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Example Use Cases: Extreme Events Prediction

Climate-Meningitis OutlookNH Tropical Cyclone (TC) Activity 
West Sahel East SahelNorthern Indian North Pacific North Atlantic

HurricaneHurricane
HurricaneTyphoon

Cyclone

Forecasting NA Hurricane Tracks
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Climate System Complexity

Climate systems are complex

The Complexity of Climate Systems Comes from Interconnections.

Climate systems are complex 
because of non-linear coupling 
of its subsystems (e.g., the 
ocean and the atmosphere).ocean and the atmosphere). 

Challenge:
How to “connect the dots”, that is, to construct 
predictive phenomenological models explainingpredictive phenomenological  models explaining 
structure-dynamics-function relationships 
in the complex climate system. 
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From Simplicity to Complexity 
Science 3 September 2010: 1125.



Modeling a Climate System as a Network
Climate Data

Correlation between 
two anomaly time series Stat. significant

Anomaly time series at each node

two anomaly time series Stat. significant 
correlations

Extreme Normal
Climate Network

SLPSLP
SST

VWS

Extreme 
Phase

Normal
Phase

Edge weights: significant correlations 
Nodes in the graph: grid points on the globe

Slide 5

Multivariate Networks
Multiphase Networks



Subgraphs Common to Extreme Event Climate Networks

Networks for Climate Systems during Extreme Events

Networks for Climate Systems during Normal Events
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Identifying patterns in the evolution of the climate 
system – Example : Analysis of Decadal Trends in Climate

Data processing to 
reduce seasonality

Division of data into 
overlapping decadal 

time windows

Analysis of 
dependenciesy time windows p

Construction of 
decadal climate 

t k b

Characterization of 
the climate

Analysis of climate 
network evolution networks by 

applying correlation 
threshold

the climate 
networks through 

clustering

network evolution 
using stable 

clusters
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Enabling Transformative Computer Science Research

Enabling large-scale data-driven science for complex, multivariate, 
spatio-temporal, non-linear, and dynamic systems:

End-to-end demonstration
of this major paradigm for 
future knowledge discovery

Complex Networks
Study collective behavior of 

interacting climate subsystemsfuture knowledge discovery 
process.

Relationship Mining Predictive Modeling

interacting climate subsystems

relationships
community structure-
function-dynamics

kernels, features, dependencies 

e at o s p g
Discovery of complex 

dependence structures such 
as non-linear relationships

ed ct e ode g
Model typical and extreme 
behavior from multivariate 

spatio-temporal dataCrucial

High Performance Computing
Efficient analytics on future generation exascale HPC platforms with complex memory hierarchies
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A Complementary Interplay of R&D Portfolios

ApplicationsApplications

Parallel R
Parallel netCDF

ApplicationsApplications

B i R hB i R h

Parallel netCDF

P0 P1 P2 P3

Hypotheses & Hypotheses & 
DiscoveriesDiscoveries

Basic ResearchBasic Research

Parallel file systemDiscoveriesDiscoveries

Power-aware Climate Extremes
Analytics

Complex Networks

Climate Extremes

PrototypePrototype
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Complex Networks

HPC ProductionHPC Production



Illustrative Case for HPC:  CMIP3  CMIP5

● Coupled Model Inter comparison Project
● Spatial resolution: 1 – 0.25 degrees
● Temporal resolution: 6 hours – 3 hours
● Models: 24 - 37
● Simulation experiments: 10s - 100s● Simulation experiments: 10s 100s

– Control runs & hindcast
– Decadal & centennial-scale

f tforecasts
● Covers 1000s of simulation years
● 100+ variables
● 10s of TBs to 10s of PBs

Summary of CMIP5 model
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Summary of CMIP5 model 
experiments, grouped into three tiers



Scaling I/O and Analytics
● Global Cloud Resolving Model (GCRM) 

– Simulate circulation associated with large convective clouds 

– Developed by David Randell (Colorado State U) & Karen Schuchardt (PNNL)Developed by David Randell (Colorado State U) & Karen Schuchardt (PNNL)

● Geodesic grid model
● 1.4 PB data per simulation

k l 3 h l l d– 4 km resolution, 3 hourly, 1 simulated year
– 1.5 TB per checkpoint

● Parallel NetCDF I/O library outreaches  climate 

I/O was previously a major bottleneck: 
The only reason execution at this scale

community under NSF Expeditions in Computing project

The only reason execution at this scale 
became possible was due to I/O scaling.
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Illustrative Results

