Understanding Climate Change: A Data-Driven Approach

Alok Choudhary, Northwestern University
Nagiza F. Samatova, NC State and ORNL

choudhar@eecs.northwestern.edu
samatova@cs.ncsu.edu

Science

Science and Society Transformed by Data

FOURTH
PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

2

Example Use Cases: Extreme Events Prediction

NH Tropical Cyclone (TC) Activity

Northern Indian North Pacific North Atlantic Hurricane Cyclone Typhoon Hurricane

Climate-Meningitis Outlook

Forecasting NA Hurricane Tracks

Climate System Complexity

The Complexity of Climate Systems Comes from Interconnections.

Climate systems are complex because of non-linear coupling of its subsystems (e.g., the ocean and the atmosphere).

Challenge:

How to "connect the dots", that is, to construct predictive phenomenological models explaining structure-dynamics-function relationships in the complex climate system.

From Simplicity to Complexity *Science 3 September 2010: 1125.*

Modeling a Climate System as a Network

Anomaly time series at each node

Multiphase Networks

Subgraphs Common to Extreme Event Climate Networks

Networks for Climate Systems during Extreme Events

Networks for Climate Systems during Normal Events

Identifying patterns in the evolution of the climate system — Example : Analysis of Decadal Trends in Climate

Enabling Transformative Computer Science Research

Enabling large-scale data-driven science for complex, multivariate, spatio-temporal, non-linear, and dynamic systems:

A Complementary Interplay of R&D Portfolios

Illustrative Case for HPC: CMIP3 \rightarrow CMIP5

- Coupled Model Inter comparison Project
- Spatial resolution: 1 0.25 degrees

Temporal resolution: 6 hours – 3 hours

Models: 24 - 37

Simulation experiments: 10s - 100s

- Control runs & hindcast
- Decadal & centennial-scale forecasts
- Covers 1000s of simulation years
- 100+ variables
- 10s of TBs to 10s of PBs

Summary of CMIP5 model experiments, grouped into three tiers

- Global Cloud Resolving Model (GCRM)
 - Simulate circulation associated with large convective clouds
 - Developed by David Randell (Colorado State U) & Karen Schuchardt (PNN)
- Geodesic grid model
- 1.4 PB data per simulation
 - 4 km resolution, 3 hourly, 1 simulated year
 - 1.5 TB per checkpoint
- Parallel NetCDF I/O library outreaches climate community under NSF Expeditions in Computing project

I/O was previously a major bottleneck: The only reason execution at this scale became possible was due to I/O scaling.

Illustrative Results

Improved I/O throughput

- Using PnetCDF optimizations, massive scalability
- For 3.5 km grid resolution, grid size is 41.9M cells with 256 vertical layers
- Data analysis read and simulation checkpoint

Taking Climate Science to the Next Level with HPC-Illustration

- Our HPC goals are enabling data analysis at:
- Higher spatial or temporal resolution
 - Precipitation extremes analysis
 - Network-based hurricane prediction
 - Estimation of spatiotemporal dependence

Higher data dimensionality

- Bayesian analysis of multi-model ensembles
- Sampling-based statistical methods
- Multivariate quantile analysis

Greater complexity per data point

- Estimation of complex dependence structures
- Handling non-stationarity
- Multi-resolution analysis

Shorter response time

Interactive hypothesis testing

Significant correlations for hurricane prediction

(Sencan, Chen, Hendrix, a Pansombut, Semazzi, Choudhary, Kumar, Melechko, and Samatova, 2011)

Prediction of land climate using ocean climate variables

(Chatterjee, Steinhaeuser, Banerjee, Chatterjee, and Ganguly, 2012)

Intensity of heaviest Indian storms (Ghosh, Das, Kao, and Ganguly, 2011)

Enabling Large-scale Analytics: An HPC Library of Data Analysis Kernels

Performance typically dominated by a few computational kernels.

Application	Top 3 Kernels			
Application	Kernel 1 (%)	Kernel 2 (%)	Kernel 3 (%)	(%)
K-means	Distance (68)	Center (21)	minDist (10)	99
Fuzzy K-means	Center (58)	Distance (39)	fuzzySum (1)	98
BIRCH	Distance (54)	Variance (22)	Redist (10)	86
НОР	Density (39)	Search (30)	Gather (23)	92
Naïve Bayesian	probCal (49)	Variance (38)	dataRead (10)	97
ScalParC	Classify (37)	giniCalc (36)	Compare (24)	97
Apriori	Subset (58)	dataRead (14)	Increment (8)	80
Eclat	Intersect (39)	addClass (23)	invertC (10)	

quadGrad (38)

Library of highly optimized, scalable kernels

Flexibility to define custom analytics pipelines

High scalability

SVMlight

- Integrate into a software framework (e.g. R)
- MPI, OpenMP, CUDA, Parallel I/O

quotMatrix (57)

