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Abstract

Transient faults are emerging as a critical concern in the
reliability of microprocessors. While hardware reliability
techniques are often employed for transient fault tolerance,
software techniques represent a more cost-effective and flex-
ible alternative. This paper proposes a software approach to
transient fault tolerance which utilizes a run-time systemto
automatically apply process-level redundancy (PLR). PLR
creates a set of redundant processes per application pro-
cess and compares the processes during run time to guar-
antee correct execution. Redundancy at the process level al-
lows the operating system to freely schedule the processes
across all available hardware resources (i.e. extra threads
or cores). PLR is a software-centric approach to transient
fault tolerance in which the focus is shifted from ensuring
correct hardware execution, to ensuring correct software
execution. The software-centric approach is able to ignore
many benign faults which do not propagate to affect the pro-
gram output. In addition, the dynamic deployment creates a
very flexible fault tolerant system which transparently ap-
plies PLR without prior modifications to the application,
shared libraries, or operating system. Experiments using a
real PLR prototype on an SMP machine demonstrate that
PLR can effectively provide transient fault tolerance witha
slowdown of only 1.26x.

1. Introduction

Transient faults, also known as soft errors, are emerg-
ing as a critical concern in the reliability of microproces-
sors. A transient fault occurs when energetic particles (e.g.
alpha particles) strike the processor and cause the deposit
or removal of enough charge to invert the state of a transis-
tor. The inverted value may propagate to cause an error in
program execution.

Current trends in process technology indicate that the
raw error rate of a single transistor will stay relatively con-
stant or decrease slightly [7, 10]. As the number of avail-
able transistors per chip continues to grow exponentially,
the transient fault rate of future processors can be expected
to increase dramatically. Thus, it will be crucial for future
systems to employ reliability techniques to ensure correct
program execution.

While simple reliability techniques such as ECC and par-
ity can easily be utilized to protect large storage structures
such as caches and memory, guaranteeing correct execu-
tion through the complex interconnection of gates and logic
within modern processor pipelines presents a much more
difficult task. The typical solution is to replicate hardware
units and check their execution results [9, 21]. However, the
design and verification of new redundant hardware is costly
and may not be feasible in cost-sensitive markets. In addi-
tion, it is unknown how much the inclusion of redundant de-
sign elements may impact the design and product cycles of
systems. As a result, software approaches have been pro-
posed as a more cost-effective and flexible alternative for
transient fault tolerance.

This paper proposes a software approach to transient
fault tolerance which utilizes a run-time system to dynam-
ically applyprocess-level redundancy(PLR). PLR is a re-
dundancy technique which creates a set of redundant pro-
cesses per original application process and compares them
to verify execution results. Upon the detection of a tran-
sient fault, a majority vote between the redundant processes
is taken to verify program results and recover from the fault.

Redundancy at the process level allows the operating
system (OS) to freely schedule the redundant processes
to all available hardware resources. As microarchitectural
trends point towards the design of massively multi-threaded
and multi-core architectures, future microprocessors will
likely contain extra hardware threads and cores. In com-
puting environments which are not throughput constrained,
PLR provides an alternate method of leveraging the hard-
ware parallelism for transient fault tolerance.

PLR implies asoftware-centricparadigm in transient
fault tolerance which views the system as software layers
which must execute correctly. This differs from the com-
mon hardware-centricmodel which views the system as
hardware components which must execute correctly. The
software-centric fault tolerance model shifts the focus from
ensuring correct hardware execution, to ensuring correct
software execution. Only the transient faults which affect
software output are detected and many benign faults which
do not propagate to affect program correctness are ignored.

Dynamically deploying PLR via a user-level run-time
system creates an extremely flexible transient fault toler-
ance framework. A run-time system is a software layer
which enables the dynamic introspection and modification



of any program as it executes. As a result, the dynamic
PLR implementation is able to provide transient fault toler-
ance without prior modifications to the application, shared
libraries, or operating system.

This paper presents a dynamic PLR prototype which is
implemented in a real run-time system [11]. A fault injec-
tion campaign is used to determine the result of injected
faults, demonstrate the effectiveness of PLR, and show
the advantages of using a software-centric fault tolerance
model. Performance is evaluated on a variety of hardware
platforms to show how PLR scales to differing architec-
tures. On a 4-way SMP machine, the prototype is able to
effectively avoid benign faults, and detect true faults with
only a 1.26x slowdown.

