readings.

69

Figure 3.5. The average confidence provided by the t-test between a fre-
quency and the highest frequency across all 20 users and all sensor metrics.
A high confidence indicates a difference. As frequency difference increases,
the sensor metrics differentiate better, except for the lowest frequency.

To confirm our findings for the entire set of users, we average the sensor metrics across

all users and look for trends. Figure 3.4 shows the averaged data for user satisfaction and

the top three sensor metrics. There is a clear correlation between our sensor metrics

and user satisfaction. For reference, the rest of the raw data is shown in Figure 3.10 in

Section 3.7. The sensor metrics exhibit some noise across users but, overall, these results

show that a change in user satisfaction generally results in a change in sensor readings.

This behavior, together with the high prediction accuracy, shows that user satisfaction

and physiological traits are correlated.

We now consider the confidence level reported by the t-test for each comparison.

A high confidence level indicates that the two sets of data being tested are different.

Figure 3.5 shows the average confidence levels across all users for each comparison. As

performance decreases, confidence that the user satisfaction is different tends to increase.

70

This signifies that the physiological readings differ more at lower performance levels.

However, the lowest frequency level does not follow the same trend. We postulate that

at this frequency level, the performance is so low that some users stop caring about the

game. During the user studies, we recall users complaining about the performance and

talking to the proctor instead of change in such situations. Nevertheless, even for this case,

the sensor readings show significantly different behavior when compared to the highest

frequency.

An important decision we have to make is how to decide when two readings are

different. According to our subjective observations, the Need for Speed game exhibits

very similar performance at 2.2 GHz and 1.6 GHz, but the performance quickly decreases

at lower frequencies. A confidence level of 85% makes this distinction correctly when

averaging across all users, and continues to distinguish correctly for a different set of

users in the third study. Thus, we adopt an 85% confidence level in the t-tests for the

rest of the paper.

In summary, these two initial user studies indicate that:

• a drastic drop in performance results in noticeable changes in our sensor metrics,

and

• physiological readings can be used to infer user satisfaction.

3.4. Using Physiological Traits for Dynamic Voltage and Frequency Scaling

To demonstrate a use of empathic inputs, we construct a Physiological Traits-based

Power-management (PTP) system for inferring user satisfaction from physiological read-

ings and driving a DVFS algorithm.

71

Algorithm 1: PTP training algorithm.

procedure Find-Settled-Freq()1

Frequency: f ← MAX FREQ−12

while f is in frequency range do3

if Test-Same(MAX FREQ, f) then4

f ← f − 15

else if Majority vote of 3 calls to TestSame(MAX FREQ,f) is true then6

f ← f + 17

else8

while f is in frequency range and Majority vote of 3 calls to9

TestSame(MAX FREQ,f) is false do
f ← f + 110

return f11

12

13

14

procedure Test-Same(f1, f2)15

Collect sensor metrics at f1 for 20 seconds16

Collect sensor metrics at f2 for 20 seconds17

t-test each sensor metric at f1 and f2 with confidence level of 85%18

if more than 50% of sensor differ then19

return false20

return true21

22

The goal of PTP is to determine the minimum operating frequency that maintains user

satisfaction. Specifically, PTP first runs a training phase with the target application (the

algorithm for the training phase is detailed in Algorithm 1). PTP begins by comparing

sensor readings at the second-highest frequency and the readings at the highest frequency.

Each comparison (detailed in the Test-Same procedure within Algorithm 1) consists

of (1) running for 20 seconds at the highest frequency, (2) running for 20 seconds at

the testing frequency, and (3) a t-test between each of the sensor metrics. Initially, the

algorithm aims at quickly reducing the frequency, if possible. The algorithm consecutively

tests the frequencies for noise in the sensors. If two out of three tests report that the sensor

72

Figure 3.6. Trace of sensor metrics and the frequency during the training
phase of the PTP algorithm. When sensor readings are compared for 1.2Ghz
and 2.2Ghz, the majority of the sensors result in a high t-test, indicating
that the user’s state changes. As the algorithm adjusts to test 1.6 GHz, the
physiological traits show less change. PTP chooses 1.6Ghz for the rest of
the experiment

metrics have changed, the majority vote test concludes that the two frequencies are the

different; if not, it reports they result in the same user satisfaction. PTP repeats the

majority vote for each frequency until it finds a frequency that does not pass. Then, it

starts moving up from this point until it finds the level that passes the majority test.

This frequency is called the settled frequency . Settled frequency is used as the maximum

frequency during the execution of this application (in other words, the operating frequency

is never increased to above the settled frequency).

It is important to note that from the users perspective, the training and testing phases

are not visible. The user simply interacts with the computer as normal.

73

An example of the interaction between the sensor metrics and PTP training is shown

in Figure 3.6. The figure shows a trace of the algorithm as it settles on a frequency (in this

case, 1.6 GHz). The x-axis is time. Each step represents a 40 second period: 20 seconds at

the highest frequency, and 20 seconds at the test frequency. The bold line with diamonds

shows the test frequency, corresponding to the right vertical axis. The confidence levels of

the t-tests for each sensor metric is shown in each time step, with the confidence indicated

by the left vertical axis. A confidence above 85% indicates that the sensor metric differs

between the two frequencies. We begin at 1.6 GHz. At this point, only 2 of the 6 sensors

are different so we continue down to 1.2 GHz. At 1.2 GHz, there is a large change in

Mean PupilRadius. In fact, Max MaxArrow, Mean PupilRadius, Mean MaxArrow, and

Max PupilRadius all exhibit high confidence for two tests and therefore reject the majority

vote test for 1.2 GHz. The frequency increases to 1.6 GHz, and the sensor metrics return

to values indicating that the sensors are the same, therefore predicting the user is satisfied.

The algorithm settles at this frequency.

The PTP control algorithm is orthogonal to most other DVFS strategies. Although

PTP provides a long-term prediction of user satisfaction, another DVFS strategy can

be used for short-term decisions. We build PTP on top of an Adaptive DVFS strategy

that is based upon the Linux ondemand DVFS governor [81]. This strategy is described

in Algorithm 2. In short, if utilization increases above UP THRESHOLD, the frequency

increases to the maximum frequency. If the utilization is below the DOWN THRESHOLD, the

algorithm finds the frequency that maintains above 80% utilization. We use 200 ms for

both UP DELAY and DOWN DELAY, 80% for UP THRESHOLD and 30% for the DOWN THRESHOLD.

74

Algorithm 2: Linux ondemand governor algorithm.

for every CPU in the system do1

if UP DELAY milliseconds since last check then2

if utilization > UP THRESHOLD then3

increase frequency to maximum4

5

if DOWN DELAY milliseconds since last check then6

if utilization < DOWN THRESHOLD then7

decrease to lowest frequency that keeps the utilization at 80%8

9

10

11

PTP uses the minimum value of the frequency provided by the PTP control policy

and the Adaptive control policy. Although the idea of combining the DVFS schemes may

seem simple, there are benefits to such a solution. For example, a burst of keyboard or

mouse events often cause adaptive DVFS control schemes (e.g., Windows XP DVFS [76]

or the Linux ondemand control policy [81]) to unnecessarily raise the frequency to the

maximum level. PTP prevents this by limiting frequency at the minimum level necessary

to satisfy the user. In other words, PTP allows an adaptive DVFS scheme to make better

short-term decisions when the CPU utilization is generally low. For applications that

satisfy the user at high utilization, PTP may set the frequency to a lower level (if it

predicts that the user is satisfied with that level), saving a significant amount of power.

Ideally, we would like to explore the combinations of sensor metrics for users and

applications as well as search the parameter space for the PTP thresholds, but this would

require real users in the loop and therefore be slow. A single user study with three

applications takes about an hour of experimental lab time, not including the time to

schedule the experiment. Therefore, trying multiple combinations quickly becomes very

75

time consuming. We settled on the six most accurate individual sensor metrics listed in

Table 3.1 and close the loop for evaluation with user studies.

Picking one set of sensor metrics opens some questions. Will the sensor metrics gener-

alize across applications? Even for a single application, how does the sensitivity depend

on users? By using the same set of sensor metrics across all users and applications, it

is very possible that we will occasionally annoy some users. To increase the sensitivity

to our experiments, we develop two variations of PTP: an aggressive PTP (aPTP) and

a conservative PTP (cPTP). aPTP operates exactly as the PTP algorithm described in

this section. cPTP is similar to aPTP but selects the frequency level one step higher than

aPTP

3.4.1. Implementation, Integration, and Deployment

The PTP system is implemented as a user-space program that executes before each

application run in the user studies. Data from the biometric devices are collected on a

separate workstation and sent to the experimental laptop via a TCP socket connection. In

production systems, we envision biometric input devices being managed by the operating

system like traditional input devices. We have designed PTP as a proof of concept for

using biometric input devices to improve architecture-level decisions. Other approaches

to using biometric data different from ours could potentially lead to even stronger results.

Here, we are concerned with providing the first evidence of the clear benefits of using

biometric data in architecture-level decision making.

76

In a real-world implementation, the power consumption of the biometric devices would

need to be outweighed by the power savings due to the PTP. The sensors chosen for

this work all conform to this requirement. Piezoresistive force sensors may be measured

with very little additional energy using a voltage-divider circuit and an analog-todigital

converter, which are both common, low-power circuits. GSR is also a simple resistive

measurement, and requires only a voltage divider and an analog-to-digital converter.

An eye tracker requires an infrared camera, infrared LEDs, and the capacity for image

processing. Collectively, the eye tracker sensor could operate on well below a Watt [117,

62]. Although some of these sensors may be expensive today, the technology for producing

sensors capable of operating within desirable power constraints and at a low cost has

already been developed. Additionally, the processing needs to interpret the sensors could

also be assigned to a core of a chip multiprocessor, reducing the additional hardware

required.

3.5. Experimental Results

In this section, we evaluate the aPTP and cPTP systems. We compare both PTP vari-

ants with the Adaptive scheme described in Section 5. We use the Need for Speed (NFS),

Tetris, and Word applications and 20 users. In each run of an application, we begin with

the training phase described in Section 3.4. The training phase varies based upon the

number of majority vote tests performed by the PTP strategy. Afterwards, the user con-

tinues to use the Adaptive scheme and the aPTP scheme for 2.5 minutes each. The order

of the aPTP and the Adaptive scheme is randomized between experiments. The last 10

77

Figure 3.7. Frequency that aPTP and cPTP settle on for the Need for
Speed, Tetris, and Word applications. cPTP for Word is omitted because
it results in very little change in power savings and user satisfaction.

users subsequently use the cPTP scheme for 2.5 minutes. At the end of each run, the user

is asked to verbally report satisfaction based upon the scale described in Section 3.3.2.

During experiments, we capture traces of the frequency. A National Instruments 6034E

data acquisition card measures the potential drop across a low-impedance resistor in series

with the laptop power cable. This allows us to measure the system power consumption as

frequency traces are replayed. The total system power includes the power consumed by

the fully-operating laptop including the processor, a fully-lit 15.1” laptop display, network

interface, and other peripherals. The take-away points from our evaluation are:

• User satisfaction for aPTP and cPTP are nearly identical to the underlying Adap-

tive scheme, and

• aPTP and cPTP save 18.4% and 11.4% total system power, respectively.

3.5.1. User Satisfaction and Power Savings

In Figure 3.7, we present the frequencies that aPTP and cPTP settle on for NFS, Tetris,

and Word. The x-axis corresponds to the users and the y-axis is the settled frequency.

Each cluster shows the settled frequency for both PTP variants and all applications.

78

NFS is a CPU-intensive application for which observable performance is sensitive to

CPU frequency. aPTP picked either 1.6 GHz or 2.2 GHz for 18 out of the 20 users. This

is drastically different from Tetris, where the observable performance is less sensitive to

CPU frequency. The average frequency chosen by aPTP for Tetris is 1.08 GHz. Similarly,

for Word, the average frequency chosen is 1.2 GHz. This clearly demonstrates aPTP s

ability to intelligently detect the cases where CPU frequency can be lowered. Since for the

Tetris and Word application, the lower frequencies and higher frequencies result in similar

physiological responses, aPTP lowers the frequency. As indicated by user satisfaction

levels, this achieves significantly higher efficiency without causing any dissatisfaction.

