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Example Use Cases: Extreme Events Prediction

NH Tropical Cyclone (TC) Activity Climate-Meningitis Outlook
Northern Vlrjdian North Pacific North Atlantic [
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Climate System Complexity

The Complexity of Climate Systems Comes from Interconnections.

NCEP (National Centers for Environmental Prediction) Reanalysis Data

Climate systems are complex | v
because of non-linear coupling
of its subsystems (e.g., the

ocean and the atmosphere). sor

Challenge:
How to “connect the dots”, that is, to construct
predictive phenomenological models explaining
structure-dynamics-function relationships
in the complex climate system.

From Simplicity to Complexity
Science 3 September 2010: 1125.
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Modeling a Climate System as a Network

Climate Data
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Climate Network Phase Phase

Edge weights: significant correlations
Nodes in the graph: grid points on the globe

Multivariate Networks

Multiphase Networks
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Subgraphs Common to Extreme Event Climate Networks

Networks for Climate Systems during Extreme Events

Networks for Climate Systems during Normal Events

[ETERR 11 a1
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Identifying patterns in the evolution of the climate
system — Example : Analysis of Decadal Trends in Climate

Division of data into
overlapping decadal
time windows

Data processing to
reduce seasonality

Analysis of
dependencies

Construction of
decadal climate
networks by
applying correlation
threshold

Analysis of climate Characterization of
network evolution the climate
using stable networks through
clusters clustering
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Enabling Transformative Computer Science Research

Enabling large-scale data-driven science for complex, multivariate,

spatio-temporal, non-linear, and dynamic systems:

Complex Networks
Study collective behavior of
interacting climate subsystems

Relationship Mining
Discovery of complex
dependence structures such
as non-linear relationships

—h

relationships

A

1
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Predictive Modeling
Model typical and extreme
behavior from multivariate

spatio-temporal data

A

1
|
1
1
2

High Performance Computing
Efficient analytics on future generation exascale HPC platforms with complex memory hierarchies
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A Complementary Interplay of R&D Portfolios
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Illustrative Case for HPC: CMIP3 -> CMIP5

® Coupled Model Inter comparison Project
e Spatial resolution: 1 — 0.25 degrees

® Temporal resolution: 6 hours — 3 hours
O

O

Models: 24 - 37
Simulation experiments: 10s - 100s
— Control runs & hindcast

— Decadal & centennial-scale
forecasts

® Covers 1000s of simulation years
® 100+ variables
® 10s of TBs to 10s of PBs

ensembles:
AMIP & 20 C

1%/yr CO, (140 yrs)
abrupt 4XCO, (150 yrs)
fixed SST with 1x &

Summary of CMIP5 model
experiments, grouped into three tiers
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Scaling I/0 and Analytics

® Global Cloud Resolving Model (GCRM)

— Simulate circulation associated with large convective clouds
— Developed by David Randell (Colorado State U) & Karen Schuchardt (PNNl3

® Geodesic grid model

® 1.4 PB data per simulation
— 4 km resolution, 3 hourly, 1 simulated year
— 1.5 TB per checkpoint

e Parallel NetCDF I/0 library outreaches climate -
community under NSF Expeditions in Computing project

I/0 was previously a major bottleneck:
The only reason execution at this scale
became possible was due to I/0 scaling.
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Illustrative Results

e Improved I/0 throughput
— Using PnetCDF optimizations, massive scalability
— For 3.5 km grid resolution, grid size is 41.9M cells with 256 vertical layers

— Data analysis read and simulation checkpoint
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GCRM 1/0 performance using PnetCDF
Hopper, Cray XE6 @ NERSC
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Taking Climate Science to the Next Level with HPC-
Illustration

Our HPC goals are enabling data analysis at:
Higher spatial or temporal resolution

Greater complexity per data point

Precipitation extremes analysis
Network-based hurricane prediction

Estimation of spatiotemporal dependence TR =
Higher data dimensionality
Bayesian analysis of multi-model ensembles Pansombut, Semazzi,

Sampling-based statistical methods
Multivariate quantile analysis

E

Significant correlations for hurricane prediction

(Sencan, Chen, Hendrix, a

Choudhary, Kumar, Melechko,

and Samatova, 2011)

Latitude

Estimation of complex
dependence structures

Handling non-stationarity

Multi-resolution analysis

Shorter response time

Interactive hypothesis testing

Prediction of land climate using ocean
climate variables

(Chatterjee, Steinhaeuser, Banerjee,
Chatterjee, and Ganguly, 2012)

30-year return levels (mm d™")
40N —
|

100 150 200 250 300 350
(mmd™)

Intensity of heaviest

Indian storms
(Ghosh, Das, Kao, and
Ganguly, 2011)
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Enabling Large-scale Analytics:
An HPC Library of Data Analysis Kernels

Performance typically dominated by a few computational kernels.