The rest of this paper is organized as follows. Section 2
provides background on transient fault tolerance. Section3
describes PLR. Section 4 shows initial results from the dy-
namic PLR prototype. Section 5 discusses related work.
Section 6 concludes the paper.

2. Background

2.1. Transient Fault Preliminaries

In general, a transient fault can be classified by its effect
on program execution into the following categories [25]:

Benign Fault: A transient fault which does not propa-
gate to affect the correctness of an application is considered
a benign fault. A benign fault can occur for a number of rea-
sons. Examples include a fault to an idle functional unit, a
fault to a performance-enhancing instruction (i.e. a prefetch
instruction), data masking, and Y-branches [24].

Silent Data Corruption (SDC): A transient fault which
is undetected and propagates to corrupt program output is
considered a SDC. This is the worst case scenario where
an application appears to execute correctly but silently pro-
duces incorrect output.

Detected Unrecoverable Error (DUE): A tran-
sient fault which is detected without possibility of recovery
is considered a DUE. DUEs can be split into two cate-
gories. Atrue DUEoccurs when a fault which would prop-
agate to incorrect execution is detected. Afalse DUEoc-
curs when a benign fault is detected as a fault. Without
recovery, a false DUE will cause the system to unneces-
sarily halt execution and with recovery, will cause unwar-
ranted calls to the recovery mechanism.

A transient fault in a system without transient fault tol-
erance will result in a benign fault, SDC, or true DUE (e.g.
error detected by core dump). A system with only detec-
tion attempts to detect all of the true DUEs and SDCs, but
may inadvertently identify some of the benign faults into
false DUEs. Finally, a system with both detection and re-
covery will detect and recover from all faults without SDCs
or any form of DUE.

2.2. Transient Fault Detection

Transient fault tolerance consists oftransient fault de-
tection and transient fault recovery. The detection mech-
anism continuously monitors program execution to verify
correct execution and dominates the performance overhead
for transient fault tolerance. The recovery mechanism is in-
voked each time the detection mechanism detects a fault. As
such, a large majority of transient fault tolerance work fo-
cuses primarily on the detection mechanism.

Hardware fault tolerance techniques have been exten-
sively explored using replicated hardware units [9, 21], spe-
cific checking structures [1, 25], and extensions to super-
scalar [16], SMT [19, 12, 17, 22, 23] and CMP [6, 12] pro-
cessors. These hardware approaches can be effective but
suffer from a few limitations. First, the approaches incur
tremendous costs in the design and verification of dedi-
cated hardware for fault detection. In cost-sensitive mar-
kets, the hardware approach may not be viable. Hardware
approaches are also not very flexible; once the hardware is
created, it is not easily modified or extended. Furthermore,
a hardware techniques is often specific to a particular pro-
cessor model.

Software solutions offer a cheaper and more flexible
alternative to the hardware approaches. Current software
techniques involve using the compiler to insert fault tolerant
instructions [14, 13, 18]. A drawback to such mechanisms
is that the execution of the inserted instructions and asser-
tions decrease performance (∼1.4x slowdown [18]). Also, a
compiler approach requires recompilation of all code which
is to be protected. Not only is it inconvenient to recompile
all applications and libraries, but the source code for com-
mercial or legacy programs is often unavailable.

2.3. Transient Fault Recovery

Transient fault recovery mechanisms typically fit into
two broad categories:checkpoint and repair, and fault
masking. Checkpoint and repair techniques involves the pe-
riodic checkpointing of execution state. When a fault is
detected, execution is rolled back to the previous check-
point. Checkpoint and repair can occur at different gran-
ularities [16, 23]. Fault masking, such as triple mod-
ular redundancy (TMR) [27], involves using at least
three copies of execution to determine the correct exe-
cution results. Fault masking often requires more hard-
ware resources than checkpoint and repair techniques, but
has the advantages of simplicity, and the ability to con-
stantly make forward progress during execution.

3. Approach

3.1. Software-centric Fault Detection

Thesphere of replication(SoR) [17] is a commonly ac-
cepted concept for describing a technique’s logical domain
of redundancy and specifying the boundary for fault detec-
tion and containment. Any data which enters the SoR is
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Figure 1. Hardware-centric and software-
centric transient fault detection models.

replicated and all execution within the SoR is redundant
in some form. Before leaving the SoR, all output data is
compared to ensure correctness. All execution outside of
the SoR is not covered by the particular transient fault tech-
niques and must be protected by other means. Faults are
contained within the SoR boundaries and detected in any
data leaving the SoR.