Note that a user-specific customization is achieved purely based on the physiological

readings from the users, without explicit input or knowledge of program phase.

There are some cases in Tetris and Word (14 out of 40 cases altogether), where a

higher frequency of 1.6 GHz or 2.2 GHz is picked by aPTP. We checked the logs of

physiological readings and found that the eye tracking data was missing in 4 of these 14

cases. This occurs when the user shifts in a manner such that pupil is not captured by the

eye tracker camera. This introduces significant noise to the decision making system and

results in a higher frequency being chosen. Another 3 cases correspond to self-admittedly

inexperienced users. These users show erratic behavior. Thus, the sensor readings are

noisy and our system conservatively sets the frequency at a high level. We must note that,

although this looks like a lost opportunity for power saving, it is an interesting feature

of the overall scheme: if for one reason or another, the sensor readings become noisy,

our system conservatively sets the maximum allowed frequency to a high one, thereby

avoiding false negatives (i.e., cases where the user is dissatisfied and our system predicts

79

them to be otherwise). For Word, we are limited to utilizing only 4 metrics, compared

to the 6 used in NFS and Tetris, because Max MaxArrow and Mean MaxArrow cannot

be used (the user does not press the arrow keys often). Nevertheless, with Word, aPTP

succeeds in picking low CPU frequencies (1.2 GHz and below) for 13 out of the 18 users

with valid sensor readings. Similarly, for Tetris, aPTP picks a low frequency for 13 out

of 15 users with valid sensor readings.

The reported user satisfaction ratings and power savings for each of the applications

comparing aPTP and the Adaptive scheme are presented in Figure 3.8. The figure shows

clustered bars for each user. The left two bars in each cluster represent the user satisfac-

tion with aPTP and with the Adaptive scheme and correspond to the leftmost vertical

axis. The right bar in each cluster represents the total power savings corresponding to

the vertical axis on the right. For our two CPU-intensive applications, aPTP saves a

considerable amount of total power. On average, for NFS (presented in Figure 3.8(a)),

aPTP reduces power consumption by 19.2%, and for Tetris (presented in Figure 3.8(b)),

aPTP reduces total power consumption by 33.3%. Word (presented in Figure 3.8(c)) is

only CPU-intensive in short bursts and aPTP only saves 1.7% system power. For both

Tetris and Word, aPTP also does not impact user satisfaction. However for NFS, aPTP

trades off a small amount of user satisfaction for power savings. For this application,

aPTP is too aggressive for some users. Averaged across three applications, aPTP saves

18.4% system power when compared to the Adaptive scheme.

To explore a more conservative PTP scheme, we evaluate cPTP with 10 users. Fig-

ure 3.9 presents the results of this study. The graph is in the same format as Figure 3.8.

By using cPTP, we trade off improved user satisfaction with power savings. cPTP tends

80

(a) Need for Speed

(b) Tetris.

(c) Microsoft Word.

Figure 3.8. User satisfaction and power consumption for the Need for Speed,
Tetris, and Word applications. The left two bars per cluster show the user
satisfaction for aPTP and the Adaptive DVFS schemes. The right bar in
each cluster shows the total system power savings.

to maintain the highest frequency for NFS and saves 5.9% system power, while maintain-

ing the same satisfaction level as the Adaptive scheme. cPTP trades off the decreased

power savings with an improved average user satisfaction rating compared to aPTP. cPTP

also maintains a high user satisfaction for Tetris, and the power savings drop from 33.3%

81

(a) Need for Speed

(b) Tetris.

Figure 3.9. User satisfaction and power consumption of cPTP for the Need
for Speed and Tetris applications. Word is not included because power
savings and user satisfaction levels are nearly identical to aPTP. The left
two bars per cluster show the user satisfaction of cPTP and the Adaptive
DVFS schemes. The right bar in each cluster shows the total system power
savings. Using cPTP, we trade-off a decreased power savings with improving
user satisfaction when compared to aPTP.

to 25.6%. Averaged across three applications, cPTP saves 11.4% system power while

maintaining the user satisfaction.

Overall, our results are very encouraging: they show that PTP can successfully sense

physiological traits, predict user satisfaction, and drive a DVFS scheme that saves con-

siderable power while maintaining user satisfaction.

82

3.6. Summary

In this chapter, we made a case for the addition of new input devices that provide in-

formation on human state in future computer architectures. Specifically, we explored the

use of three biometric sensors: an eye tracker to measure pupil dilation and pupil move-

ment, a galvanic skin response sensor for sensing user arousal, and force sensors on the

keyboard for sensing behavioral traits. We have conducted multiple user studies. The first

showed that human physiological readings do in fact change with changes in performance.

The second shows that biometric readings are correlated with user satisfaction. Based

upon the observations in these initial studies, we constructed a Physiological Traits-based

Power management (PTP) system for driving dynamic voltage and frequency scaling on a

processor. PTP was designed to be orthogonal to most other DVFS techniques. We built

our system in combination with an adaptive DVFS scheme based on the Linux ondemand

governor. An evaluation using an additional user study showed that an aggressive PTP

scheme reduced the total system power consumption of the laptop by up to 33.3% for

an application averaged across users (18.1% averaged across three applications), while a

conservative PTP scheme reduced the total system power consumption by up to 25.6%

across users (11.4% averaged across three applications). Overall, these results show that

a robust system can be built that makes decisions based upon observing biometrics sen-

sors. This demonstrates the potential for incorporating biometric information into the

architecturelevel decision making process.

83

3.7. Raw Data from Motivational User Study

This section expands upon discussion in Section 3.3.2. Figure 3.10 presents the raw

data for six of the sensor metrics. The results for each user is presented in a row in the

table of graphs and each column corresponds to a different sensor metric (the first column

presents the reported user satisfaction level). In each of the graphs, the x-axis represents

the frequency with 1 being the highest (2.2 Ghz) and 5 being the lowest frequency (600

Mhz). The y-axis represents the user satisfaction rating for the first column and the mean

of the sensor readings for the remaining columns. The raw data shows that the sensor

metrics are can be noisy. However, in general, a change in the user satisfaction is reflected

by a change in sensor metrics. If we consider the average behavior (presented in the last

row), we see that most sensors show a strong relation to the user satisfaction levels.

84

Figure 3.10. Physiological traits and user satisfaction when randomly
changing to multiple frequencies at different points in Need for Speed.

85

CHAPTER 4

User Activity: Studying User Behavior to Drive Optimization

In recent years, there has been a tremendous shift in the market for personal comput-

ing. Users are in the midst of a mass transition from stationary desktop computers to

a mix of mobile architectures, e.g., PDAs, cellular phones, media players, and netbooks.

Portable music players are now ubiquitous with nearly four in ten Americans owning a

portable MP3 player [9]. Mobile phones have been adopted faster than any technology in

history [35]. Netbooks are projected to follow a similar trend in the coming years [34].

Although mobile architectures provide the convenience of portable computation, enter-

tainment, and communication, their utility is severely constrained by their battery life.

As the demand for mobile architectures continues to grow, it will become increasingly im-

portant for architects to focus on understanding and optimizing the power consumption

of these energy-constrained architectures.

Power estimation and optimization has been a popular area of research in embedded

and mobile architectures for many years. Researchers have studied power at many levels,

including the circuit, architecture, and system levels. However, there is one critical factor

that architects have largely ignored – the end user. On a mobile architecture, the end user

is the workload: mobile architectures typically run applications which interact directly

with them. Execution of batch jobs and long-running services are minimized, or even

disallowed, as on the iPhone [8]. As a result, the usage behavior of the end user drives

execution, which in turn, determines the power consumption. Architects should treat

86

the end user as the workload, and study trends, properties, and patterns in user activity.

Without understanding these patterns, it is not possible to clearly understand the impact

of any optimization on user experience or the real device power consumption.

In this chapter, we describe tools and methods for studying the power consumption

of real mobile architectures with respect to user activity. We develop a logger application

for Android G1 mobile phones that logs user activity and sends traces back to our servers.

We release the logger into the wild to collect traces of real users on real mobile devices

in real environments. We then demonstrate how the traces can be used to characterize

power consumption, and guide optimizations on mobile architectures.

We present an regression-based power estimation model which uses high-level system

measurements to estimate power consumption. The measurements used as inputs are

chosen to be representative of underlying hardware components. Furthermore, the mea-

surements are easily accessible and can be collected by our logger (which operates entirely

in user space). We develop the model using in-house power measurements and show that

the power estimation model can accurately predict the power consumption by validating

the model using a separate device and random workloads.

We then use our power model to characterize the power consumption of the Android

G1. We first analyze a set of synthetic testing workloads, and find that the breakdown

of power consumption among hardware components varies significantly based upon the

workload. Our findings motivate the need for understanding real workloads in real en-

vironments. We then analyze the traces from our 20 real users. Again, we find a large

variation in the power breakdown between users. Averaged across our users, our results

also indicate that the CPU and the screen are the two most power-consuming components.

87

Finally, we demonstrate an example of studying user activity patterns to guide the

development of novel power optimizations. We study active screen behavior and observe

that the majority of active screen time is dominated by a relatively small number of long

active screen intervals. Thus, optimizing for long screen intervals would be profitable for

reducing power consumption. Targeting these long intervals enables us to develop a novel

scheme that utilizes change blindness . Change blindness refers to the inability of humans

to notice large changes in their environments, especially if the changes occur in small

increments. We implement optimizations that slowly decrease CPU frequency and screen

brightness during long active screen intervals. We conduct a user study testing these

schemes and show that users are more satisfied with a system that slowly reduces the

screen brightness rather than abruptly doing so, even though the two schemes reach the

same brightness level. Overall, our schemes save 10.6% of the phone energy consumption

on average with minimal impact on user satisfaction.

Overall, we make the following contributions:

• We develop an accurate linear-regression-based power estimation model which

leverages easily-accessible measurements to accurately predict the system-wide

power consumption of a mobile architecture;

• We use our power estimation model to characterize the power consumption of an

Android G1 mobile architecture with respect to user activity patterns;

• We demonstrate an example of developing optimizations for CPU frequency scal-

ing and screen brightness based upon user activity patterns; and

• We utilize change blindness for power optimization during active use.

88

Apps
Processor

Modem
Processor

DSP

SD
Card

Flash

Display

Wifi Radio

Phone/EDGE
Radio

Compute Hardware

Storage Communication

Bluetooth

Misc.
(Keypad,
Speakers

I/O

Figure 4.1. High-level overview of the target mobile architecture.

The rest of the chapter proceeds as follows. In Section 4.1, we discuss our experimen-

tal setup. Section 4.2 presents our linear-regression-based power estimation model. In

Section 4.3, we study user activity traces to derive the power breakdown on real mobile

phones and identify a potential optimization direction by studying screen activity. Sec-

tion 4.4 presents optimizations for the CPU and screen that leverages change blindness.

We evaluate the optimizations in Section 4.5. We conclude in Section 4.6.

4.1. Experimental Setup

Our target mobile architecture in this paper is the HTC Dream, a smartphone devel-

oped by HTC that supports the open source Google Android mobile device platform [46].

Although we focus on a specific mobile architecture for experimentation, our contributions

and findings could easily extend to other mobile architectures.

We use the G1 Android Developer Phone 1 (ADP1), a rooted and SIM-unlocked

version of the HTC Dream. We use the Android OS 1.0 stock system image for the ADP1

89

and develop with the Android 1.0 SDK. The Android platform consists of a slightly

modified 2.6.25 Linux kernel, and a general framework of C, C++, and Java code. The

framework includes the Dalvik Virtual Machine (VM), a variant of Java implemented by

Google. All userspace applications are Dalvik executables that run in an instance of the

Dalvik VM.