● Improved I/O throughput
– Using PnetCDF optimizations, massive scalability

F 3 5 k id l i id i i 41 9M ll i h 256 i l l– For 3.5 km grid resolution, grid size is 41.9M cells with 256 vertical layers
– Data analysis read and simulation checkpoint
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Taking Climate Science to the Next Level with HPC-
Illustration

● Our HPC goals are enabling data analysis at:
● Higher spatial or temporal resolution

Precipitation extremes analysis– Precipitation extremes analysis

– Network-based hurricane prediction

– Estimation of spatiotemporal dependence

● Higher data dimensionality Significant correlations for hurricane prediction● Higher data dimensionality
– Bayesian analysis of multi-model ensembles

– Sampling-based statistical methods

– Multivariate quantile analysis

(Sencan, Chen, Hendrix, 
Pansombut, Semazzi, 
Choudhary, Kumar, Melechko, 
and Samatova, 2011)

g p

Multivariate quantile analysis

● Greater complexity per data point
– Estimation of complex

dependence structures

– Handling non-stationarity

– Multi-resolution analysis

● Shorter response time
(Ghosh Das Kao and

Intensity of heaviest 
Indian stormsPrediction of land climate using ocean 

climate variables
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– Interactive hypothesis testing
(Ghosh, Das, Kao, and 
Ganguly, 2011)(Chatterjee, Steinhaeuser, Banerjee, 

Chatterjee, and Ganguly, 2012)



Enabling Large-scale Analytics: 
An HPC Library of Data Analysis Kernels

Performance typically dominated by a few computational kernels.

Application
Top 3 Kernels Σ

(%)Kernel 1 (%) Kernel 2 (%) Kernel 3 (%) ( )Kernel 1 (%) Kernel 2 (%) Kernel 3 (%)

K-means Distance (68) Center (21) minDist (10) 99

Fuzzy K-means Center (58) Distance (39) fuzzySum (1) 98

BIRCH Distance (54) Variance (22) Redist (10) 86

O i (39) S h (30) G h (23)HOP Density (39) Search (30) Gather (23) 92

Naïve Bayesian probCal (49) Variance (38) dataRead (10) 97

ScalParC Classify (37) giniCalc (36) Compare (24) 97

Apriori Subset (58) dataRead (14) Increment (8) 80

Eclat Intersect (39) addClass (23) invertC (10) 72

SVMlight quotMatrix (57) quadGrad (38) quotUpdate (2) 97

Library of highly optimized, scalable kernels
• Flexibility to define custom analytics pipelines
• High scalability
• Integrate into a software framework (e.g. R)
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Parallel netCDF

Parallel File System

teg ate to a so t a e a e o (e g )
• MPI, OpenMP, CUDA, Parallel I/O



Scalable & Power-aware Data Analytics
Representative Data Analytics Kernels

● Parallel hierarchical clustering
– Speedup of 18,000 on 16k processors

/ f l l– I/O significant at large scale

Power-aware analytics
● Reduced bit fixed-point 

representations

Energy Consumption 
Correlations

Speedup Correlation

● Pearson correlation
– 2.5-3.5 times faster
– 50-70% less energy K-means: Error vs. Energy
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Data Mining and Analytics – Broader Impact

Illustrative Applications Feature, data reduction, 
or analytics task

Data analysis kernels

Chemistry, Climate, Combustion,
Cosmology Fusion Materials science

Clustering k-means, fuzzy k-means, BIRCH, MAFIA, DBSCAN, HOP, 
SNN Dynamic Time Warping Random WalkCosmology, Fusion, Materials science, 

Plasma
SNN, Dynamic Time Warping, Random Walk

Biology, Climate, Combustion,
Cosmology, Plasma, Renewable energy

Statistics Extrema, mean, quantiles, standard deviation, copulas, 
value-based extraction, sampling

Biology, Climate, Fusion, Plasma Feature selection Data slicing, LVF, SFG, SBG, ABB, RELIEF

Chemistry, Materials science,
Plasma, Climate

Data transformations Fourier transform, wavelet transform, PCA/SVD/EOF 
analysis, multidimensional scaling, differentiation, 
integration

Combustion, Earth science Topology Morse-Smale complexes, Reeb graphs, level set 
d itidecomposition

Earth science Geometry Fractal dimension, curvature, torsion

Biology, Climate, Cosmology, Fusion Classification ScalParC, decision trees, Naïve Bayes, SVMlight, RIPPER

