Symbol Tables

e During which compilation stages is the symbol table accessed?
e What information is stored in the symbol table?
e How can a symbol table be implemented? Compare different structures.

e How is scope information handled? If the same identifier appears in a number of scopes, how do we
access the write info? What happens when we exit a scope?

Intermediate Representations

e What are the criteria for selecting an IR?

e IR classifications

Linear IRs: quadruples vs. triples

Graphical IRs: trees, DAGs, CFGS

Creating DAGs

Control flow graphs

— How to identify basic blocks
— How to identify back edges
— Building a dominator tree

— How to identify natural loops.

SSA form

Runtime Storage Organization

e Static, stack and heap allocation
e The stack frame model

— What goes into a stack frame?

— Do we know its size at compile time?

How is the stack managed? Calling sequence.

Stack and frame pointers. What are they? Do we need both?
— What are dynamic links?

— What are static (access) links and what are Displays? How do they work? Compare.

e Static vs. Dynamic scoping



Instruction selection, Instruction scheduling

Basic criteria for instruction selection

What is instruction scheduling? How do dependencies between instructions determine scheduling deci-
sions? You should be able to come up with an optimal schedule, given a short sequence of instructions.

How do instruction selection and scheduling interfere with register allocation? In what order should
they performed?

When given a simple machine architecture/instruction set, you should be able to generate some basic
code for specific operations (e.g. array accesses, simple loops, if/else statements, etc)

Optimization

Principles of optimization.

You should be able to perform the following optimizations:

Constant Folding

Local Value Numbering

Local and Global Copy Propagation

Local and Global Common Subexpression Elimination

— Loop-Invariant Code Motion
You should be able to recognize dead code.

Local Value Numbering vs. Local Common Sybexpression Elimination vs. Local Constant Propaga-
tion.

Constant Folding vs. Constant Propagation
Principles of Iterative Data Flow Analysis. You should be able to perform the following analyses:

— Reaching Definitions
— Live Variables

— Available Expressions
— Very Busy Expressions

— Truly Busy Expressions (not really :))

You should be able to come up with iterative data flow analysis equations for any given problem.

Local Register Allocation

Local vs. Global. Is Local sufficient?

You should know the tree labeling algorithm discussed on 2/24 and be able to adapt it to different
architectures.



Global Register Allocation

e Criteria in estimating the cost of storing a variable in a register.

e Basic idea behind register allocation via priority-based graph coloring

Computing priorities

You should be able to identify live ranges, build an interference graph, apply the coloring algorithm and
suggest which live range should be split, if necessary. Read the paper for more information (sections
1-5), especially the section on live ranges.