A high-level diagram of the mobile architecture is shown in Figure 4.1. The ADP1

has a 3.2 inch HVGA 65K color capacitive touch screen, uses a Qualcomm MSM7201A

chipset, and a 1150 mAh lithium-ion battery [113]. The Qualcomm MSM7201A chipset

contains a 528 MHz ARM 11 apps processor, an ARM 9 modem processor, a 528 MHz

ARM 11 Jazelle Java hardware acceleration, QDSP4000 and QDSP5000 high-performance

digital signal processors, quadband GPRS and EDGE network, integrated Bluetooth, and

Wi-fi support.

To the best of our understanding, the ARM 11 apps processor runs the Android

platform and executes the applications on the device. It is rated at 528 MHz and supports

dynamic frequency scaling (DFS), but is scaled down in the platform to run at 124 MHz,

246 MHz, and 384 MHz. The highest frequency of 528 MHz is not used. The ARM 9

modem processor is a separate processor that runs a proprietary operating system and is

in charge of the communications of the phone. The Jazelle Java hardware acceleration

processor is not used as the Android platform runs Dalvik executables which are not fully

compatible.

We build our power estimation model using real power measurements. We instrument

the contact between the phone and the battery and measure the current with a Fluke

i30 AC/DC current clamp. We use the OS reported battery voltage as the operating

90

battery voltage. The linear regression model is created using the R Statistical Computing

Environment [86].

We develop a logger application that logs system performance metrics and user activ-

ity. The logger runs as a Dalvik executable. It does not require any special hardware or

OS support, and runs on consumer HTC Dream devices, such as the T-Mobile G1 phone.

The logger periodically looks for a network connection and sends the logs back to our

server. All data is anonymous by the time it reaches our server.

To obtain users for our study, we publicized our project for a month on multiple

university campuses, as well as to the general public. Users install the logger through the

Android Market. To minimize potential bias in our data, all volunteers remain anonymous.

Volunteers are notified that we do not collect any data that could be used to identify

them. We also provide a complete list of collected data to maintain transparency with

the users. To avoid any change in user behavior, the logger application is designed to

be as unintrusive as possible. It automatically starts upon installation or after the boot

process, and consumes minimal system resources.

For the data in this paper, we use the logs from the 20 users who have the largest

logged activity. The cumulative log data represents approximately 250 days of real user

activity. To explore usage patterns when the mobile device is battery-constrained, we

focus on time intervals when the battery is not charging. From all of the logs, we extract

860 time intervals where the battery is not charging, which add up to a total of 145 days

of user activity.

91

4.2. Power Estimation Model

We now discuss our approach to system-level power estimation for mobile architec-

tures. We model the architecture having two distinct power states:

Active: : The apps processor is operational. This occurs during active usage when

the screen is on, or if a system wake lock is held to ensure that the apps processor

remains on while the screen is off.

Idle: : The device is in a low-power sleep mode. The apps processor is not opera-

tional but the modem processor is still active (also called ”Standby” mode).

The power consumed in the Idle state is significantly lower than the Active state, and

is relatively invariant under typical circumstances (measured to be around 70 mW). In

contrast, power consumed in the Active state is considerably higher (300∼2000+ mW),

and varies significantly by workload. Our power estimation model focuses primarily on

modeling Active state power consumption.

We build our power estimation model based on high-level measurements collected for

a set of the hardware units. We choose a linear regression method to build the model.

Linear regression fits an output variable to a set of independent input parameters by

corresponding linear coefficients.

4.2.1. Choosing Parameters

Table 4.1 lists the parameters selected for the power estimation model, including the

final coefficients used in our power estimation model. We model most of the hardware

components on the ADP1, including the CPU, screen, calls, EDGE/Wi-fi network, SD

card, and the DSP processor.

92

HW Unit Parameter Description Range Coefficient
(of βi,j) (cj) units

CPU hi CPU util Average CPU utilization while operating at 384 MHz 0–100 3.97 mW /%

med CPU util Average CPU utilization while operating at 246 MHz 0–100 2.79 mW /%

Screen screen on Fraction of the time interval with the screen on 0–1 150.31 mW
brightness Screen brightness 0–255 2.07 mW /(step)

Call call ringing Fraction of the time interval where the phone is ringing 0–1 761.70 mW
call off hook Fraction of time interval during a phone call 0–1 389.97 mW

EDGE edge has traffic Fraction of time inverval where there is EDGE traffic 0–1 522.67 mW
edge traffic Number of bytes transferred with the EDGE network dur-

ing time interval
≥ 0 3.47 mW /byte

Wifi wifi on Fraction of time interval Wifi connection is on 0–1 1.77 mW
wifi has traffic Fraction of time inverval where there is Wifi traffic 0–1 658.93 mW
wifi traffic Count of bytes transferred with Wifi during interval ≥ 0 0.518 mW /byte

SD Card sdcard traffic Number of sectors transferred to/from Micro SD card ≥ 0 0.0324 mW /sector

DSP music on Fraction of time interval music is on 0–1 275.65 mW
System system on Fraction of time interval phone is not idle 0–1 169.08 mW

Table 4.1. Parameters used for linear regression in our power estimation model.

CPU: : The CPU refers to the apps processor and supports DFS between three

frequencies, as described in Section 4.1. The lowest frequency is never used on

consumer versions of the phone, and is too slow to perform basic tasks. Thus,

only the high (384 MHz) and medium (246 MHz) frequencies are considered in

our model.

Screen: : The screen parameters include a constant offset indicating whether the

screen is on and a second parameter to model the effect of the screen brightness.

Call: : We model the power during phone calls by measuring the time spent ringing

and the duration of the phone calls.

EDGE: : The EDGE network power consumption parameters consider whether

there is any traffic and the number of bytes of traffic during a particular time

interval.

Wi-fi: : The Wi-fi power consumption is modeled similar to the EDGE network

but also includes a parameter for whether Wi-fi connectivity exists.

93

SD Card: : We consider the number of sectors transferred per time interval.

DSP: : We model the DSP by checking an internal variable within the Android

SDK for whether there is a multimedia file playing. This variable is on during

music and video playback.

System: : The power that is not accounted for with the hardware components

listed above are put into a catch-all variable that we simply refer to as the mis-

cellaneous System power in Table 4.1. The System power corresponds to the

constant y-intercept in a linear regression model, or k, as it will be described in

the following section.

4.2.2. Building the Estimation Model

To develop our model, we use real-time measurements of our target phone. The overall

idea is to find the relationship between the collected system statistics and the power con-

sumption. Hence, the input to our model is the statistics collected from the phone. The

output is the total power consumption. During training, we provide the measured power

consumption and use the R-tool to build the linear regression model. Specifically, during

training, we have performed a series of tasks to stress different components of the hard-

ware. During these tests, we (1) measure the real-time power consumption of the phone

and (2) collect statistics about the chosen parameters described in the previous section.

The raw data samples are collected every second for the synchronous data (e.g., CPU

utilization). We sample at 1 Hz to reduce perturbation on the system and minimize the

execution and power consumption of the logger. During training, the collected statistics

and the measured power consumption levels are fed into the R-tool to find the regression

94

coefficient cj for each parameter. Once a model is generated, one can predict the power

consumption by simply providing the statistics for the selected parameters.

As we will discuss in Section 4.2.3, this approach results in a highly accurate power

model. In addition, it can be used to estimate the power consumption of each individual

hardware component. If a single measurement (e.g., the value for screen brightness) in

sample i is βi,j, then the power pi,j contributed by the corresponding hardware component

for the parameter coefficient cj is:

(4.1) pi,j = βi,j · cj

Power not attributable to any available measurement is aggregated into a constant

offset k. The total system power Pi for sample i with n available measurements is then

modeled with the sum of these n power values:

Pi = k + (pi,0 + pi,1 + . . . + pi,n)(4.2)

= k + ((βi,0 · c0) + (βi,1 · c1) + . . . + (βi,n · cn))(4.3)

Allowing xi = (βi,0, βi,1, · · · βi,n) for each sample i and c = (c0, c1, · · · cn) reduces this

to:

(4.4) Pi = k + xi · c

Taken across m samples, this model takes the form:

95

(4.5)





P0

P1

...

Pm





= k ·





1

1

...

1





+





β0,0 · · · β0,n

β1,0 · · · β1,n

...
. . .

...

βm,0 · · · βm,n









c0

c1

...

cn





Letting P =





P0

...

Pm




, X =





β0,0 · · · β0,n

β1,0 · · · β1,n

...
. . .

...

βm,0 · · · βm,n





and e =

(
1 · · · 1

)T

yields:

(4.6) P = k · e + Xc

Once values for k and c have been determined, any sample of system measurements xi

may be used to approximate the power consumed by the whole system Pi at the time of the

sample with Equation 4.4, and the power contributed by each hardware component during

the sample may be approximated using its corresponding measurement in Equation 4.1.

Additionally, the total energy E consumed by the system across a set of such samples

X with sampling period ts may be approximated by the sum:

(4.7) E = ts · sum (P) =
m∑

i=0

ts · Pi = ts

m∑

i=0

(k + xi · c)

When the phone is in the Idle state, a constant power value (pidle ≈68.3 mW) is used

to approximate power consumption. The system on ratio from Table 4.1 indicates the

portion of time the system is in the Active state as a ratio between 0 and 1. Thus, when

96

a log contains both the Active and Idle states, power consumption for a single sample i

is modeled as:

(4.8) Poweri = system on · (Pi) + (1− system on) · (pidle)

When the system is in Active state, the power is approximated by the linear regression

model Pi; in Idle state, pidle is used as the approximation. In the linear regression model

for Active power, k represents the coefficient for system on.

4.2.3. Validating the Power Model

We approximate the values of offset k and the coefficient vector c using a set of sampled

system measurements X with experimentally measured power consumption P̂ . Samples

are taken from varying workloads to cover the spectrum of possible use scenarios. From

Equation 4.6 in Section 4.2.2, this produces the linear equation P̂ = k ·e+Xc, solving for

an approximation of k and c. The approximations are shown in Table 4.1 (k is represented

by the coefficient for system on; other values in the column jointly form the vector c).

To demonstrate the accuracy of the model, we collect additional logs of system mea-

surements and power consumption. In addition, we collect this set of logs on a separate

ADP1 device to ensure that our power estimation model generalizes beyond the device

used for training the model. We collect two types of logs. The first type targets spe-

cific hardware components of the phone. We name these logs Runi Unit. For example,

Run1 CPU corresponds to a log with varying CPU utilization. These logs are used for train-

ing our power model. The second type of log corresponds to a scenario, or a mix of usage

behavior, that stresses multiple hardware components. We name these logs Scenarioi.

97

As an example, Scenario2 simulates a user listening to music while browsing the web,

and then answering a phone call. These logs are not used during training and used to

analyze the accuracy of our model for workloads that are not part of the training set.

Each log is approximately 5 minutes long.

We use this set of logs from a separate mobile device to approximate the error of our

power estimation model. Equation (4.4) in Section 4.2.2 provides a power estimation for

each sample i. The error considered is the percent absolute relative error (errori) and the

percent relative error (errorj):

(4.9) errori =

∣∣∣∣
actual − estimated

actual

∣∣∣∣ = 100 ·

∣∣∣∣∣
P̂i − Pi

P̂i

∣∣∣∣∣ %

(4.10) errorj =
actual − estimated

actual
= 100 · P̂i − Pi

P̂i

%

Figure 4.2 presents the range of errors for each of the logs collected, including the

logs used in training and the scenario-based logs used for validation. In the figures, the

median error for each set is a bold line, the boxes extend to 25% and 75% quartiles, the

whiskers extend to the most extreme sample point within 1.5× the interquartile range,

and outliers are independent points. Figure 4.2(a) shows the absolute relative error and

Figure 4.2(b) shows the relative error.

