
1

vm.1

361
Computer Architecture

Lecture 16: Virtual Memory

vm.2

Review: The Principle of Locality

° The Principle of Locality:
• Program access a relatively small portion of the address space at

any instant of time.
• Example: 90% of time in 10% of the code

Address Space0 2

Probability
of reference

2

vm.3

Review: Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10 - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

vm.4

Outline of Today’s Lecture

° Recap of Memory Hierarchy

° Virtual Memory

° Page Tables and TLB

° Protection

3

vm.5

Virtual Memory?

Provides illusion of very large memory
– sum of the memory of many jobs greater than physical memory
– address space of each job larger than physical memory

Allows available (fast and expensive) physical memory to be
very well utilized

Simplifies memory management

Exploits memory hierarchy to keep average access time low.

Involves at least two storage levels: main and secondary

Virtual Address -- address used by the programmer

Virtual Address Space -- collection of such addresses

Memory Address -- address of word in physical memory
also known as “physical address” or “real address”

vm.6

Basic Issues in VM System Design
size of information blocks that are transferred from

secondary to main storage

block of information brought into M, and M is full, then some region
of M must be released to make room for the new block -->
replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
of a fault --> fetch/load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

4

vm.7

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
address a' and a' in M

= 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

vm.8

Paging Organization

frame 0
1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory
Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

5

vm.9

Address Mapping Algorithm
If V = 1

then page is in main memory at frame address stored in table
else address located page in secondary memory

Access Rights
R = Read-only, R/W = read/write, X = execute only

If kind of access not compatible with specified access rights,
then protection_violation_fault

If valid bit not set then page fault

Protection Fault: access rights violation; causes trap to hardware,
microcode, or software fault handler

Page Fault: page not resident in physical memory, also causes a trap;
usually accompanied by a context switch: current process
suspended while page is fetched from secondary storage

vm.10

Virtual Address and a Cache

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the "innermost
loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!

6

vm.11

Virtual Address and a Cache

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the "innermost
loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
synonym problem:
two different virtual addresses map to same
physical address => two different cache entries holding data for
the same physical address!

for update: must update all cache entries with same
physical address or memory becomes inconsistent

determining this requires significant hardware, essentially an
associative lookup on the physical address tags to see if you
have multiple hits

vm.12

TLBs
A way to speed up translation is to use a special cache of recently

used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

TLB access time comparable to, though shorter than, cache access time
(still much less than main memory access time)

7

vm.13

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines. This permits fully associative
lookup on these machines. Most mid-range machines use small
n-way set associative organizations.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

vm.14

Reducing Translation Time

Machines with TLBs go one step further to reduce # cycles/cache access

They overlap the cache access with the TLB access

Works because high order bits of the VA are used to look in the TLB
while low order bits are used as index into cache

8

vm.15

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN

access memory with the PA from the TLB
ELSE do standard VA translation

vm.16

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes
go to 2 way set associative cache (would allow you to continue to

use a 10 bit index)

1K
4 4

10
2 way set assoc cache

9

vm.17

Fragmentation & Relocation

Fragmentation is when areas of memory space become unavailable for
some reason

Relocation: move program or data to a new region of the address
space (possibly fixing all the pointers)

Internal Fragmentation:
program is not an integral # of pages, part of the last page frame is
"wasted" (obviously less of an issue as physical memories get
larger)

0 1 k-1. . .occupied

External Fragmentation: Space left between blocks.

vm.18

Optimal Page Size
Choose page that minimizes fragmentation

large page size => internal fragmentation more severe
BUT increase in the # of pages / name space => larger page tables

In general, the trend is towards larger page sizes because

Most machines at 4K-64K byte pages today, with page sizes likely to
increase

-- memories get larger as the price of RAM drops

-- the gap between processor speed and disk speed grow wider

-- programmers desire larger virtual address spaces

10

vm.19

2-level page table

.

.

.

Seg 0

Seg 1

Seg
255

4 bytes

256 P0

P255

4 bytes

1 K

.

.

.

PA

PA

D0

D1023

PA

PA .
.
.

Root Page Tables
Data Pages

4 K

Second Level Page Table

2 2 2 28 8 10 12 238
x x x =

Allocated in
User Virtual

Space

1 Mbyte, but allocated
in system virtual addr

space256K bytes in
physical memory

vm.20

Page Replacement Algorithms
Just like cache block replacement!

Least Recently Used:
-- selects the least recently used page for replacement

-- requires knowledge about past references, more difficult to implement
(thread thru page table entries from most recently referenced to least
recently referenced; when a page is referenced it is placed at the head
of the list; the end of the list is the page to replace)

-- good performance, recognizes principle of locality

11

vm.21

Page Replacement (Continued)
Not Recently Used:
Associated with each page is a reference flag such that

ref flag = 1 if the page has been referenced in recent past
= 0 otherwise

-- if replacement is necessary, choose any page frame such that its
reference bit is 0. This is a page that has not been referenced in the
recent past

-- clock implementation of NRU:

1 0
1 0
0
0

page table entry
page
table
entry

ref
bit

last replaced pointer (lrp)
if replacement is to take place,
advance lrp to next entry (mod
table size) until one with a 0 bit
is found; this is the target for
replacement; As a side effect,
all examined PTE's have their
reference bits set to zero.

1 0

An optimization is to search for the a page that is both
not recently referenced AND not dirty.

vm.22

Demand Paging and Prefetching Pages
Fetch Policy

when is the page brought into memory?
if pages are loaded solely in response to page faults, then the

policy is demand paging

An alternative is prefetching:
anticipate future references and load such pages before their

actual use

+ reduces page transfer overhead

- removes pages already in page frames, which could adversely
affect the page fault rate

- predicting future references usually difficult

Most systems implement demand paging without prepaging

(One way to obtain effect of prefetching behavior is increasing the page size

12

vm.23

Summary

° Virtual memory a mechanism to provide much larger memory than
physically available memory in the system

° Placement, replacement and other policies can have significant impact
on performance

° Interaction of Virtual memory with physical memory hierarchy is
complex and addresses translation mechanisms must be designed
carefully for good performance.

