
2-1ECE 361

ECE C61
Computer Architecture

Lecture 2 – performance

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

2-2ECE 361

TodayToday’’s Lectures Lecture
Performance Concepts

• Response Time
• Throughput

Performance Evaluation
• Benchmarks

Announcements

Processor Design Metrics

• Cycle Time
• Cycles per Instruction

Amdahl’s Law
• Speedup what is important

Critical Path

2-3ECE 361

Performance Concepts

2-4ECE 361

Performance PerspectivesPerformance Perspectives

Purchasing perspective
• Given a collection of machines, which has the

- Best performance ?
- Least cost ?
- Best performance / cost ?

Design perspective
• Faced with design options, which has the

- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require
• basis for comparison
• metric for evaluation

Our goal: understand cost & performance
implications of architectural choices

2-5ECE 361

Two Notions of Two Notions of ““PerformancePerformance””

Which has higher performance?
Execution time (response time, latency, …)

• Time to do a task

Throughput (bandwidth, …)
• Tasks per unit of time

Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

2-6ECE 361

DefinitionsDefinitions

Performance is typically in units-per-second
• bigger is better

If we are primarily concerned with response time
• performance = 1

execution_time

" X is n times faster than Y" means

n
ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

y

x

x

y

==

2-7ECE 361

ExampleExample

• Time of Concorde vs. Boeing 747?
• Concord is 1350 mph / 610 mph = 2.2 times faster
 = 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?
• Concord is 178,200 pmph / 286,700 pmph = 0.62 “times faster”
• Boeing is 286,700 pmph / 178,200 pmph = 1.60 “times faster”

• Boeing is 1.6 times (“60%”) faster in terms of throughput
• Concord is 2.2 times (“120%”) faster in terms of flying time
We will focus primarily on execution time for a single job
Lots of instructions in a program => Instruction thruput important!

2-8ECE 361

Benchmarks

2-9ECE 361

Evaluation ToolsEvaluation Tools

Benchmarks, traces and mixes
• Macrobenchmarks and suites
• Microbenchmarks
• Traces

Workloads

Simulation at many levels
• ISA, microarchitecture, RTL, gate circuit
• Trade fidelity for simulation rate (Levels of abstraction)

Other metrics
• Area, clock frequency, power, cost, …

Analysis
• Queuing theory, back-of-the-envelope
• Rules of thumb, basic laws and principles

2-10ECE 361

BenchmarksBenchmarks

Microbenchmarks
• Measure one performance dimension

- Cache bandwidth
- Memory bandwidth
- Procedure call overhead
- FP performance

• Insight into the underlying performance factors
• Not a good predictor of application performance

Macrobenchmarks
• Application execution time

- Measures overall performance, but on just one application
- Need application suite

2-11ECE 361

Why Do Benchmarks?Why Do Benchmarks?

How we evaluate differences
• Different systems
• Changes to a single system

Provide a target
• Benchmarks should represent large class of important

programs
• Improving benchmark performance should help many

programs

For better or worse, benchmarks shape a field

Good ones accelerate progress
• good target for development

Bad benchmarks hurt progress
• help real programs v. sell machines/papers?
• Inventions that help real programs don’t help benchmark

2-12ECE 361

Popular Benchmark SuitesPopular Benchmark Suites
Desktop

• SPEC CPU2000 - CPU intensive, integer & floating-point applications
• SPECviewperf, SPECapc - Graphics benchmarks
• SysMark, Winstone, Winbench

Embedded
• EEMBC - Collection of kernels from 6 application areas
• Dhrystone - Old synthetic benchmark

Servers
• SPECweb, SPECfs
• TPC-C - Transaction processing system
• TPC-H, TPC-R - Decision support system
• TPC-W - Transactional web benchmark

Parallel Computers
• SPLASH - Scientific applications & kernels

Most markets have specific
benchmarks for design and marketing.

2-13ECE 361

SPEC CINT2000SPEC CINT2000

2-14ECE 361

tpCtpC

2-15ECE 361

Basis of EvaluationBasis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
 measure
• hard to identify cause• portable

• widely used
• improvements
useful in reality

• easy to run, early
in design cycle

• identify peak
capability and
potential
bottlenecks

• less representative

• easy to “fool”

• “peak” may be a long
way from application
performance

2-16ECE 361

Programs to Evaluate Processor PerformancePrograms to Evaluate Processor Performance

(Toy) Benchmarks
• 10-100 line
• e.g.,: sieve, puzzle, quicksort

Synthetic Benchmarks
• attempt to match average frequencies of real

workloads
• e.g., Whetstone, dhrystone

Kernels
• Time critical excerpts

2-17ECE 361

AnnouncementsAnnouncements

Website http://www.ece.northwestern.edu/~kcoloma/ece361

Next lecture
• Instruction Set Architecture

2-18ECE 361

Processor Design Metrics

2-19ECE 361

Metrics of PerformanceMetrics of Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Seconds per program