Our results indicate that the power estimation model accurately predicts the system-

level power consumption of the logs, even though a separate mobile device is used. The

median absolute relative error across all of the samples is 6.6%. The median relative error

rate is < 0.1%. The hardware-specific logs demonstrate the accuracy of predicting the

98

●●
●
●
●●●
●●●●

●●●●
●
●●
●●

●●●

●

●●
●

●

●

●●

●

●

●

●

●
●
●●

●
●●

●
●
●●●●●●●

●

●

●

●

●

●

●●●●●●

●
●
●

●

●

●●●●●●●●
● ●●●●●●

●
●

●●●●●
●●●●●
●●●

●

●●
●
●

●

●

●●

●

●●

●
●●● ●●●●●●●●●●

●
●
●●
●
●●●
●●●
●●●●

●●●
●
●●●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●
●●●●

●●

●
●●

●
●
●

●
●●●●
●

●●●●●●

●

●

●

●

●

●

●●●●●
●●
●
●●●●
●
●●●●
●●
●●
●●●●●●●●●●●●
●
●

●
●●
●●●
●●
●●●●

●

●

●

●
●●●

●
●
●●●
●●●●

●
●
●

●

●
●

●●●●
●
●

●●
●

●●

●●●●●●●

●●●

●

●●●

●

●●●●●
●
●
●

●●●
●

●
●

●
●

●●●
●
●●●
●
●●●
●
●●●●
●●●●●●
●●
●●●
●
●
●●●
●
●

●●

●
●●●●●

●
●
●●●●●●
●●
●●

●

●
●●

●

●●●

●
●●●

Ru
n0
_C

PU

Ru
n1
_S
cr
ee
n

Ru
n2
_E
DG

E

Ru
n3
_W

ifi

Ru
n4
_C

al
l

Ru
n5
_M

us
ic

Ru
n6
_S
dC

ar
d

Sc
en
ar
io
0

Sc
en
ar
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4 Al
l

0.0

0.2

0.4

0.6

0.8

Error of Linear Regression Model

Er
ro
r

(a) Absolute relative error.

●●

●●

●●

●●●●●●●
●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●●
●●●●●●●
●

●
●

●

●

●

●

●
●
●●
●●
●

●
●

●●●●●

●
●

●

●

● ●●

●●

●●●

●●

●●●

●
●●●
●
●

●●●●

●●

●●●

●●

●●
●●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●●
●

●
●
●●●
●●
●●
●

●●
●

●
●●●
●

●●●●●●
●

●
●

●

●

●

●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●
●●●●●
●●●●
●

●

●

●
●●●
●
●●●
●
●●●●

●
●●
●
●
●
●●●●
●●
●●●
●

●●●●●●●
●●●

●

●●●
●

●●●●●
●
●
●
●●

●●

●
●
●●●●●●●●●
●●●●●●●

●●●●●●
●
●●

●●●●●●

●
●
●●●●●●●

●●

●
●●

●

●●
●●●●

Ru
n0
_C

PU

Ru
n1
_S
cr
ee
n

Ru
n2
_E
DG

E

Ru
n3
_W

ifi

Ru
n4
_C

al
l

Ru
n5
_M

us
ic

Ru
n6
_S
dC

ar
d

Sc
en
ar
io
0

Sc
en
ar
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4 Al
l

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4

Error of Linear Regression Model

Er
ro
r

(b) Relative error.

Figure 4.2. Error of logger when building the power estimation model on
one ADP1 and validating with logs from another ADP1 device.

power consumption of specific hardware components. In general, the model predicts the

CPU, EDGE, and music with a low median error rate, and a low variance in the error

rates. The error rates in the screen, Wi-fi, phone call, and SD card show a higher amount

of variance; but their power consumption can still be predicted accurately with a low

median error rate. The scenario-based logs demonstrate that our power estimation model

99

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Power Estimation Errors

Error

F(
Er
ro
r)

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●

●●● ●● ●

Figure 4.3. Cumulative distribution of power estimation error.

also extends to workloads that combine multiple hardware components, with median

errors similar to the hardware-specific logs. Figure 4.3 shows the cumulative distribution

of the sample errors. Each (x, y) point represents the ratio of samples (y) at or below a

particular absolute relative error (x). 65% of the individual samples are approximated by

the model to within 10% absolute relative error, and 90% of the samples are within 20%.

The errors shown in Figure 4.2 are for estimating the average power consumption

of individual 4 second time windows. However, it does not provide any indication of

total energy estimation across an entire trace. In Figure 4.4, we present the error when

comparing the total energy between the power readings, and the results of our power

estimation model. Over all of the logs, we achieve < 0.1% mean error.

4.2.4. Per-Component Power Consumption

With an accurate power estimation model, the combined system power Pi may easily be

approximated for any sample i. Furthermore, since this approximation is a sum of smaller

100

Ru
n0
_C

PU

Ru
n1
_S
cr
ee
n

Ru
n2
_E
DG

E

Ru
n3
_W

ifi

Ru
n4
_C

al
l

Ru
n5
_M

us
ic

Ru
n6
_S
dC

ar
d

Sc
en
ar
io
0

Sc
en
ar
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4 Al
l

Error of Cumulative Energy

Er
ro
r

−0.10
−0.05
0.00
0.05
0.10

Figure 4.4. Cumulative total energy error.

Figure 4.5. Power consumption timeline.

power components pi,j each corresponding to individual hardware units, the power contri-

bution of an individual unit in the model may also be approximated, using Equation 4.1

in Section 4.2.2.

Figure 4.5 shows an example of the estimated and actual power over time for Scenario4.

Each colored region represents the power pi,j attributed to a particular measurement, as

labeled on the right of the plot. The total system power approximation at any point in

101

Ru
n0

_C
PU

Ru
n1

_S
cr

ee
n

Ru
n2

_E
DG

E

Ru
n3

_W
ifi

Ru
n4

_C
al

l

Ru
n5

_M
us

ic

Ru
n6

_S
dC

ar
d

Sc
en

ar
io

0

Sc
en

ar
io

1

Sc
en

ar
io

2

Sc
en

ar
io

3

Sc
en

ar
io

4 Al
l

Power Breakdown

%
 P

ow
er

0
20
40
60
80

100 misc_sys
call_off_hook
call_ringing
wifi_on
cell_has_traffic
wifi_has_traffic
cell_traffic
wifi_traffic
med_cpu_util
hi_cpu_util
screen_on
brightness
sdcard_traffic
music_on

Figure 4.6. Power consumption breakdown for traces that stress specific
hardware units.

time is represented by the top of the shaded regions. Measured system power is overlaid

as a bold line. In this scenario, the user is surfing the Internet, then activates streaming

media at 160 seconds. Our model estimates a total system power that closely tracks the

actual measured power.

The same approach for per-component power approximation is applied to each of the

logs used for the validation of our power estimation model. The estimated power from each

product term in the linear regression model is accumulated and shown in Figure 4.6. The

x-axis represents each of the logs, and each of the stacked bars corresponds to the power

contribution from a specific parameter in our linear-regression-based power estimation

model. The y-axis represents the percent of total power for the particular log. Test logs

stressing particular components, such as EDGE or Wi-fi communications, have larger

portions of power attributed to corresponding measurements.

The power breakdown for each of the test logs indicates that the relative power con-

tribution per-component may vary drastically based upon the workload. For example,

102

during a phone call (shown in Run4 Call), over 50% of the total system power is con-

sumed by the call. If only music is playing, and the screen is off (shown in Run5 Music),

the DSP consumes significant power. The power breakdown is also dependent upon the

system settings. For example, in Scenario0, the screen is at the highest brightness the

entire time and dominates the power consumption of the system.

To better improve power consumption of any mobile platform, optimizations must

target components with significant relative power consumption. However, as Figure 4.6

demonstrates, the per-component power breakdown widely varies with respect to the

workload. Thus, it is important for architects to use representative workloads to charac-

terize power consumption on mobile architectures. Such workloads should reflect the real

user activity to correctly estimate the effect of any optimization.

Overall, our results show that (1) our high-level power estimation model can accurately

predict the power consumption of the total system, (2) the power model can be used to

derive a power breakdown of the total system, and (3) the power breakdown of a system

is highly dependent upon the workload running on the mobile architecture.

4.3. Studying the User for Guiding Optimization

In this section, we explore the real user activity logs uploaded onto our server. We

apply the power estimation model developed in Section 4.2 to characterize the power

breakdown of mobile phones in the wild. We then present a study of active screen intervals,

which suggest a potential power optimization for long screen intervals.

103

4.3.1. Characterizing Real User Workloads

As described in Section 4.2.4 (and shown in Figure 4.6), the workload of a mobile ar-

chitecture has a large effect on its power consumption; the hardware components that

dominate power consumption vary drastically depending upon the workload. Since the

user determines the workload for a mobile architecture, we must study real user behavior

to understand the actual power consumption of mobile architectures in real environments.

To this end, we have collected logs from users who have downloaded our logging appli-

cation from Android Market, as described in Section 4.1. The logs contain the activity

of 20 users, each for a duration exceeding a week, and accounting for approximately 250

days of user activity.

The power breakdown from each of the user logs is shown in Figure 4.7. Figure 4.7(a)

shows the power breakdown including the estimated power contribution of the Idle state.

To provide a clear breakdown of the power in the Active state, Figure 4.7(b) shows the

same power breakdown excluding the samples from the Idle state. The x-axis represents

each of the users. The product terms for each of the hardware components are com-

bined for readability. The only exception is the screen, which is still shown separately

as screen on and brightness. We show both because the screen contributes heavily to

the power breakdown of the system, and also because one of our optimizations (described

later in Section 4.4) specifically targets reducing the screen brightness.

When examining the power consumption of the Idle state in Figure 4.7(a), two points

are apparent. First, the power consumed during the Idle state can contribute to a signif-

icant fraction of the total system power consumption. The power consumed in the Idle

state accounts for 49.3% of the total system power when averaging across all of the users.

104

Us
er

1
Us

er
2

Us
er

3
Us

er
4

Us
er

5
Us

er
6

Us
er

7
Us

er
8

Us
er

9
Us

er
10

Us
er

11
Us

er
12

Us
er

13
Us

er
14

Us
er

15
Us

er
16

Us
er

17
Us

er
18

Us
er

19
Us

er
20 Av

g

Power Breakdown

%
 P

ow
er

0

20

40

60

80

100
system
idle
call
wifi
edge
cpu
screen_on
brightness
sdcard
music

(a) Power breakdown including idle time.

Us
er

1
Us

er
2

Us
er

3
US

er
4

US
er

5
US

er
6

Us
er

7
Us

er
8

Us
er

9
Us

er
10

Us
er

11
Us

er
12

Us
er

13
Us

er
14

Us
er

15
Us

er
16

Us
er

17
Us

er
18

Us
er

19
Us

er
20 Av

g

Power Breakdown

%
 P

ow
er

0

20

40

60

80

100
system
idle
call
wifi
edge
cpu
screen_on
brightness
sdcard
music

(b) Power breakdown excluding idle time.

Figure 4.7. Power consumption breakdown from real user traces.

Second, the fraction of total power consumed during the Idle state varies significantly

across the users. At the extremes, the power consumption of Idle states contribute to

89.9% of the total power for User 5, but only 7.17% for User 16. This indicates that there

is considerable variation in the usage patterns of mobile architectures across individual

users.

105

When isolating the power consumption during the Active state (shown in Figure 4.7(b)),

we again notice a large variation in the activity among all 20 users. For example, the power

breakdown for User 4 and User 12 is dominated by the phone calls. User 6 and User 19

have their screen brightness set high, and thus, the brightness dominates their power

breakdown. In addition, there is varying activity with regard to EDGE network usage

versus Wi-fi network usage.

Overall, during Active usage time, two hardware components dominate the power

consumption when averaging across all users: the screen and the CPU. The screen largely

dominates the Active power breakdown and consumes 35.5% of the Active power; 19.2%

due to the screen brightness and 16.3% due to the screen being on. The CPU accounts

for 12.7% of the total Active power.

Although the Idle state may sometimes dominate the total system power, in this

paper, we primarily focus on the power during the Active state. There are three reason to

be concerned with the Active state. First, the power consumed during the Idle state (≈

68 mW) is significantly lower than the power that can be consumed in the Active state (up

to 2000 mW when listening to music and using Wi-fi as shown in Figure 4.5). Second, the

Active state contributes highly to the user experience since the user is actively engaged

during the Active state. Any application that requires the apps processor would require

the device to wake up and exit Idle mode. Finally, the Active state still accounts for large

fraction of the power consumed, accounting for 50.7% of the total system power.