Many of the previous transient fault detection ap-
proaches mentioned in Section 2.2 arehardware-centric.
As shown in Figure 1(a), the hardware-centric model
views the system as a collection of hardware compo-
nents which must be protected from transient faults.
The SoR is commonly placed around the processor dat-
apath assuming the cache and memory to be parity or
ECC protected. Thus, all loads are replicated, all ex-
ecution is redundant, and all stores are compared for
output correctness. The compiler-based software tech-
niques are also hardware-centric. For example, SWIFT [18]
places its SoR around the processor. However, with-
out the ability to duplicate hardware, SWIFT duplicates at
the instruction level. Each load is performed twice for in-
put replication and all computation is performed twice
on the replicated inputs. Output comparison is accom-
plished by checking the data of each store instruction prior
to executing the store instruction.

Software-centricfault detection is a paradigm in which
the system is viewed as the software layers which must ex-
ecute correctly. Figure 1(b) shows an example software-
centric SoR which is placed around the user space appli-
cation and libraries (as used by PLR). A software-centric
SoR acts exactly the same as the hardware-centric SoR ex-
cept that it acts on the software instead of the hardware. The
main difference is that a software-centric SoR encompasses
software execution instead of hardware units, and shifts the
focus from ensuring correct hardware execution to ensur-
ing correct software execution. As a result, the software-
centric model only detects faults which propagate to affect
software execution, and then result in an error in program
output. Benign faults are safely ignored. A software-centric
system with only detection is able to reduce the incidence
of false DUEs. A software-centric system with both detec-
tion and recovery will not invoke the recovery mechanism
for falsely detected faults which do not affect correctness.
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Figure 2. Overview of PLR with three redun-
dant processes.

3.2. Process-Level Redundancy

Process-level redundancy(PLR) is a redundancy tech-
nique which uses the software-centric model of transient
fault detection. As shown in Figure 1(b), PLR places its SoR
around the user address space by providing redundancy at
the process level. PLR replicates the application and library
code, global data, heap, stack, file descriptor table, etc. Ev-
erything outside of the SoR, namely the OS, must be pro-
tected by other means. Any data which enters the SoR via
the system call interface must be replicated and all output
data must be compared to verify correctness.

Providing redundancy at the process level is natural as
it is the most basic abstraction of any OS. The OS views
any hardware thread or core as a logical processor and
then schedules processes to the available logical proces-
sors. PLR simply allows the OS to schedule the redun-
dant processes to take advantage of hardware extra threads
and cores. With massively multi-threaded and multi-core
architectures on the horizon, there will be a tremendous
amount of course-grained hardware parallelism available
in future general purpose machines. In computing environ-
ments where throughput is not the primary concern, PLR
provides a way of utilizing the extra hardware resources for
transient fault tolerance.

A high level overview of PLR is shown in Figure 2 with
three redundant processes which is the minimum number of
processes necessary for both transient fault detection andre-
covery. At the beginning of execution, the original process
is replicated to create the redundant processes. One of the
processes is labeled themasterprocess and the others are la-
beled theredundantprocesses. At each system call, thesys-
tem call emulation unitis invoked. The emulation unit per-
forms the input replication, output comparison, and recov-
ery. The emulation unit also unit ensures that the follow-
ing requirements are maintained in order for PLR to oper-
ate correctly:

• The execution of PLR must be transparent to the sys-
tem environment with the redundant processes inter-
acting with the system as if only the original process
is executing. Therefore, all system calls which alter
any system state can only be executed once. In gen-
eral, the master process is allowed to actually execute



the system call while the redundant processes emulate
the system call.

• Execution among the redundant processes must
be deterministic. System calls which return non-
deterministic data such as agettimeofday()
must be emulated to ensure all redundant pro-
cesses use the same data for computation. In this pa-
per, we present a single-threaded model of PLR. En-
suring determinism for multi-threaded applications
is a much more difficult task and is reserved for fu-
ture work.

• All redundant processes must be identical in address
space and any other process-specific data such as the
file descriptor table. At any time, a transient fault could
strike and render one of the redundant processes use-
less. With identical processes, any of the processes can
be logically labeled the master process at any given in-
vocation of the emulation unit.

On occasion, a transient fault will cause the program to
suspend or hang (i.e. flip a comparison value and cause an
infinite loop). A watchdog alarmis employed by the emu-
lation unit to detect such faults and is described further in
Section 3.3.