Kernel

Scalable & Power-aware Data Analytics Representative Data Analytics Kernels

Parallel hierarchical clustering

- Speedup of 18,000 on 16k processors
- I/O significant at large scale

Power-aware analytics

- Reduced bit fixed-point representations
- Pearson correlation
 - 2.5-3.5 times faster
 - 50-70% less energy
- K-means

~44% less energy with an error of only 0.03% using 12-bit representation

K-means: Error vs. Energy

Data Mining and Analytics – Broader Impact

Illustrative Applications	Feature, data reduction, or analytics task	Data analysis kernels
Chemistry, Climate, Combustion, Cosmology, Fusion, Materials science, Plasma	Clustering	k-means, fuzzy k-means, BIRCH, MAFIA, DBSCAN, HOP, SNN, Dynamic Time Warping, Random Walk
Biology, Climate, Combustion, Cosmology, Plasma, Renewable energy	Statistics	Extrema, mean, quantiles, standard deviation, copulas, value-based extraction, sampling
Biology, Climate, Fusion, Plasma	Feature selection	Data slicing, LVF, SFG, SBG, ABB, RELIEF
Chemistry, Materials science, Plasma, Climate	Data transformations	Fourier transform, wavelet transform, PCA/SVD/EOF analysis, multidimensional scaling, differentiation, integration
Combustion, Earth science	Topology	Morse-Smale complexes, Reeb graphs, level set decomposition
Earth science	Geometry	Fractal dimension, curvature, torsion
Biology, Climate, Cosmology, Fusion	Classification	ScalParC, decision trees, Naïve Bayes, SVMlight, RIPPER
Chemistry, Climate, Combustion, Cosmology, Fusion, Plasma	Data compression	PPM, LZW, JPEG, wavelet compression, PCA, Fixed-point representation
Climate	Anomaly detection	Entropy, LOF, GBAD
Climate, Earth science	Similarity / distance	Cosine similarity, correlation (TAPER), mutual information, Student's t-test, Eulerian distance, Mahalanobis distance, Jaccard coefficient, Tanimoto coefficient, shortest paths
Cosmology	Halos and sub-halos	SUBFIND, AHF

Examples and Results

Climate System Complexity

The Complexity of Climate Systems Comes from Interconnections.

Climate systems are complex because of non-linear coupling of its subsystems (e.g., the ocean and the atmosphere).

Challenge:

How to "connect the dots", that is, to construct predictive phenomenological models explaining structure-dynamics-function relationships in the complex climate system.

From Simplicity to Complexity *Science 3 September 2010: 1125.*

What are Climate Indices?

Climate indices are defined to quantify climatic phenomena

Many of them are defined in terms of teleconnection patterns or dipoles

North Atlantic Oscillation

Dipole - difference in sea level pressure between the azores and a region near Iceland

Surface Temperature across the tropical Pacific

leads to drought like conditions in the Sahel region

ENSO index family

Cold phase of the Atlantic Dipole is associated with weak increased low-level outflow from the south Atlantic ocean basin (cold SST anomalies) and, hence, positive rainfall anomalies in Sahel.

Direct/indirect causality; Documented mechanisms w/ confidence Mechanisms not fully understood

1986-2009 Studies to Understand Key Climate Drivers & Dynamic Factors/Mechanisms Affecting the West African Climate.

Can data-driven approaches expedite such discoveries?

Hadley & Walker circulations

Orographic Forcing

Example Use Cases: Extreme Events Prediction

NH Tropical Cyclone (TC) Activity

Northern Indian North Pacific North Atlantic Hurricane Cyclone Typhoon Hurricane

Climate-Meningitis Outlook

Forecasting NA Hurricane Tracks

Modeling a Climate System as a Network

Anomaly time series at each node

Multiphase Networks

Subgraphs Common to Extreme Event Climate Networks

Networks for Climate Systems during Extreme Events

Networks for Climate Systems during Normal Events

Extreme Event Forecasting via Contrast-based Network Motif Discovery

Robust & Accurate Seasonal Hurricane Forecasts through Comparative Climate Networks Analytics

Forecasting Hurricane Tracks

Improving but have mean error (>185km) beyond 48 h

Hurricane End-game Track Forecast

Forecast **10-15 days in advance** the **end-game** of a North Atlantic since hurricane embryonic formation in Western Africa.

- Nearly east-oriented SLP edges suggest horizontal pressure gradient configuration in the same direction.
- Based on Buys Ballot's law, this pressure gradient would be associated with wind flow in the north-south direction.
- Onshore wind anomaly flow would promote favorable conditions for landfall; opposite flow anomaly would be more favorable for hurricanes tracks in no-landfall.