Chemistry, Climate, Combustion, Data compression PPM, LZW, JPEG, wavelet compression, PCA, Fixed-pointChemistry, Climate, Combustion,
Cosmology, Fusion, Plasma

Data compression PPM, LZW, JPEG, wavelet compression, PCA, Fixed point 
representation

Climate Anomaly detection Entropy, LOF, GBAD

Climate, Earth science Similarity / distance Cosine similarity, correlation (TAPER), mutual information, 
Student's t-test, Eulerian distance, Mahalanobis distance, 
J d ffi i t T i t ffi i t h t t th
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Jaccard coefficient, Tanimoto coefficient, shortest paths

Cosmology Halos and sub-halos SUBFIND, AHF



Examples and Results
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Climate System Complexity

Climate systems are complex

The Complexity of Climate Systems Comes from Interconnections.

Climate systems are complex 
because of non-linear coupling 
of its subsystems (e.g., the 
ocean and the atmosphere).ocean and the atmosphere). 

Challenge:
How to “connect the dots”, that is, to construct 
predictive phenomenological models explainingpredictive phenomenological  models explaining 
structure-dynamics-function relationships 
in the complex climate system. 
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From Simplicity to Complexity 
Science 3 September 2010: 1125.



What are Climate Indices?
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Cold Cold phase of phase of the Atlantic the Atlantic Dipole is associated with Dipole is associated with weak weak 
increased lowincreased low--level outflow from the south Atlantic ocean level outflow from the south Atlantic ocean 
b i ( ld SST li ) d h iti i f llb i ( ld SST li ) d h iti i f llbasin (cold SST anomalies) and, hence, positive rainfall basin (cold SST anomalies) and, hence, positive rainfall 
anomalies in Sahel.anomalies in Sahel.

Meningitis outbreaksMeningitis outbreaks

Slide 20www.psdgraphics.com

Direct/indirect causality; Documented mechanisms w/ confidence
Mechanisms not fully understood

Meningitis outbreaksMeningitis outbreaks



19861986--2009 Studies to Understand Key Climate Drivers & Dynamic 2009 Studies to Understand Key Climate Drivers & Dynamic 
Factors/Mechanisms Affecting the West African Climate.Factors/Mechanisms Affecting the West African Climate.

19861986--2009 Studies to Understand Key Climate Drivers & Dynamic 2009 Studies to Understand Key Climate Drivers & Dynamic 
Factors/Mechanisms Affecting the West African Climate.Factors/Mechanisms Affecting the West African Climate.

**

Jan 25,  2012Slide 21 www.psdgraphics.com

Direct/indirect causality; Documented mechanisms w/ confidence
Mechanisms not fully understood

Hadley & Walker circulations



Example Use Cases: Extreme Events Prediction

Climate-Meningitis OutlookNH Tropical Cyclone (TC) Activity 
West Sahel East SahelNorthern Indian North Pacific North Atlantic

HurricaneHurricane
HurricaneTyphoon

Cyclone

Forecasting NA Hurricane Tracks

Jan 25,  2012Slide 22



Modeling a Climate System as a Network
Climate Data

Correlation between 
two anomaly time series Stat. significant

Anomaly time series at each node

two anomaly time series Stat. significant 
correlations

Extreme Normal
Climate Network

SLPSLP
SST

VWS

Extreme 
Phase

Normal
Phase

Edge weights: significant correlations 
Nodes in the graph: grid points on the globe

Jan 25,  2012Slide 23

Multivariate Networks
Multiphase Networks



Subgraphs Common to Extreme Event Climate Networks

Networks for Climate Systems during Extreme Events

Networks for Climate Systems during Normal Events

Jan 25,  2012Slide 24



Extreme Event Forecasting via 
Contrast-based Network Motif Discovery

(B) Intuition: If an extreme event (e.g. hurricane track) is in 
one of its key phases (e.g. land-hitting), then there exist 

(C) Phase:Land Phase:Curve(E)

network motifs (recurrent patterns in climate networks) 
that are specific to that phase.

SLPSLP
SST

VWS
ase a d ase Cu e( )

(D)

Climate Networks
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Phase-Biased Network Motifs(F)



Robust & Accurate Seasonal Hurricane Forecasts 
through Comparative Climate Networks Analytics

Forecast Years

Comparative analysis of climate networks leverages the 
DOE-funded network theory & scalable algorithms. 