106

4.3.2. Screen Usage of Real Users

Because the screen is the primary output device for interacting with the end user, the

screen is a good indicator of user activity patterns. In addition, as we have shown in the

previous section, it is the highest power consuming component on the device. We parse all

of the user activity logs to extract screen intervals. A screen interval is a continuous block

of time where the screen is on. The duration of a screen interval refers to the length of

time that corresponds to the screen interval. The total duration time refers to the sum of

durations for all screen intervals. From these intervals, we extract 9678 screen durations

from our database, which accounts for 8.8 days worth of cumulative active “screen on”

time.

Figure 4.8(a) shows the cumulative fraction of the total duration for screen intervals

up to 500 seconds. We see that screen intervals of 100 seconds or more constitute roughly

70% of the total screen duration (equivalently, as shown in Figure 4.8(a), 30% of the

total screen duration is contributed by intervals shorter than 100 seconds). Figure 4.8(b)

shows the cumulative distribution function (CDF) relating the total duration time to

percentage of screen intervals. In other words, it shows the percentage of total duration

time (shown on the y-axis) accounted for by the fraction of screen intervals with the

shortest durations (x-axis). Figure 4.8(c) shows the ratio of total duration time accounted

for by intervals shorter than a specific screen duration time, up to 150 seconds. This means

that it shows the fraction of total duration if the first X seconds of each screen interval

is considered.

Studying the screen intervals indicates that the total duration time is dominated by a

relatively small percentage of long screen intervals. If we observe the 40 second mark on

107

(a) CDF of screen interval durations. (b) Percentage of screen time relative to percent-
age of screen durations.

(c) Ratio of Total Screen Duration Constituted by
Screen Interval

Figure 4.8. Screen durations based upon user activity.

the x-axis of Figure 4.8(b) and Figure 4.8(c), we see that the first 40 seconds of all screen

intervals only accounts for 31% of the total duration time, but accounts for over 80% of

all screen intervals. This means that if we have an optimization that saves power after 40

seconds of screen time, it would affect 69% of the total screen duration time, and only take

effect in about 17% of the screen intervals. Based upon these observations, we conclude

that it would be profitable to optimize for power during the long screen intervals. In the

next section, we describe such an optimization.

108

4.4. User-Aware Optimization

As described in the Section 4.3, surprisingly, a few long screen intervals dominate the

overall screen duration time. In addition, the power consumption during Active time is

dominated by the screen and the CPU. To reduce the power consumption during these

long intervals, we devise a scheme that reduces the brightness. Instead of simply dropping

the brightness abruptly, we utilize change blindness , which is described in the next section.

We also devise a similar scheme to control the CPU frequency.

4.4.1. Change Blindness

Researchers in human psychology and perception have revealed an inability for humans

to detect large changes in their surrounding environment. One commonly-known study

involves a video that prompts the viewer to count the number of times a basketball is

passed. Halfway through the video, a man in a gorilla suit walks into the middle of

the group of basketball players, thumps its chest, and then walks away. Surprisingly,

the majority of viewers do not remember seeing a man in a gorilla suit, even though

the concept is absurd and is in clear view in the middle of the video [96]. Change

blindness refers to this inability for humans to detect large changes in their environment.

The gorilla-suit study refers to change blindness of dynamic events, and occurs because

although a human will view the entire video, their attention dictates the visual data

that is processed. There have also been studies exploring change blindness in the case of

gradual changes. Change blindness in the presence of gradual changes is more surprising

as humans will miss significant changes without being distracted or disrupted. One study

demonstrates change blindness as objects within images are removed from a picture, or

109

as the color of objects are slowly changed [97]. Another demonstrates change blindness

as facial expressions are slowly changed in a picture.

We aim to utilize change blindness to reduce the power consumption of the device

without causing any dissatisfaction to the users. Specifically, we devise schemes that

reduce the screen brightness and CPU frequency slowly to save power. We compare

these schemes to alternatives where the brightness and frequency are abruptly reduced

and show that change blindness can indeed be utilized to save power consumption while

minimizing the user dissatisfaction. We describe these schemes in the following section.

To the best of our knowledge, this is the first study analyzing change blindness in the

context of computer performance.

4.4.2. CPU Optimization

Existing DFS. The default system image used on the HTC Dream platform supports

dynamic frequency scaling (DFS) on the ARM 11 apps processor, but uses a näıve DFS

algorithm based upon the screen1. If the apps processor is active and the screen is on,

the processor is set to the highest frequency (384 MHz). If the apps processor is active

and the screen is off, the processor is set to the middle frequency (246 MHz).

ondemand governor. A commonly used DFS scheme on desktop/server environments

is the Linux ondemand DFS governor. The general algorithm is shown in Algorithm 3.

At a high-level, the ondemand makes decisions based upon the CPU utilization. If the

utilization is above a UP THRESHOLD, it raises the CPU to the highest frequency. If the

utilization is below a DOWN THRESHOLD, it calculates the frequency that would maintain the

1We have not found a confirmed description of this DFS scheme in any documentation on the HTC
Dream, but have discovered this DFS behavior through our own experience with the device.

110

Algorithm 3: ondemand DFS algorithm.

procedure Ondemand-DFS(cpu util)1

if cpu util ≥ UP THRESHOLD then2

Set-Frequency(highest frequency)3

else if cpu util ≤ DOWN THRESHOLD then4

requested freq ← frequency that maintains a utilization of at least5

UP THRESHOLD−10%
Set-Frequency(requested freq)6

return7

8

procedure Set-Frequency(freq)9

if powersave bias = 0.0 then10

Set CPU frequency to freq11

else12

Alter CPU frequency dynamically to maintain an effective frequency of:13

freq × ((1000 - powersave bias) * 0.001)14

return15

16

utilization below UP THRESHOLD, and sets the frequency to that level. By setting the CPU

frequency based upon CPU utilization, the ondemand governor saves power by reducing

the frequency during times of low CPU utilization. We tune a knob within the ondemand

governor called the powersave bias, which is typically set to 0. The powersave bias is

a value between 0 and 1000 that specifies percentage with which to decrease the effective

frequency of the CPU. powersave bias increases in increments of 0.1%. A value of 0

indicates that the frequency should not be reduced at all. A value of 1000 indicates that

the frequency should always be reduced by 100%, effectively reducing the CPU to its

lowest frequency. If the powersave bias indicates that the CPU frequency should be set

to a frequency between two processor-supported frequencies, the ondemand governor will

dynamically switch between the frequencies to simulate the frequency required.

Our DFS scheme: We use the ondemand governor and tune the powersave bias

knob leveraging change blindness for long screen intervals. Our DFS scheme hooks into

111

the screen events. Every four seconds, we increase the powersave bias in increments of

30 (decrease effective frequency by 3%), until a maximum limit of 300 is reached. If the

screen is turned off, the powersave bias is reset back to 0. Thus, it reaches 70% of the

frequency requested by ondemand within 40 seconds.

4.4.3. Screen Optimization

We implement a screen optimization to leverage change blindness that is similar to our

CPU optimization. Again, we hook into the screen on and off events. We keep track of

the user-set screen brightness. When the screen turns on, we set a timer for 3 seconds.

Every 3 seconds, we decrease the brightness of the screen by 7 units (out of a maximum

brightness of 255). We continue until the brightness reaches 60% of the user-set screen

brightness and then stop. When the screen is turned off, we set the brightness back to

the regular user-set screen brightness.

The idea in this scheme is to utilize two previous observations. First, since we slowly

reduce the screen brightness, we will not reduce the power consumption on small screen in-

tervals. However, as we have shown in the previous section, long screen intervals dominate

the total screen duration, hence our optimization should still be able to save considerable

fraction of the overall screen power consumption. Second, since our scheme reduces the

screen brightness slowly, we expect that the users will be less likely to distinguish the

change when compared to a sudden decrease in the screen brightness. Our experiments,

described in Section 4.5, confirm that both of these goals are achieved.

112

4.5. Experimental Results

We now evaluate our optimizations described in Section 4.4. We refer to the two

optimizations as Screen Ramp and CPU Ramp, for the screen and CPU optimizations,

respectively. To test the change blindness hypothesis, we also introduce two more control

schemes: Screen Drop and CPU Drop. Both of the Drop schemes wait 30 seconds before

dropping to the respective minimum threshold levels of each of the change-blindness-

inspired optimizations. In other words, the Drop and Ramp schemes eventually settle at

the same brightness/frequency. However, the Ramp schemes slowly reach this destination,

whereas the Drop schemes wait at the high brightness/frequency for the initial 30 seconds,

before adjusting sharply to the final level.

We first evaluate the potential power savings of the optimization schemes by emulating

the optimizations on the user logs. We then conduct a user study to assess user acceptance

of our optimization schemes and to test our hypothesis on whether change blindness can

be leveraged to optimize long screen intervals.

4.5.1. Power Savings

We approximate the power savings for each of our schemes by emulating the optimizations

on user activity logs. To estimate the power savings of the screen optimizations, we

adjust the brightness measurements in the logs to reflect the Screen Drop and Screen

Ramp optimizations. Then, these new values are fed into the power model to generate

the power consumption of the alternatives. To estimate the power savings of the CPU

optimization, we first perform an estimation of the ondemand governor. If the CPU

utilization is below 20%, we assume that ondemand would set the frequency to the lower

113

!"

#"

$"

%"

&"

'!"

'#"

'$"

'" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '*" '&" '+" #!" ,-."

!
"#
$
%
&
'"
(
)
*
+,
-
."

/.&'"

0$1)2"(3.1&4"#$%&'"()*+,-."

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

Figure 4.9. Total system power savings for each of the optimizations as
estimated by our power model.

level. We then simulate our ramp-down mechanism on top of the ondemand scheme by

multiplying the CPU product terms by a fraction that decreases in similar to CPU Ramp

or CPU Drop. The newly-generated logs are processed with our power model to find the

power consumption of CPU Ramp, CPU Drop, and ondemand.

Figure 4.9 shows the total system power savings when compared to the base scheme

for each of the studied optimizations. On average, CPU Ramp saves 4.9% of the total

system power. This corresponds to a 22.8% power savings when considering only the

total CPU power. Of this, we estimate that 10.5% of the savings can be attributed to the

base ondemand DFS governor, and the other 12.3% power savings is due to ramping the

CPU frequency with the powersave bias. The CPU Drop, on the other hand, achieves

a total system power savings of 1.9%. When we compare the CPU Ramp to CPU Drop,

we see that our CPU Ramp scheme achieves higher power savings. The reason for this

result is the 30 second wait period of the CPU Drop scheme; while the CPU Ramp almost

immediately starts reducing the CPU frequency, the CPU Drop scheme remains at the

high frequency for 30 seconds, which causes a higher power consumption level. Screen

Ramp saves 5.7% of total system power over all of the 20 users, and saves 19.1% of the

114

total screen brightness power. With Screen Drop, 4.6% of the total system power is

conserved. Similar to the CPU schemes, when we compare the Screen Ramp to Screen

Drop, we see that Screen Ramp achieves a higher power reduction level.

4.5.2. Impact on User Satisfaction

To evaluate the impact of our power saving techniques on the individual user satisfaction,

we conduct another user study with 20 users. The user study involves three applications:

• Web browsing: Surfing Wikipedia with the web browser on the phone.

• Game: The BreakTheBricks game where the user moves a paddle on the bottom

of the screen to bounce a ball and break a pattern of bricks.

• Video: The user watches a video with the PlayVideo application.

For each application, we perform six runs consisting of (1) CPU Ramp, (2) CPU

Drop, (3) Screen Ramp, (4) Screen Drop, (5) Ondemand, and (6) the Control. The

Control scheme is the default CPU and screen manager of the commercial phone. The

order of runs are randomized so that the particular order is blind to the user as well as

the proctor of the user study. After each run, we ask the user for a verbal user satisfaction

rating ranging from 1 (Not Satisfied) to 5 (Satisfied).

Figure 4.10 shows the results of our user study for three applications. The three

graphs show the user satisfaction ratings for each of the runs for the 20 users. Each of the

graphs shows a set of clustered bars, each bar corresponding to the user satisfaction rating

for a single run. At first glance, the average user satisfaction ratings look very similar

for both Web Browsing and the Video, but they differ for the Game. For an in-depth

analysis, we perform a paired t-test analysis for each application, comparing the set of

115

!"