Top 3 Kernels
Application
Kernel 1 (%) Kernel 2 (%) Kernel 3 (%) (%)

K-means Distance (68) Center (21) minDist (10)

Fuzzy K-means Center (58) Distance (39) fuzzySum (1)
BIRCH Distance (54) Variance (22) Redist (10)
HOP Density (39) Search (30) Gather (23)
Naive Bayesian probCal (49) Variance (38) dataRead (10)
ScalParC Classify (37) giniCalc (36) Compare (24)

Apriori Subset (58) dataRead (14) Increment (8)

Eclat Intersect (39) addClass (23) invertC (10) aiere
SVMIight quotMatrix (57) quadGrad (38) quotUpdate (. '

Library of highly optimized, scalable ker
® Flexibility to define custom analytics pipelines
® High scalability

® Integrate into a software framework (e.g. R)

® MPI, OpenMP, CUDA, Parallel I/O

® “~.Processors

Parallel File System



Scalable & Power-aware Data Analytics
Representative Data Analytics Kernels

-==-|deal =E=SLINKorly -+—Ncl|f0 =s=End-to-end
e Parallel hierarchical clustering - _a
15000 / -

— Speedup of 18,000 on 16k processors s
— /O significant at large scale o /

Procasess
Power-aware analytics _Energy Consumption Speedup Correlation
e Reduced bit fixed-point i, Correlations
representations
e Pearson correlation i il I I I l
— 2.5-3.5 times faster L st
— 50-70% less energy K-means: Error vs. Energy
e K-means it e ‘1z
— ~44% less energy with an ;o o £3
error of only 0.03% using
12-bit representation g e

Bits used in representing input data
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Data Mining and Analytics — Broader Impact

lllustrative Applications Feature, data reduction, Data analysis kernels
or analytics task

Chemistry, Climate, Combustion,
Cosmology, Fusion, Materials science,
Plasma

Biology, Climate, Combustion,

Cosmology, Plasma, Renewable energy

Biology, Climate, Fusion, Plasma

Chemistry, Materials science,
Plasma, Climate

Combustion, Earth science

Earth science

Biology, Climate, Cosmology, Fusion

Chemistry, Climate, Combustion,
Cosmology, Fusion, Plasma

Climate

Climate, Earth science

Cosmology

Clustering

Statistics

Feature selection

Data transformations

Topology

Geometry

Classification

Data compression

Anomaly detection

Similarity / distance

Halos and sub-halos

k-means, fuzzy k-means, BIRCH, MAFIA, DBSCAN, HOP,
SNN, Dynamic Time Warping, Random Walk

Extrema, mean, quantiles, standard deviation, copulas,
value-based extraction, sampling

Data slicing, LVF, SFG, SBG, ABB, RELIEF

Fourier transform, wavelet transform, PCA/SVD/EOF
analysis, multidimensional scaling, differentiation,
integration

Morse-Smale complexes, Reeb graphs, level set
decomposition

Fractal dimension, curvature, torsion

ScalParC, decision trees, Naive Bayes, SVMlight, RIPPER
PPM, LZW, JPEG, wavelet compression, PCA, Fixed-point
representation

Entropy, LOF, GBAD

Cosine similarity, correlation (TAPER), mutual information,
Student's t-test, Eulerian distance, Mahalanobis distance,
Jaccard coefficient, Tanimoto coefficient, shortest paths

SUBFIND, AHF
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Examples and Results
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Climate System Complexity

The Complexity of Climate Systems Comes from Interconnections.

NCEP (National Centers for Environmental Prediction) Reanalysis Data

Climate systems are complex | v
because of non-linear coupling
of its subsystems (e.g., the

ocean and the atmosphere). sor

Challenge:
How to “connect the dots”, that is, to construct
predictive phenomenological models explaining
structure-dynamics-function relationships
in the complex climate system.

From Simplicity to Complexity
Science 3 September 2010: 1125.
Slide 18



What are Climate Indices?

Climate indices are defined to quantify climatic phenomena
Many of them are defined in terms of teleconnection patterns or dipoles

NOAA Eviended SS5T
ST (C) Composite Anomaly 1971=200 climo

= | Above average 55Tslocated across
the central and eastern Pacific

=15 =13 =11 =09 =0.7 =0.5 =0.3 =0.Y 0.7 O

North Atlantic Oscillation El Nifio (Warm Phase)

Dipole - difference in sea level pressure

Teleconnection pattern - above average Sea
between the azores and a region near Iceland P rag

Surface Temperature across the tropical Pacific

leads to drought like conditions in the Sahel region

ENSO index family
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1986-2009 Studies to Understand Key Climate Drivers & Dynamic 1
Factors/Mechanisms Affecting the West African Climate.