3.2.1. Input Replication
As the SoR model dictates, any data which enters the

SoR must be replicated to ensure that all data is redun-
dant within the SoR. In the case of PLR, any data which
passes into the processes via system calls is received once
by the master process, and then replicated among the redun-
dant processes. Examples include the data returned from
theread() andgettimeofday() system calls. Also,
the return value from all system calls is considered an input
value and is copied for use across all redundant processes.
It is also important for PLR correctness reasons that input
data be received once and replicated. For example, if all re-
dundant processes are allowed to callgettimeofday(),
the processes would all receive different timestamps and ex-
ecute with different data resulting in non-deterministic be-
havior among the processes.

3.2.2. Output Comparison
All data which exits the redundant processes must be

compared for correctness before proceeding out of the SoR.
If the output data does not match, a transient fault is de-
tected and a recovery routine is invoked. Data may exit the
SoR for a couple of reasons. Any write buffers which will
be passed outside of the SoR must be compared. Examples
include write buffer in thewrite() system call and the
syncing of a memory-mapped file via themsync() sys-
tem call. Also, any data passed as a system call parameter
can be considered an output event which leaves the SoR and
must also be checked to verify program correctness.

3.2.3. Emulating System Calls
Depending upon the system call, the system call emu-

lation unit will perform different tasks. System calls which
modify any system state, such as the file system, must only

be executed once. Examples include therename() or
unlink() system calls. In some cases, a system call will
be used to modify state at the process level. When this oc-
curs, the emulation of the system call may include actually
calling the same system call. In these cases, the system call
ends up being called by all redundant processes. For exam-
ple, theopen() system call is first executed by the mas-
ter process to open a file (and create it if necessary). The
redundant processes will modify the system call flags re-
move the file create flag, and then callopen() themselves
to maintain similar file descriptor tables. Thelseek() call
is another example where all redundant processes must seek
within a file the proper distance to maintain consistency be-
tween the file offset pointers of each redundant process.

3.3. Transient Fault Detection

In PLR, a transient fault is detected in one of three ways:

1. Output Mismatch: A transient fault which propagates
to cause incorrect output will be detected with the out-
put comparison within the emulation unit at the point
which it is about to exit the SoR.

2. Watchdog Timeout: A transient fault may cause a
process to hang indefinitely (e.g. an infinite loop). A
watchdog alarmis set at the beginning of each call to
the emulation unit. If the watchdog alarm times out, a
fault assumed. A drawback to the watchdog alarm is
that a timeout period must exist in which the applica-
tion does not make any progress.

3. Program Failure: Finally, a transient fault may cause
a program failure due to an illegal operation such
as a segmentation violation, bus error, illegal instruc-
tion, etc. While these cases could be detected with the
watchdog alarm, this would cause unnecessary over-
head in waiting for the watchdog alarm to time out.
Signals handlers are set up to catch the correspond-
ing signals, such as SIGSEGV, and an error is flagged.
The next time the emulation unit is called, it immedi-
ately begins the recovery process.

3.4. Transient Fault Recovery

PLR uses fault masking with a majority vote for tran-
sient fault recovery. An odd number of redundant processes
is necessary with a minimum of three processes. The recov-
ery mechanism acts differently based on how a fault is de-
tected. The recovery process is listed below corresponding
to the detection cases described in Section 3.3.

1. Output Mismatch: If an output data mismatch occurs
the remaining processes are compared to ensure cor-
rectness of the output data. If a majority of processes
agree upon the value of the output data, it is assumed to
be correct. Any processes with incorrect data are im-
mediately killed and replaced by using a correct pro-
cess to call thefork() system call.



2. Watchdog Timeout: A watchdog timeout does not
have any data to compare. Instead, it is only important
to determine the incorrect process which is the process
that has not yet entered the emulation unit. The incor-
rect process is killed and replace by forking one of the
remaining processes.

3. Program Failure: In the case of program failure, the
incorrect process is already dead. The emulation unit
simply replaces the missing process by creating an-
other redundant process via thefork() system call.

Most transient fault techniques are designed for the sin-
gle event upset (SEU) model where only a single transient
fault occurs at a time. However, it is possible that multiple
simultaneous errors occur. PLR is able to sustain simultane-
ous faults by simply scaling the number of redundant pro-
cesses. For example, five redundant processes can be used
to detect and recover from two simultaneous faults to differ-
ent processes. Increasing the number of processes only re-
quires a few extra forks, and scalalable majority vote logic
which is trivial to implement in software.