SLP (yellow/dashed) and SST (red/solid) (+)correlated teleconnections;

L—biased toward land-hitting tracks;

O—biased toward offshore tracks.

Performance of Land-hitting vs. Offshore					
	LOO			10-FOLD	
g	SLP	SST	SLP+SST	SLP	SST
Accuracy	0.88	0.90	0.92	0.90	0.90
Sensitivity	0.91	0.96	0.97	0.95	0.97
Specificity	0.77	0.76	0.81	0.80	0.74
Precision	0.90	0.90	0.92	0.92	0.90
F1-meas.	0.90	0.93	0.94	0.93	0.93

Hierarchical Modularity of Complex Systems:

Multilevel Paradigm via Divide-and-Conquer Strategy

Hierarchical modularity is a known principle of complex system's organization & function. These functionally associated modules often combine in a hierarchical manner into larger, functionally less cohesive subsystems.

Divide Step:

Divide all system features into modules that likely function together to define what state the system is in: modules with stronger associations within the modules than between them.

Conquer Step:

Conquers each of these modules in order to refine the **specificity of the inter-feature relationships within the module**.

FORECASTER

Cross-talk between Regional & Global Systems

There is an inherent interplay (e.g., feedback) between regional scale subsystems and the global scale system. Ignoring these relationships by focusing on a specific region is a simplification.

DETECTOR

We could use these relationships for detecting the prediction errors and/or possibly correcting them.

92% Accuracy w/ Leave One Out Cross Validation

Seasonal Hurricane Activity

Hurricane Activity Class Forecast vs. State-of-art

FORECASTER Performance on North Atlantic Hurricane

Metric	FORECASTER NC State	[1], 2009 Colorado	[2], 2010 GA Tech	Random Forest	Bagging	Boosting
Accuracy (%)	93.3	64.0	65.5	76.7	73.3	75.0
HSS	0.90	0.45	0.49	0.66	0.60	0.62
PSS	0.92	0.44	0.50	0.65	0.63	0.63
GSS	0.96	0.50	0.68	0.65	0.67	0.66

ML-based Regression Hybrid

[1] P. J. Klotzbach and W. M. Gray, "Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984-2008)," Geophys. Res. Lett., vol. 36, pp. L09 711, 5pp, May 2009.

[2] H. M. Kim and P. J. Webster. Extended-range seasonal hurricane forecasts for the North Atlantic with a **hybrid dynamical-statistical model**. Geophys. Res. Lett., 37(21):L21705, 2010.

HSS: Heidke score, measures how well relative to a randomly selected forecast;

PSS: Peirce score, difference between the hit rate and the false alarm rate;

GS: Gerrity score, occurrences substantially less frequent.

Effectiveness of DETECTOR + FORECASTER

Regional subsystems and global system interplays

Task	System	FORECASTER	DETECTOR + FORECATER
CTCD	NH	90.0	95.0
STCP	NA1	88.3	93.3
	NA2	93.3	98.6
SHP	LNA	86.7	93.4
NARP	SH	88.9	94.5
	WS	90.7	96.3

Tropical cyclone activity (STCP):

- NH: Northern Hemisphere
- NA1: North Atlantic

Hurricane activity (SHP):

- NA2: North Atlantic hurricane
- LNA: North Atlantic land-falling

North Africa rainfall activity (NARP)

- SH: Sahel area
- WS: West Sahel.

Predicted Network Motifs Agree with Climate Indices Related to Hurricane Activity

Variable	Spatial location	Climate indices
COT	(4N, 114W)	Nino 3
	(2S, 168W)	ENSO
SST	(42N, 30W)	
	(32S, 16W)	
	(27.5N, 65W)	MDR
	(52.5N, 37.5W)	NAO
vws	(7.5N, 122.5W)	Nino 3
	(10S, 60W)	
	(27.5N, 55W)	
	(52.5N, 135E)	PDO
PW	(82.5N, 15W)	AO
	(37.5N, 40E)	
SLP	(57.5N, 22.5W)	NAO
	(60N, 155E)	PDO
	(37.5N, 162.5W)	
	(12.5N, 122.5E)	

Published Facts

- Nino3 SSTs correlate with Atlantic hurricane activity
- ENSO modulates NA TCs
- SSTs in MDR contribute to hurricanes in MDR region
- NAO June correlates with NA hurricane tracks
- Shifts in the PDO phase can have significant implications for Atlantic hurricane activity

New Hypotheses

Atlantic multi-decadal Oscillation (AMO) and Arctic Oscillation (AO) indices might affect the North Atlantic tropical cyclone activities

0.67 Spearman Rank-order Correlation between Network-based Climate Index & Hurricane Activity

Summary: Discovering Knowledge from Massive Data – Next Frontier for HPC

Business