Useful Operations per second

2-20ECE 361

Organizational Trade-offsOrganizational Trade-offs

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the
program measured

2-21ECE 361

Processor CyclesProcessor Cycles

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

Cycle

Most contemporary computers have fixed,
repeating clock cycles

2-22ECE 361

CPU PerformanceCPU Performance

2-23ECE 361

Cycles Per Instruction (Throughput)Cycles Per Instruction (Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Cycles per Instruction”

j

n

j
j I CPI TimeCycle time CPU !"!=

=1

Count nInstructio

I
 F where F CPI CPI

j

j

n

j
jj =! "=

=1

2-24ECE 361

Principal Design Metrics: CPI and Cycle TimePrincipal Design Metrics: CPI and Cycle Time

Seconds

nsInstructio

Cycle

Seconds

nInstructio

Cycles
ePerformanc

CycleTimeCPI
ePerformanc

imeExecutionT
ePerformanc

=

!

=

!
=

=

1

1

1

2-25ECE 361

ExampleExample

How much faster would the machine be if a better data cache reduced the
average load time to 2 cycles?

• Load 20% x 2 cycles = .4
• Total CPI 2.2 1.6
• Relative performance is 2.2 / 1.6 = 1.38

How does this compare with reducing the branch instruction to 1 cycle?
• Branch 20% x 1 cycle = .2
• Total CPI 2.2 2.0
• Relative performance is 2.2 / 2.0 = 1.1

Typical Mix

Op Freq Cycles CPI
ALU 50% 1 .5
Load 20% 5 1.0
Store 10% 3 .3
Branch 20% 2 .4
 2.2

2-26ECE 361

Summary: Evaluating Instruction Sets and ImplementationSummary: Evaluating Instruction Sets and Implementation

Design-time metrics:
• Can it be implemented, in how long, at what cost?
• Can it be programmed? Ease of compilation?

Static Metrics:
• How many bytes does the program occupy in memory?

Dynamic Metrics:
• How many instructions are executed?
• How many bytes does the processor fetch to execute the program?
• How many clocks are required per instruction?
• How "lean" a clock is practical?

Best Metric:
Time to execute the program!

NOTE: Depends on instructions set, processor
organization, and compilation techniques.

CPI

Inst. Count Cycle Time

2-27ECE 361

Amdahl's Amdahl's ““LawLaw””: Make the Common Case Fast: Make the Common Case Fast

Speedup due to enhancement E:

 ExTime w/o E Performance w/ E

Speedup(E) = -------------------- = ---------------------

 ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)

Performance improvement
is limited by how much the
improved feature is used
Invest resources where
time is spent.

2-28ECE 361

Marketing MetricsMarketing Metrics

MIPS = Instruction Count / Time * 10^6
= Clock Rate / CPI * 10^6

• machines with different instruction sets ?
• programs with different instruction mixes ?
• dynamic frequency of instructions
• uncorrelated with performance

MFLOP/s= FP Operations / Time * 10^6
• machine dependent
• often not where time is spent

2-29ECE 361

SummarySummary

Time is the measure of computer performance!

Good products created when have:
• Good benchmarks
• Good ways to summarize performance

If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales sales
almost always wins

Remember Amdahl’s Law: Speedup is limited by unimproved part of program

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

2-30ECE 361

Critical Path

2-31ECE 361

Range of Design StylesRange of Design Styles

Gates

Routing Channel

Gates

Routing Channel

Gates

Standard
ALU

Standard Registers

Gates

Cu
st

om
 C

on
tr

ol
 L

og
ic

Custom
Register File

Custom Design Standard Cell Gate Array/FPGA/CPLD

Custom
ALU

Performance
Design Complexity (Design Time)

Longer wiresCompact

2-32ECE 361

“M
ea

le
y

M
ac

hi
ne

”
“M

oo
re

 M
ac

hi
ne

”

Implementation as Combinational Logic + LatchImplementation as Combinational Logic + Latch

La
tc

h

Co
m

bi
na

ti
on

al
Lo

gi
c

Clock

2-33ECE 361

Clocking MethodologyClocking Methodology

All storage elements are clocked by the same clock edge (but there may be
clock skews)

The combination logic block’s:
• Inputs are updated at each clock tick
• All outputs MUST be stable before the next clock tick

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

2-34ECE 361

Critical Path & Cycle TimeCritical Path & Cycle Time

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path

Clock

.

.

.

.

.

.

.

.

.

.

.

.

2-35ECE 361

Tricks to Reduce Cycle TimeTricks to Reduce Cycle Time

Reduce the number of gate levels

 Pay attention to loading

• One gate driving many gates is a bad idea

• Avoid using a small gate to drive a long wire

 Use multiple stages to drive large load

 Revise design

A
B

C
D

A
B

C
D

INV4x

INV4x

Clarge

2-36ECE 361

SummarySummary
Performance Concepts

• Response Time
• Throughput

Performance Evaluation
• Benchmarks

Processor Design Metrics
• Cycle Time
• Cycles per Instruction

Amdahl’s Law
• Speedup what is important

Critical Path