#"

$"

%"

&"

'"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #)" #*" #+" $!" ,-."

!
"#
$%
&
'
(
")
'
*(
+
,
%

!"#$%

-#.%/$+0"1,2%

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

=<>;43<>"

/8<?78@"

!"

#"

$"

%"

&"

'"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #)" #*" #+" $!" ,-."

!
"#
$%
&
'
(
")
'
*(
+
,
%

!"#$%

-'.#%

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

=<>;43<>"

/8<?78@"

!"

#"

$"

%"

&"

'"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #)" #*" #+" $!" ,-."

!
"#
$%
&
'
(
")
'
*(
+
,
%

!"#$%

-./#+%

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

=<>;43<>"

/8<?78@"

Figure 4.10. Reported user satisfaction for the (a) Web Browsing, (b)
Game, and (c) Video applications.

user satisfaction ratings for each of the optimizations, to the set of user satisfaction ratings

for the Control run. The paired t-test shows that there are five comparisons against the

Control scheme where there is a statistically significant difference. In all other cases, there

were no statistically significant changes between the Control and the studied schemes.

Among the five cases that show difference, the four are in the Game application; all the

four studied techniques exhibit reduced user satisfaction when compared the Control.

116

The fifth comparison that differs is the Screen Drop for Web Browsing. Overall, when

comparing the different schemes, Screen Drop was statistically different from the Control

run for the Game and Web applications, and the other schemes (barring the Ondemand

scheme) differed from the Control run only on the Game application.

4.5.3. User Feedback and Acceptance

At the end the study, we debriefed each user by informing them of the purpose of the

experiment. We discussed the power characterization study, that the CPU and screen

tended to dominate the power consumption, and introduced our different power saving

schemes to them. Afterwards, we questioned each user about their opinions on our various

power saving schemes for the screen and CPU.

When compiling notes on the discussions with the users, we recognized two general

trends:

• Most users determine their user satisfaction based upon how smoothly the com-

puter responds to their input. 9 of the 20 users let us know they rated runs poorly

when there were pauses, or the screen became jumpy/jittery. Our schemes per-

formed the worst on the Game because any glitch would affect the smoothness

of the bouncing ball and would be immediately noticeable. A result of this is

that the rate of change for the CPU frequency does not matter – once the appli-

cation becomes jittery, user satisfaction decreases. This trend is another reason

why we did not observe a difference between the CPU Ramp and CPU Drop

schemes; both of these schemes cause jitters after a certain CPU level is reached

and regardless of how slowly we reduce the frequency, the glitches are noticeable.

117

Hence the users provided the same level of satisfaction for these two alternatives.

However, we must note that the CPU Ramp achieves a higher power saving when

compared to CPU Drop.

• Change blindness can be leveraged for the screen. 8 out of the 20 users noticed

the drop in screen brightness during Screen Drop experiments. Only one of the

users noticed the screen slowly dimming during Screen Ramp. In fact, almost all

of the users were surprised when we told them that the screen was being slowly

dimmed. As a result of this, we also observe that the users were less satisfied

with the Screen Drop on the Web application, whereas they showed the same

satisfaction level with the Control and Screen Ramp schemes.

At the end of the user study, we also asked the users whether they would turn a

combination of these schemes on if they had a tool to control them and knew they would

save about 10% of their battery life. Out of the 20 users, 15 said that they would use

these optimizations, 1 was apathetic, and 4 of the users would not use the optimizations.

Out of the 15 that responded with a yes, 5 of them expressed a desire for application-

dependent optimization. For example, while they were fine with the dimming for the web

application, they preferred a brighter screen for the video.

In summary, our results show that we can achieve significant reduction in power

consumption by considering user activity patterns. Our Screen Ramp and CPU Ramp

schemes reduce the power consumption by 5.7% and 4.9%, respectively, achieving a com-

bined power saving of 10.6%. We also show successfully demonstrate power optimizations

based upon indiscernible changes on the system parameters.

118

4.6. Summary

In this chapter, we have studied mobile architectures in their natural environment –

in the hands of the end user. We present tools and methods for collecting and analyz-

ing logs of real activity patterns for characterizing the power consumption and guiding

optimization of mobile architectures accordingly. We build a logger application for the

Android G1 phone and release it to the general public to collect logs from real users on

real devices. We then develop a linear-regression-based power estimation model, which

uses high-level measurements of each hardware component, to estimate the system power

consumption. We show that the power estimation model is highly accurate and that it

can provide insights about the power breakdown of the hardware components in a mobile

architecture. By analyzing the user logs, we find that the power breakdown of a device

is highly dependent upon the individual user, but that the screen and the CPU tend to

dominate the active power consumption. We then demonstrate an example of leveraging

user behavior to identify new optimizations. Specifically, we study active screen intervals

and discover that a relatively small number of long screen intervals dominate the active

screen time. Based upon this observation, we develop an optimization for the screen and

the CPU that advantage of change blindness. We demonstrate that our optimizations can

save up to 10% total system power while minimally impacting user satisfaction.

119

CHAPTER 5

Related Work

5.1. The Empathic Systems Project

The work in this dissertation lies within the larger context of the Empathic Sys-

tems Project at Northwestern University [40]. The project seeks to explore incorporating

end-user satisfaction and guidance into the design and implementation of computer ar-

chitectures and systems [33]. There are several related work from my colleagues in this

research project.

Gupta [48], and Lin [65] demonstrate a high variation in user tolerance for resource

borrowing. Mallik [74] and Lin [67] propose leveraging this user variation for CPU fre-

quency tuning. Lins propose using direct user input to scheduling virtual machines [66]

subject to individual user satisfaction. Miller shows that this variation can be leveraged

for improvin the home network [77, 78]. We build this work and considers explicit and

implicit methods of learning the relationship between hardware performance and user

satisfaction for controlling CPU frequency.

PICSEL [73] controls CPU frequency based upon changes, and the rate of change, in

pixels on the graphics display. The main idea is that for interactive GUI-based applica-

tions, users can only percieve changes that are visible via changes in the display. Thus, the

quality of the graphics on the display may be a good proxy for perceivable performance.

120

Lange develops a speculative remote display [63] for predicting user actions to spec-

ulatively execution actions in a virtual network computing system. They leverage direct

user input to manage the trade-off between responsiveness and screen correctness subject

to the individual end user.

Tarzia proposes using sonar on computing systems to detect user attention and pres-

ence to improve currently power management policies [101, 102].

Shye, et al. build upon the mobile smartphone work in Chapter 4 to make characterize

and model on real user activity on the Android G1 smartphone [95, 94].

5.2. Other User-Related Work

In addition, there are several related works that study the role of the end user in

computer architecture and systems research. Maclean [71] and Sousa [57] both make

cases for user-tailorable systems.

There has been work that takes user perception into account. These studies rely on

high-level metrics, such as system response time. Endo et al. [38, 37] explore using latency

as a performance metric and for detecting performance anomalies in operating systems.

Olshefski studies latency of the network to infer client response time [80]. Vertigo [43]

monitors application messages to measure user-perceived latency. Vertigo also proposes

a layered frequency scaling scheme similar to PTP. Other DVFS algorithms use task

information, such as measuring response times in interactive applications or rate of change

in the display [68, 73] as a proxy for the user. However, they have used system-level

metrics as a proxy for user satisfaction. This work directly correlates explicit and implicit

measures of user satisfaction for making architecture-level decisions.

121

Zilles proposes increasing interactivity by predicting user actions [118]. Davison also

studies the predictability of user actions [30].

Bi proposes IADVS [14], a DVFS scheme based upon predicting the CPU utilization

following user input events. Vertigo [43] monitors application messages and can be used

to perform the optimizations implemented in our study (although to the best of our

knowledge this has not been studied). However, compared to Vertigo, our approach

provides a metric/framework that is much easier to use.

Anand, Nightingale, and Flinn [6] discuss the concept of a control parameter that

could be used by the user. However, they focus on the wireless networking domain, not

the CPU. Second, they do not propose or evaluate a user interface.

Falaki studies real smartphone usage and find a wide variability in smartphone us-

age [41]. Phillips studies user activity for predicting when to sleep for wireless mobile

devices [83]. MyExperience [44] gathers traces from user phones in the wild, similar

to our work, but uses the traces to study high-level user actions. We study user activity

patterns to understand system performance and for saving power on mobile architectures.

Outside of computer architecture and systems, the end user has been studied in a

number of contexts. Some examples include incorporating the end user for improving

internet security with CAPTCHAs [109], solving difficult AI problems via computer

games [110, 108], modeling the user for improving video streaming [70], studying the

perceptual quality of a media [28, 29, 61, 85, 90], and human-computer interaction

researchers develop applications for improving the human condition [24, 25, 26].

122

5.3. Measuring the End User

The Affective Computing Group at MIT has worked to develop emotion-aware com-

puters [84]. They have proposed devices such as HandWave GSR [99] with a squeezable

mouse [87]. Their most related work is concerned with creating [89] or detecting [60] user

frustration with learning software. There is also work on relating posture to persistence in

puzzle games [5], and using face recognition software to improve social-emotional learn-

ing for autistic children [103]. Other researchers, such as Mandryk and Atkins [75] and

Hazlett and Benedek [52], have also shown that physiological measures (e.g., GSR, EMG

sensors, and heart rate) can be used to predict emotion when playing games. Our work,

on the other hand, measures physiological responses in the face of changes in computer

performance and utilize real-time sensing of physiological traits in making architectural

decisions.

5.4. Power Modeling

Power modeling and estimation has been heavily studied from various angles. Wattch

estimates microprocessor power consumption using low-level architectural features [20].

Several researchers use performance counters to estimate the power consumption of both

high-performance and embedded microprocessors [13, 15, 27, 58, 59]. Gurun uses per-

formance counters and communication measurements to estimate power consumption on

an iPaq [50]. Cignetti uses power measurements to derive a power breakdown for Palm

devices [23]. Tan uses function-level power models for software-implemented power es-

timation [100]. The power consumption of the operating system has been explored for

high-performance [64] and embedded platforms [12, 32]. We differ from prior art by

123

developing a software-implemented, system-level power model that uses easily-accessible

measurements and does not require specialized hardware (e.g., hardware performance

counters) or software (e.g., hooks into the operating system).

SoftWatt uses simulation to understand the power consumption of the processor, mem-

ory, and disk on a high-performance architecture [49]. Mahesri measures the power break-

down on a laptop and discovers that the hardware components which dominate power

consumption change depending upon the workload [72]. We use our power estimation

model and traces to estimate the power breakdown of mobile architectures used by real

users in real environments.

5.5. Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is an effective technique for micropro-

cessor energy and power control for most modern processors [19, 45]. Energy efficiency

has traditionally been a major concern for mobile computers. Fei, Zhong and Ya [42]

propose an energy-aware dynamic software management framework that improves battery

utilization for mobile computers. However, this technique is only applicable to highly-

adaptive mobile applications. Researchers have proposed algorithms based on workload

decomposition [22], but these tend to provide power improvements only for memory-

bound applications. Wu et al. [114] present a design framework for a run-time DVFS

optimizer in a general dynamic compilation system. The Razor [39] architecture dy-

namically finds the minimal reliable voltage level. Dhar, Maksimovic, and Kranzen [31]

propose an adaptive voltage scaling technique that uses a closed-loop controller targeted

towards standard-cell ASICs. Intel Foxton technology [111] provides a mechanism for

124

select Intel Itanium 2 processors to adjust core frequency during operation to boost appli-

cation performance. To the best of our knowledge, none of the previous DVFS techniques

consider the user satisfaction prediction.

Sasaki et al. [88] propose a novel DVFS method based on statistical analysis of per-

formance counters. However, their technique needs compiler support to insert code for

performance prediction. Furthermore, their technique does not consider user satisfaction

while setting the frequency. The primary contribution of our work is to establish the

correlation between hardware counters and user satisfaction and utilize this correlation

to develop a user-aware DVFS technique.

Other DVFS algorithms use task information, such as measured response times in

interactive applications [68, 116] as a proxy for the user.