Forecast Years

270 Expedition s novel data-driven methods 
already promise to excel beyond the y p y
traditional methods in climate 
prediction tools  
(Fred Semazzi, Nobel Prize 

team member)

1 Hit

35 Training YearsHindscast Years

0 0027 Miss



Forecasting Hurricane Tracks

Improving but have mean error (>185km) beyond 48 h

Physics-based Models What if the error gets 
interpolated to 10-15 day 
i d f t?in advance forecast?

~500 km

(A)
HURDAT Historic Data

(A)
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Src: NOAA/NHC: http://www.nhc.noaa.gov/verification/index.shtml



Hurricane End-game Track Forecast

Forecast 10-15 days in advance the end-game of a North 
Atlantic since hurricane embryonic formation in Western Africa.

• Nearly east-oriented SLP edges suggest 
horizontal pressure gradient configuration in the 
same direction. 
• Based on Buys Ballot’s law, this pressure 
gradient would be associated with wind flow in 
the north-south direction. 
• Onshore wind anomaly flow would promote 
favorable conditions for landfall; opposite flow 

Performance of Land-hitting vs. Offshore

anomaly would be more favorable for hurricanes 
tracks in no-landfall.SLP (yellow/dashed) and SST 

(red/solid) (+)correlated 
teleconnections; LOO 10-FOLD

SLP SST SLP+SST SLP SST
Accuracy 0.88 0.90 0.92 0.90 0.90
Sensitivity 0.91 0.96 0.97 0.95 0.97

teleconnections; 
L—biased toward land-hitting 
tracks; 
O—biased toward offshore 

Slide 28

y
Specificity 0.77 0.76 0.81 0.80 0.74
Precision 0.90 0.90 0.92 0.92 0.90
F1-meas. 0.90 0.93 0.94 0.93 0.93

tracks.



Hierarchical Modularity of Complex Systems: 
Multilevel Paradigm via Divide-and-Conquer Strategy

Hierarchical modularity is a known principle of complex system’s 
organization & function. These functionally associated modules 
often combine in a hierarchical manner into larger, functionally lessoften combine in a hierarchical manner into larger, functionally less 
cohesive subsystems.

Divide Step: FORECASTER

Divide all system features into modules 
that likely function together to define 
what state the system is in: modules 
with stronger associations within 
the modules than between them. 

Conquer Step:Conquer Step:
Conquers each of these modules in 
order to refine the specificity of the 
inter-feature relationships within

Slide 29

inter feature relationships within 
the module.



Cross-talk between Regional & Global Systems

There is an inherent interplay (e.g., feedback) between regional 
scale subsystems and the global scale system. Ignoring these 
relationships by focusing on a specific region is a simplification. 

Northern North Pacific North Atlantic

p y g p g p

DETECTOR

Indian

Hurricane
HurricaneTyphoon

Cyclone

We could use these relationships for detecting the 
prediction errors and/or possibly correcting them.
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prediction errors and/or possibly correcting them.



92% Accuracy w/ Leave One Out Cross Validation
Seasonal Hurricane Activity

H
ig

h
or

m
al

Lo
w

N

Underestimated Overestimated

y
Fr

eq
u

en
cy

Slide 31



Hurricane Activity Class Forecast vs. State-of-art

FORECASTER Performance on North Atlantic Hurricane

Metric FORECASTER
NC State

[1], 2009
Colorado

[2],  2010
GA Tech

Random 
Forest

Bagging Boosting

Accuracy 
(%)

93.3 64.0 65.5 76.7 73.3 75.0

HSS 0.90 0.45 0.49 0.66 0.60 0.62SS 0 90 0 5 0 9 0 66 0 60 0 6
PSS 0.92 0.44 0.50 0.65 0.63 0.63
GSS 0.96 0.50 0.68 0.65 0.67 0.66

[1] P. J. Klotzbach and W. M. Gray, “Twenty-five years of Atlantic basin seasonal hurricane 
forecasts (1984 2008) ” Geophys Res Lett vol 36 pp L09 711 5pp May 2009

ML-based Regression Hybrid

HSS: Heidke score measures how well relative to a randomly selected forecast;

forecasts (1984-2008),  Geophys. Res. Lett., vol. 36, pp. L09 711, 5pp, May 2009.
[2] H. M. Kim and P. J. Webster. Extended-range seasonal hurricane forecasts for the North 
Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37(21):L21705, 
2010.
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HSS: Heidke score, measures how well relative to a randomly selected forecast;  
PSS: Peirce score, difference between the hit rate and the false alarm rate; 
GS: Gerrity score, occurrences substantially less frequent. 