3.5. Run-time PLR Deployment

This paper suggests a dynamic approach to implement-
ing PLR using a run-time system. A run-time system is a
user-level software layer which enables the dynamic mod-
ification and introspection of any program as it is execut-
ing [5, 11]. While the concept of PLR could be imple-
mented with a static compiler, a dynamic approach provides
a higher degree of convenience and flexibility. Users need
not recompile the application and its associated shared li-
braries. Hardware and software developers do not need to
design with transient fault tolerance in mind. The user who
desires reliable execution simply acquires a run-time soft-
ware package. In addition, the run-time system is easy to
turn on and off. For example, some applications, such as
MP3 audio decoding in which errors cause minor tempo-
rary glitches, do not require the same protection as others,
such as financial software.

4. Experimental Results

4.1. Methodology

This paper presents and evaluates a PLR prototype built
using the Intel Pin system [11]. The tool uses Pin to dynam-
ically fork the redundant processes and uses PinProbes to
intercept and emulate system calls. The prototype is evalu-
ated running a set of theSPEC2000benchmarks. Fault cov-
erage is evaluated using a fault injection campaign similar
to [18]. One thousand runs are executed per benchmark. For
each run, an instruction execution count profile is used to
randomly choose a specific invocation of an instruction to
fault. Within the instruction, a random bit is picked from
the source and destination registers. During run time, Pin is

used to flip the random bit during the specified dynamic ex-
ecution count of the instruction. Thespecdiffutility within
theSPEC2000harness is used to determine the correctness
of program output. The test inputs are used in the interests
of keeping experimental run times manageable.

Performance is measured on the reference inputs by run-
ning PLR with three redundant processes, without fault in-
jection, on a four processor machine. Each processor sup-
ports SMT. Execution is constrained to specific sets of hard-
ware contexts, usingsched set affinity(), to simu-
late different hardware platforms.

4.2. Fault Injection Results

Figure 3 shows the results of a fault injection campaign
split into the various outcome categories. The left bar in
each cluster shows the results with fault injection on na-
tive runs of the benchmarks. The right bar shows the results
using PLR to detect the injected faults. Without fault detec-
tion there are three possible outcomes of an injected fault.
First, the injected fault may not affect the program execu-
tion results (Correct). Second, execution may continue and
complete but result in incorrect output (Incorrect). Third,
execution could fail to complete (Fail). By applying PLR,
there are two additional outcomes. PLR may detect a fault
through a mismatch of data on a write event (Mismatch), or
through a signal handler catching an illegal function (Seg-
Fault) as described in Section 3.3. The detection case with
the watchdog alarm timeout is ignored because it occurs
very infrequently (∼.05% of the time).

PLR is able to successfully eliminate all of theFailed
andIncorrectoutcomes. In general, the write comparisons
detect theIncorrectcases and turn them into detectedMis-
matchcases and theFailedcases are detected by the watch-
dog alarm and turned intoSegFaultcases. Occasionally, a
small fraction of theFailed cases are detected asMismatch
under PLR. This indicates cases in which PLR is able to de-
tect a mismatch of output data before a failure occurs.

The software-centric approach of PLR is very effec-
tive at detecting faults based on their effect on software
execution. Faults which result in incorrect execution are
detected through either a mismatch of write data or the
timeout mechanism. Faults which do not affect correctness
are not detected in PLR thereby avoiding false positives.
In contrast, SWIFT [18], which is currently the most ad-
vanced compiler-based approach, detects roughly∼70% of
theCorrectoutcomes as faults.

However, not all of theCorrectcases during fault injec-
tion remainCorrect with PLR detection as the software-
centric model would suggest. This occurs with theSPEC
fp benchmarks. In particular,168.wupwise, 172.mgridand
178.galgelshow that many of the originalCorrect cases
during fault injection become detected asMismatch. In
these cases, the injected fault actually causes the output
data to be different than data from regular runs. However,
the output difference occurs in the printing of floating point
numbers to a log file.specdiffallows for a certain tolerance
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Figure 3. Results of the fault injection campaign. The left bar in each cluster shows the outcomes
with just fault injection and the right bar shows the breakdown of how PLR detects the faults.