Xu, Ross, and Melhem propose novel schemes [115] minimizing energy consumption

in real-time embedded systems that execute variable workloads. However, they try to

adapt to the variability of the workload rather than to the users.

5.6. Screen Optimizations

Researchers have studied screen optimizations that would be enabled with OLED

display technology. They explore altering the user interface to dim certain parts of screen

to save considerable power, and do a user acceptance study [16, 51]. Our work operates

on existing screen technology and leverages change blindness with gradual changes to save

power.

125

CHAPTER 6

Conclusion

This dissertation makes the case for incorporating the end user into the design and op-

timization of modern computer architecture. It explores three aspects of human-computer

interaction – user perception, user state, and user activity – and shows that studies of

all three provide important insights to the design for designing and optimizing computer

architectures and systems. With respect to user perception, the main take-away is that

there is no average user. User studies show a significant variation across all users. This

user variation represents a new opportunity for optimization architectures subject to in-

dividual user satisfaction. With respect to user physiological traits, I propose empathic

inputs devices that exist solely to provide the computer with information about user state.

I show that three empathic input devices (eyetrackers, a galvanic skin response sensor,

and force sensors) can be used to infer user satisfaction during computer usage, and that

this information can be leveraged to drive user-aware optimizations. With respect to user

activity, I show that studying user activity can be critical to understanding the power

consumption of mobile devices, as well as unveiling new properties of machine workload

that can be leveraged for optimization.

At a higher level, the work in this dissertation points towards a new way of approaching

decisions at the architecture and systems level. It suggests including the user at all levels

of the design process. We should perform user studies, as well as studies of user activity,

to find new opportunities for optimization. We should incorporate information we learn

126

directly from an individual user to drive optimizations. Currently, optimizations are

driven by heuristic, or targeted at an average user. Instead, we should learn about the

end user to tune machine performance to user expectations. Third, when evaluating

design or optimization decisions, we must bring the user into the loop. The ultimate

measure is whether the user is satisfied with performance or not, and this is impossible

without real user feedback via user studies.

If we incorporate the end user into architecture and systems research, it implies a

win-win scenario for both the computer and the user. The computer should execute more

efficiently, performings tasks and tuning performance subject to the individual user. At

the same time, we should substantially improve user satisfaction by providing a new user

experience, with computer execution tailored to their individual needs. Both are good

things.

127

References

[1] Microsoft word 2000. Microsoft Corporation.
[2] Tetris arena. Terminal Studio.
[3] Need for speed prostreet, 2007. Electronic Arts.
[4] Advanced Micro Devices. BIOS and Kernel Developer’s Guide for AMD Athlon64 and

AMD Opteron Processors. Technical report, Advanced Micro Devices, 2006.
[5] H. I. Ahn, A. Teeters, A. Wang, C. Breazeal, and R. W. Picard. Stoop to conquer:

Posture and affect interact to influence computer user’s persistence. In Proceedings of the
Intl. Conference on Affective Computing and Intelligent Interaction, September 2007.

[6] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wireless network power manage-
ment. In Proceedings of the Intl. Conference on Mobile Computing and Networking, 2004.

[7] J. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S. Leung, R. L. Sites,
M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling: Where
have all the cycles gone? In Proc. of the 16th ACM Symposium of Operating Systems
Principles, pages 1–14, October 1997.

[8] Apple Inc. iPhone OS Technology Overview: About iPhone OS Development, October
2008.

[9] Arbitron and Edison Research Media. The Infinite Dial 2008: Radio’s Digital Platforms.
[10] A. Ax. The physiological differentiation between fear and anger in humans. Psychosomatic

Medicine, 15(5):433–442, July 1952.
[11] R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance analysis by statisti-

cal sampling of microprocessor performance counters. In Proceedings of the International
Conference on Supercomputing, June 2005.

[12] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and
B. Jacob. The performance and energy consumption of three embedded real-time operating
systems. In Proceedings of the Intl. Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 203–210, November 2001.

[13] F. Bellosa. The benefits of event-driven energy accounting in power-sensitive systems. In
Proceedings of the SIGOPS European Workshop, September 2000.

[14] M. Bi, I. Crk, and C. Gniady. Iadvs: On-demand performance for interactive applications.
In Proceedings of the Intl. Symposium on High-Performance Computer Architecture, Jan
2010.

[15] W. L. Bircher, M. Valluri, J. Law, and L. K. John. Runtime identification of micropro-
cessor energy saving opportunities. In Proceedings of the Intl. Symposium on Low Power
Electronics and Design, pages 275–280, 2005.

128

[16] L. Bloom, R. Eardley, E. Geelhoed, M. Manahan, and P. Ranganathan. Investigating the
relationship between battery life and user acceptance of dynamic, energy-aware interfaces
on handhelds. In Proceedings of the Intl. Conference on Human-Computer Interaction
with Mobile Devices and Services, pages 13–24, September 2004.

[17] M. Bohme, A. Meyer, T. Martinetz, and E. Barth. Remote eye tracking: State of the art
and directions for future development. In Proceedings of the Conference on Communica-
tion by Gaze Interaction, pages 12–17, 2006.

[18] W. Boucsein. Electrodermal Activity. Plenum Press, 1992.
[19] B. Brock and K. Rajamani. Dynamic power management for embedded systems. In Pro-

ceedings of IEEE SOC Conference, 2003.
[20] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level

power analysis and optimizations. In Proceedings of the Intl. Symposium on Computer
Architecture, pages 83–94, 2000.

[21] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors. The International Journal of
High Performance Computing Applications, 14(3):189–204, 2000.

[22] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency scaling based on
workload decomposition. In Proceedings of the Intl. Symp. on Low Power Electronics and
Design, 2004.

[23] T. L. Cignetti, K. Komarov, and C. S. Ellis. Energy estimation tools for the PalmTM. In
Proceedings of the Intl. Workshop on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, August 2000.

[24] S. Consolvo, P. Klasnja, D. W. McDonald, and J. A. Landay. Goal-setting considera-
tions for persuasive technologies that encourage physical activity. In Proceedings of the
International Conference on Persuasive Technology, 2009.

[25] S. Consolvo, K. Markle, K. Patrick, and K. Chanasyk. Designing for persuasion: mo-
bile services for health behavior change. In Proceedings of the Conference on Persuasive
Technology, 2009.

[26] S. Consolvo, D. W. McDonald, and J. A. Landay. Theory-driven design strategies for tech-
nologies that support behavior change in everyday life. In Proceedings of the International
Conference on Human Factors in Computing Systems, pages 405–414, 2009.

[27] G. Contreras and M. Martonosi. Power Prediction for Intel XScale R© Processors Using
Performance Monitoring Unit Events. In Proceedings of the Intl. Symposium on Low Power
Electronics and Design, pages 221–226, August 2005.

[28] N. Cranley, L. Murphy, and P. Perry. User-perceived quality-aware adaptive delivery of
mpeg-4 content. In Proceedings of the international workshop on Network and operating
systems support for digital audio and video, pages 42–49, 2003.

[29] N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality. Int. J.
Hum.-Comput. Stud., 64(8):637–647, 2006.

[30] B. D. Davison and H. Hirsh. Predicting sequences of user actions. In Proceedings of the
Workshop on Predicting the Future, 1998.

[31] S. Dhar, D. Maksimovic, and B. Kranzen. Closed loop adaptive voltage scaling controller
for standard cell asics. In Proceedings of Intl. Symp. on Low Power Electronics and Design,
2005.

129

[32] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha. Power analysis of
embedded operating systems. In Design Automation Conference, pages 312–315, 2000.

[33] P. Dinda, G. Memik, R. Dick, B. Lin, A. Mallik, A. Gupta, and S. Rossoff. The user in
experimental computer systems research. In Proceedings of the Workshop on Experimental
Computer Science, June 2007.

[34] Display Search; NPD Group. Strong Mini-Note PC Demand Expected to Buoy Notebook
Market in 2009, April 2009. http://www.displaysearch.com/.

[35] N. Eagle and A. Pentland. Social serendipity: Mobilizing social software. IEEE Pervasive
Computing, 4(2):28–34, January–March 2005.

[36] W. Einhauser, J. Stout, C. Kock, and O. Carter. Pupil dilation reflects perceptual selection
and predicts subsequent stability in perceptual rivalry. In Proceedings of the National
Academy of Sciences, pages 1704–1709, 2008.

[37] Y. Endo and M. I. Seltzer. Improving interactive performance using tipme. In Proceedings
of the Intl. Conference on Measurements and Modeling of Computer Systems, 2000.

[38] Y. Endo, Z. Wang, J. B. Chen, and M. I. Seltzer. Using latency to evaluate interactive
system performance. In Proceedings of the USENIX Symp. on Operating Systems Design
and Implementation, 1996.

[39] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T. Austin,
and T. Mudge. Razor: A low-power pipeline based on circuit-level timing speculation. In
Proceedings of the Intl. Symposium on Microarchitecture, 2003.

[40] ESP: Empathic Systems Project. http://www.empathicsystems.org.
[41] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin. Di-

versity in smartphone usage. In Proceedings of Intl. Conf. on Mobile Systems, Applications
and Services, June 2010.

[42] Y. Fei, L. Zhong, and N. K. Jha. An energy-aware framework for coordinated dynamic
software management in mobile computers. In Proceedings of Intl. Symp. on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, 2004.

[43] K. Flautner and T. N. Mudge. Vertigo: Automatic performance setting for linux. In
Proceedings of the Symposium on Operating Systems Design and Implementation, 2002.

[44] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay. MyExperience: A
system for in situ tracing and capturing of user feedback on mobile phones. In MOBISYS,
2007.

[45] S. Gochman and R. Ronen. The Intel Pentium M processor: Microarchitecture and per-
formance. Intel Technology Journal, 2003.

[46] Google, Inc. Android - An Open Handset Alliance Project. http://developer.android.com.
[47] Google, Inc. Corporate Information - Our Philosophy.

http://www.google.com/corporate/tenthings.html.
[48] A. Gupta, B. Lin, and P. A. Dinda. Understanding user comfort with resource borrowing.

In Proceedings of the Intl. Symp. on High Performance Distributed Computing, 2004.
[49] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir, T. Li,

and L. K. John. Using Complete Machine Simulation for Software Power Estimation:
The SoftWatt Approach. In Proceedings of the Intl. Symposium on High Performance
Computer Architecture, pages 141–150, February 2002.

130

[50] S. Gurun and C. Krintz. A run-time feedback-based energy estimation model for embedded
devices. In Proceedings of the Intl. Conference on Hardware/Software Codesign and System
Synthesis, pages 28–33, October 2006.

[51] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and P. Ranganathan. Energy-
aware user interfaces: An evaluation of user acceptance. In Proceedings of the Conference
on Human Factors in Computing Systems, pages 199–206, April 2004.

[52] R. L. Hazlett and J. Benedek. Measuring emotional valence to understad the user’s expe-
rience of software. International Journal of Human-Computer Studies, 65:306–314, 2007.

[53] Hewlett-Packard Development Company. perfmon project
http://www.hpl.hp.com/research/linux/perfmon/.

[54] Intel Corporation. Intel 64 and IA-32 Architecture Software Developer’s Manual Volume
3A: System Programming Guide. Santa Clara, CA, 2002.

[55] Intel Corporation. Intel Itanium 2 processor reference manual: For software development
and optimization. May 2004.

[56] S. T. Iqbal, P. D. Adamczyk, Z. S. Zheng, and B. P. Bailey. Towards an index of oppor-
tunity: Understanding changes in mental worklad during task execution. In Proceedings
of the Conference on Human Factors in Computing Systems (CHI), pages 311–320, April
2005.

[57] Joao P. Sousa and Rajesh K. Balan and Vahe Poladian and David Garlan and Mahadev
Satyanarayanan. Giving users the steering wheel for guiding resource-adaptive systems.
Technical Report CMU-CS-05-198, Carnegie Mellon University, School of Computer Sci-
ence, Dec 2005.