Forecasts

H
it

Model Ensemble Predictions

Hurr. Count: 77

H
M

is
s

Miss: 1 out 5 yrs

A 0 8Accuracy: 0.8
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Effectiveness of DETECTOR + FORECASTER
Regional subsystems and global system interplays

Task System FORECASTER DETECTOR
+ 

FORECATER Tropical cyclone activity (STCP):

STCP
NH 90.0 95.0

NA1 88.3 93.3

NA2 93 3 98 6

• NH: Northern Hemisphere 
• NA1: North Atlantic

Hurricane activity (SHP):

SHP
NA2 93.3 98.6
LNA 86.7 93.4

SH 88.9 94.5 North Africa rainfall activity (NARP) 

y ( )
• NA2: North Atlantic hurricane
• LNA: North Atlantic land-falling

NARP
WS 90.7 96.3

• SH: Sahel area 
• WS: West Sahel.

Northern Indian North Pacific North AtlanticWest Sahel East Sahel
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Hurricane
HurricaneTyphoon

Cyclone



Predicted Network Motifs Agree with Climate Indices 
Related to Hurricane Activity

• Nino3 SSTs correlate with 
Published Facts

Variable Spatial location Climate indices

SST

(4N, 114W) Nino 3

(2S, 168W) ENSO
Atlantic hurricane activity
• ENSO modulates NA TCs
• SSTs in MDR contribute to 
h i i MDR i

SST
(42N, 30W)

(32S, 16W)

(27.5N, 65W) MDR
hurricanes in MDR region
• NAO June correlates with NA 
hurricane tracks
• Shifts in the PDO phase can

VWS

( , )

(52.5N, 37.5W) NAO

(7.5N, 122.5W) Nino 3

(10S, 60W) • Shifts in the PDO phase can 
have significant implications for 
Atlantic hurricane activity

(10S, 60W)

(27.5N, 55W)

PW

(52.5N, 135E) PDO

(82.5N, 15W) AO

Atlantic multi-decadal Oscillation 
(AMO) and Arctic Oscillation (AO) 
i di i ht ff t th N th

New Hypotheses
PW (82.5N, 15W) AO

(37.5N, 40E)

(57.5N, 22.5W) NAO

(60N 155E) PDO
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indices might affect the North 
Atlantic tropical cyclone activities 

SLP
(60N, 155E) PDO

(37.5N, 162.5W)

(12.5N, 122.5E)



0.67 Spearman Rank-order Correlation between 
Network-based Climate Index & Hurricane Activity

Comparison against 33 known climate indices
Best absolute correlation for January Junep-values=0.0 Best  absolute correlation for January-June
Not all p-values are significant

p
Month: June
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Hypothesis: NAO modulates the climate drivers of the West African 
climate─the Atlantic Dipole & Atlantic ENSO─via the low-level westerly jet.
Hypothesis: NAO modulates the climate drivers of the West African 
climate─the Atlantic Dipole & Atlantic ENSO─via the low-level westerly jet.

19861986 2009 li t h k f t ff ti2009 li t h k f t ff ti19861986--2009 climate research on key factors affecting 2009 climate research on key factors affecting 
the West African Climate are being advanced by the West African Climate are being advanced by 
datadata--driven phenomenological modeling.driven phenomenological modeling.

DataData--driven inference of driven inference of 
active phase causality for active phase causality for 
the NAOthe NAO--driven hypothesisdriven hypothesis

DataData--driven inference of driven inference of 
active phase causality for active phase causality for 
the NAOthe NAO--driven hypothesisdriven hypothesis

lili i i i l ki i i l k

Expedition’s novel data-driven approaches already promise to search for 
fundamental inter-relationships in the climate system in a significant way

© Vipin Kumar (csc.umn.edu/~kumar) Jan 25,  2012Slide 37 www.psdgraphics.com

Direct/indirect causality inferred by the data-driven methods
Hypothesized mechanisms  quantified by data driven methods

ClimateClimate--Meningitis OutlooksMeningitis Outlooks
fundamental inter relationships in the climate system in a significant way
(Fred Semazzi, Nobel Prize team member)



Summary: Discovering Knowledge from 
Massive Data – Next Frontier for HPC

Business

Data management, High-
End Analytics   Data 

Data management, High-
End Analytics   Data End Analytics,  Data 
Mining, and Network 

Mining

End Analytics,  Data 
Mining, and Network 

Mining

Engineering

38
Science