Name Description
PLR-1x1 Single processor
PLR-2x2 Two processors, each 2-way SMT
PLR-4x1 Four single processors

Table 1. Hardware platforms for PLR perfor-
mance experiments.

in floating point calculations, and considers the difference
within acceptable bounds. PLR compares the raw bytes of
output and detects a fault because the data does not match.
This issue has less to do with the effectiveness of a PLR, or
a software-centric model, and is more related to the defini-
tion of an application’s correctness.

4.3. Performance Results

Table 4.3 shows the different platforms used for evalu-
ating the performance of the dynamic PLR prototype. The
platforms include a single processor, a dual SMT processor,
a 4-way SMP processor. Figure 4 shows the execution times
for each of the performance runs (using three redundant pro-
cesses) normalized to native execution time. The runs on
the single processor incur a 3.5x slowdown which is rea-
sonable as the application is executing three times with bar-
riers and inter-process communication (IPC). On the dual
SMT processor configuration, one of the SMT processors is
allocated a single redundant process, while the other is al-
located two processes. In this case, the processor with two
processes becomes the bottleneck, but the performance is
improved to a 2.4x slowdown. Performance improves dra-
matically when moving to the 4 processor SMP machine
with only a slowdown of 1.26x; which is an 36% improve-

ment over the fastest previous compiler-based fault detec-
tion technique (1.4x slowdown [18]).

The 4-way SMP configuration still requires IPC to uti-
lize a on-board processor interconnect. A CMP with at least
three cores would provide an improved IPC latency and
would be the best case scenario for PLR. To provide an idea
of the potential benefits, a study is performed to break down
the PLR overhead. During execution, overhead can be at-
tributed to simply running three copies of the same applica-
tion which increases contention for shared resources within
the system (e.g. the system bus). This is defined ascon-
tention overhead. The remainingPLR overheadis due to
the execution of PLR and the interprocess communication.
Figure 5 shows a breakdown of the contention overhead and
PLR overhead for the 4-way SMP configuration. On aver-
age about 17% of the slowdown can be attributed to the con-
tention overhead and about 8% of the overhead is due to
PLR and IPC. Moving to a CMP architecture would enable
the 8% PLR overhead to be greatly reduced.

5. Related Work

PLR similar to a software version of the hardware SMT
and CMP extensions [6, 12, 17, 19, 22, 23]. To the best of
our knowledge, it is the first software technique for tran-
sient fault detection which is able to leverage multiple hard-
ware threads or cores.

Executable assertions [8] and other software detec-
tors [15] explore the placement of assertions within soft-
ware similar to our software-centric model. The software-
centric model presents a more formalized method of soft-
ware checking based on the SoR model. The pi bit [25] and
dependence-based checking [23] follow the propagation of
faults in an attempt to only detect faults which affect pro-
gram behavior. By using the software-centric model, and
using a broad SoR around the user space, PLR easily ac-
complishes the same task on a larger scale.
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Figure 4. Normalized performance results when running on the platforms shown in Table 1.
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Figure 5. Overhead breakdown of running PLR on the a four processor SMP machine.

The PLR approach is similar to a body of fault tolerant
work which explores the use ofreplicas(similar to our re-
dundant processes) within the operating system [2], a hyper-
visor [4], post-link system [3], and for specialized hard-
ware [26, 27]. This body of work targets hard faults while
PLR targets transient faults, which have different issues.For
example, output mismatches are not checked in detecting
hard faults. The replica work assumes specialized hardware
(such as failstop processors [20]) or a modified operating
system [2]. In contrast, PLR is designed for general pur-
pose processors running on a generic, unmodified operat-
ing system. We do not claim to invent the idea of redundant
processes. Instead, we leverage the idea for transient fault
tolerance using emerging technologies including run-time
systems as well as SMT, CMP and multi-processor archi-
tectures.

6. Conclusion
This paper presents a dynamic software transient fault

tolerance technique which utilizes process-level redun-
dancy (PLR). PLR is a software-centric model of fault de-

tection which effectively ignores benign faults and only
detects faults which propagate to effect program out-
put. By providing redundancy at the process level, PLR
scales well in multiprocessing environments. To the best of
our knowledge, this is the first software transient fault tol-
erance technique which can leverage multiple hardware
threads or cores. The performance of a prototype is eval-
uated on a variety of hardware platforms and achieves a
slowdown of only 1.26x on a 4-processor SMP, a 36% im-
provement over the fastest previous software transient fault
detection technique. Future work involves exploring poli-
cies for dynamically adapting the level of redundancy,
as well as discovering methods of ensuring determin-
ism in more complex applications which involve shared
memory, signals, interrupts, and threading.
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