[58] R. Joseph and M. Martonosi. Run-time power estimation in high performance micropro-
cessors. In Proceedings of the Intl. Symposium on Low Power Electronics and Design,
August 2001.

[59] I. Kadayif, T. Chinoda, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A. Siva-
subramaniam. vec: virtual energy counters. In Proceedings of the Workshop on Program
Analysis For Software Tools and Engineering, June 2001.

[60] A. Kapoor, W. Burleson, and R. W. Picard. Automatic prediction of frustration. Intl.
Journal of Human-Computer Studies, pages 724–736, August 2007.

[61] J.-G. Kim, Y. Wang, and S.-F. Chang. Content-adaptive utility-based video adaptation.
In Proceedings of the International Conference on Multimedia and Expo, pages 281–284,
2003.

[62] J.-O. Klein, J.-O. Klein, L. Lacassagne, H. Mathias, S. Moutault, and A. Dupret. Low
power image processing: Analog versus digital comparison. In CAMP ’05: Proceedings of
the Seventh International Workshop on Computer Architecture for Machine Perception,
pages 111–115, Washington, DC, USA, 2005. IEEE Computer Society.

[63] J. Lange, P. A. Dinda, and S. Rossoff. Experiences with client-based speculative remote
display. In Proceedings of the USENIX Annual Technical Conference, June 2008.

[64] T. Li and L. K. John. Run-time modeling and estimation of operating system power
consumption. In SIGMETRICS, 2003.

[65] B. Lin and P. A. Dinda. Putting the user in direct control of cpu scheduling. In Proceedings
of the International Symposium on High Performance Distributed Computing, June 2006.

131

[66] B. Lin and P. A. Dinda. Towards scheduling virtual machines based on direct user input. In
Proceedings of the 1st International Workshop on Virtualization Technology in Distributed
Computing, Nov 2006.

[67] B. Lin, A. Mallik, P. A. Dinda, G. Memik, and R. P. Dick. User- and process-driven
dynamic voltage and frequency scaling. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software, April 2009.

[68] J. Lorch and A. Smith. Using user interface event information in dynamic voltage scaling
algorithms. Technical Report UCB/CSD-02-1190, University of California at Berkeley,
Berkeley, CA, 2002.

[69] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and implementation of a lightweight
dynamic optimization system. In Journal of Instruction-Level Parallelism 6(2004), pages
1–24, April 2004.

[70] C. E. Luna, L. P. Kandi, and A. K. Katsaggelos. Maximizing user utility in video
streaming applications. IEEE Transactions on Circuits and Systems for Video Technology,
13(2):141–148, February 2003.

[71] A. MacLean et al. User-tailorable systems: Pressing the issues with buttons. In Proceedings
of the Conf. on Human factors in Computing Systems, pages 175–182, April 1990.

[72] A. Mahesri and V. Vardhan. Power consumption breakdown on a modern laptop, workshop
on power aware computing systems. In Proceedings of the Workshop on Power-Aware
Computer Systems, December 2004.

[73] A. Mallik, J. Cosgrove, R. Dick, G. Memik, and P. Dinda. PICSEL: Measuring user-
percieved performance to control dynamic frequency scaling. In Proceedings of the Intl.
Conference on Architectural Support for Programming Languages and Operating Systems,
March 2008.

[74] A. Mallik, B. Lin, G. Memik, P. A. Dinda, and R. P. Dick. User-driven frequency scaling.
Computer Architecture Letters, 5(2), July–December 2006.

[75] R. L. Mandryk and M. S. Atkins. A fuzzy physiological approach for continuously model-
ing emotion during interaction with play technologies. International Journal of Human-
Computer Studies, 65:329–347, 2007.

[76] Microsoft. Windows native processor performance control. In Windows Platform Design
Notes, November 2002.

[77] J. S. Miller, J. R. Lange, and P. A. Dinda. EmNet - Satisfying the Individual End User
Through Empathic Home Networks. In In proceedings. of the Intl. Conf. on Computer
Communications, March 2010.

[78] J. S. Miller, A. Mondal, R. Potharaju, P. A. Dinda, and A. Kuzmanovic. Network Mon-
itoring is People: Understanding End-User Perception of Network Problems. Technical
report, Department of Electrical Engineering and Computer Science, Northwestern Uni-
versity, Evanston, IL.

[79] V. G. Moshnyaga and E. Morikawa. Reducing energy consumption of computer display
by camera-based user monitoring. In Lecture Notes in Computer Science, pages 528–539,
2005.

[80] D. P. Olshefski, J. Nieh, and D. Agrawal. Inferring client response time at the web server.
In Proceedings of the Intl. Conference on Measurement and Modeling of Computer Sys-
tems, June 2002.

132

[81] V. Pallipadi and A. Starikovskiy. The ondemand governor: Past, present, and future. In
Ottawa Linux Symposium, July 2006.

[82] T. Partala and V. Surakka. Pupil size variation as an indication of affective processing.
Int. J. Human-Computer Studies, 59:185–198, 2003.

[83] C. Phillips, S. Singh, D. Sicker, and D. Grunwald. Applying models of user activity for
dynamic power management in wireless devices. In Mobile HCI, September 2008.

[84] R. W. Picard. Affective Computing. MIT Press, Cambridge, 1997.
[85] M. Pinson and S. Wolf. Comparing subjective video quality testing methodologies. In

SPIE Video Communications and Image Processing Conference, pages 8–11, 2003.
[86] R Development Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-07-0.
[87] C. J. Reynolds. The sensing and measurement of frustration with computers. Master’s

thesis, Master of Science in Media Arts and Technology at the MIT, Cambridge, MA,
2001.

[88] H. Sasaki, Y. Ikeda, M. Kondo, and H. Nakamura. An intra-task DVFS technique based
on statistical analysis of hardware events. In Proceedings of the Intl. Conf. on Computing
Frontiers, 2007.

[89] J. Scheierer, R. Fernandez, J. Klein, and R. W. Picard. Frustrating the user on purpose:
A step toward building an affective computer. Interacting with Computers, 14(2):93–118,
2002.

[90] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack. Study of sub-
jective and objective quality assessment of video. Transactions on Image Processing,
19(6):1427–1441, June 2010.

[91] A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik, P. A. Dinda, R. P. Dick, and A. N.
Choudhary. Learning and leveraging the relationship between architecture-level measure-
ments and individual user satisfaction. In Proceedings of the Intl. Symposium on Computer
Architecture, June 2008.

[92] A. Shye, Y. Pan, B. Scholbrock, J. S. Miller, G. Memik, P. A. Dinda, and R. P. Dick.
Power to the people: Leveraging human physiological traits to control microprocessor
frequency. In Proceedings of the Intl. Symposium on Microarchitecture, December 2008.

[93] A. Shye, B. Scholbrock, and G. Memik. Into the wild: Studying real user activity pat-
terns to guide power optimizations for mobile architectures. In Proceedings of the Intl.
Symposium on Microarchitecture, December 2009.

[94] A. Shye, B. Scholbrock, G. Memik, and P. A. Dinda. Characterizing and modeling user
activity on smartphones. Technical Report NWU-EECS-10-06, Northwestern University,
Evanston, IL, March 2010.

[95] A. Shye, B. Scholbrock, G. Memik, and P. A. Dinda. Characterizing and modeling user
activity on smartphones: Summary. In Proceedings of the Intl. Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS), June 2010.

[96] D. J. Simons and C. F. Chabris. Gorillas in our midst: sustained inattentional blindness
for dynamic events. Perception, 28:1059–1074, 1999.

[97] D. J. Simons, S. L. Franconeri, and R. L. Reimer. Change blindness in the absence of a
visual disruption. Perception, 29:1143–1154, 2000.

133

[98] T. J. Smith, M. Whitwell, and J. Lee. Eye movements and pupil dilation during event
perception. In Proceedings of the Eye Tracking Research and Applications Conference,
March 2006.

[99] M. Strauss, C. Reynolds, S. Huges, K. Park, G. McDarby, and R. W. Picard. The hand-
wave bluetooth skin conductance sensor. In Proceedings of the Intl. Conference on Affective
Computing and Intelligent Interaction, October 2005.

[100] T. K. Tan, A. Raghunathan, G. Lakshiminarayana, and N. K. Jha. High-level softwrae
energy macro-modeling. In Proceedings of Design Automation Conference, pages 605–610,
June 2001.

[101] S. Tarzia, R. P. Dick, P. A. Dinda, and G. Memik. Sonar-based measurement of user
presence and attention. In Proceedings of Intl. Conf. on Ubiquitous Computing, September
2009.

[102] S. Tarzia, R. P. Dick, P. A. Dinda, and G. Memik. Display power management policies
and practice. In Proceedings of Intl. Conf. on Autonomic Computing and Communications,
June 2010.

[103] A. Teeters. User of a wearable camera system in conversation: Towards a companion tool
for social-emotional learning in autism. Master’s thesis, Master of Science in Media Arts
and Technology at the MIT, Cambridge, MA, 2001.

[104] Tekscan. Flexiforce: System and sensor pricing.
http://www.tekscan.com/flexiforce/pricing.html.

[105] M. Toyokura. Waveform and habituation of sympathetic skin response. Electroencephalog-
raphy and Clinical Neurophysiology/Electromyography and Motor Control, 109(2):178–
183, 1998.

[106] G. A. Tsihrintzis, M. Virvou, E. Alepis, and I. Stathopoulou. Towards improving visual-
facial emotion recognition through use of complementary keyboard-stroke pattern informa-
tion. In Proceedings of the Intl. Conference on Information Technology: New Generations,
pages 32–37, April 2008.

[107] R. Vetrugno, R. Liguori, P. Cortelli, and P. Montagna. Sympathetic skin response: Basic
mechanisms and clinical applications. Clinical Autonomic Research, pages 256–270, June
2003.

[108] L. von Ahn. Games with a purpose. IEEE Computer, 39(6):92–94, 2006.
[109] L. von Ahn, M. Blum, N. Hopper, and J. Langford. Captcha: Using hard ai problems

for security. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 294–311, May 2003.

[110] L. von Ahn and L. Dabbish. Labeling images with a computer game. In Proceedings of
the Conf. on Human factors in Computing Systems, pages 319–326, April 2004.

[111] J. Wei. Foxton technology pushes processor frequency, application performance.
[112] M. Whang. The emotional computer adaptive to human emotion. Phillips Research: Prob-

ing Experience, 8:209–219, 2008.
[113] Wikipedia: The Free Encyclopedia. HTC Dream. http://en.wikipedia.org/wiki/Gphone.
[114] Q. Wu, V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi, and D. W.

Clark. A dynamic compilation framework for controlloing microprocessor energy and per-
formance. In Proceedings of the Intl. Symposium on Microarchitecture, November 2005.

134

[115] R. Xu, D. Moss, and R. Melhem. Minimizing expected energy in real-time embedded
systems. In Proceedings of the Intl. Conf. on Embedded Software, 2005.

[116] L. Yan, L. Zhong, and N. K. Jha. User-perceived latency based dynamic voltage scaling
for interactive applications. In Proceedings of the Design Automation Conference, 2005.

[117] D. Yang, A. Gamal, B. Fowler, and H. Tian. A 640× 512 CMOS image sensor with ul-
trawide dynamic rangefloating-point pixel-level ADC. Solid-State Circuits, IEEE Journal
of, 34(12):1821–1834, 1999.

[118] C. Zilles. Increasing interactivity by predicting user actions. In Wild and Crazy Ideas Ses-
sion at the Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems, 2004.

135

Vita

Dr. Alex Shye is an experimental computer architecture and systems researcher.

His research involves prototyping real systems that improve the energy-efficiency, perfor-

mance, and reliability of computer architectures. His dissertation explores incorporating

the end user into the architectural design process by leveraging user perception, user

physiological traits, and user activity. His other past research projects involve dynamic

program profiling techniques, dynamic program compilation/optimization, dynamic mem-

ory allocation, and software-implemented transient fault tolerance.

Dr. Shye received his BS degree in Computer Engineering from the University of Illi-

nois (2002), MS degree in Computer Engineering from the University of Colorado (2005),

and PhD degree in Electrical and Computer Engineering from Northwestern Univer-

sity (2010).