Can data-driven approaches expedite such discoveries?

—

A5 :'__5 > N AO < \_k____ }
“iusnticy” 100

2. MOC Med!ive {.{alm

Interhemisph//ric’, ~ >African E.|: _"' :
&SST Asymmgirj; Am
| Atlantic
ENSO

Atlantic Dipole

(AMM): Atlantic

Meridional Mode |

@==p Direct/indirect causality; Documented mechanisms w/ confidence

@—> Mechanisms not fully understood * North African

Hadley & Walker circulations Orographic Forcing

www.psdgraphics.com




Example Use Cases: Extreme Events Prediction

NH Tropical Cyclone (TC) Activity Climate-Meningitis Outlook
Northern Vlrjdian North Pacific North Atlantic [
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Modeling a Climate System as a Network

Climate Data
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Edge weights: significant correlations
Nodes in the graph: grid points on the globe

Multivariate Networks

Multiphase Networks
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Subgraphs Common to Extreme Event Climate Networks

Networks for Climate Systems during Extreme Events

Networks for Climate Systems during Normal Events

[ETERR 11 a1
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Extreme Event Forecasting via
Contrast-based Network Motif Discovery

(B) Intuition: If an extreme event (e.g. hurricane track) is in

/ one of its key phases (e.g. land-hitting), then there exist
network motifs (recurrent patterns in climate networks)
that are specific to that phase.

JQ (E) Phase:Land Phase:Curve
{ i -

(-

-

&~ [ 4
(F) Phase-Biased Network Motifs

/"ﬂdf‘ 1 ¥,
Climate Networks
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‘_Robust & Accurate Seasonal Hurricane Forecasts ;.
» through Comparative Climate Networks Analytics*

Comparative analysis of climate networks leverages the
DOE-funded network theory & scalable algorithms.

AL
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Forecasting Hurricane Tracks

Forecast Error (n mi)
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Hurricane End-game Track Forecast

Forecast 10-15 days in advance the end-game of a North
Atlantic since hurricane embryonic formation in Western Africa.

® Nearly east-oriented SLP edges suggest
horizontal pressure gradient configuration in the
same direction.

® Based on Buys Ballot’s law, this pressure
gradient would be associated with wind flow in
the north-south direction.

® Onshore wind anomaly flow would promote
favorable conditions for landfall; opposite flow
anomaly would be more favorable for hurricanes
tracks in no-landfall.

SLP (yellow/dashed) and SST

(red/solid) (+)correlated Performance of Land-hitting vs. Offshore
teleconnections; LOO 10-FOLD
L—biased toward land-hitting SLP SST SLP+SST SLP SST
tracks; Accuracy  0.88 0.90 0.92 0.90 0.90
O—biased toward offshore sensitivity 0.91 0.96 0.97 0.95 0.97
tracks. Specificity 0.77 0.76 0.81 0.80 0.74
Precision  0.90 0.90 0.92 0.92 0.90

F1l-meas. 0.90 0.93 0.94 0.93 0.93



Hierarchical Modularity of Complex Systems:
Multilevel Paradigm via Divide-and-Conquer Strategy

Hierarchical modularity is a known principle of complex system’s
organization & function. These functionally associated modules
often combine in a hierarchical manner into larger, functionally less
cohesive subsystems.

Divide Step: FORECASTER
4 . :f.:: i Divide all system features into modules
RNy N T that likely function together to define
2T Negy e, ® what state the system is in: modules
s ee s ¥ with stronger associations within
®o 4z 802408 the modules than between them.

Output Points after Partltlonlng & Dimension Reduction
Kernel PCA with a of the
o SIS 7 N caalBiin Conquer Step:
od i 1 .-, A Conquers each of these modules in

< order to refine the specificity of the
. inter-feature relationships within
’ the module.

-0.4 02 0 02 04 0.6 0.8 1

First component

Second component
1
o

i 3t

0.2
-04
0.6
-0.8
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Cross-talk between Regional & Global Systems

There is an inherent interplay (e.g., feedback) between regional
scale subsystems and the global scale system. Ignoring these
relationships by focusing on a specific region is a simplification.

DETECTOR

Northern North Pacific North Atlantic

Indian T, 3

We could use these relationships for detecting the
prediction errors and/or possibly correcting them.
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929% Accuracy w/ Leave One Out Cross Validation
Seasonal Hurricane Activity
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Hurricane Activity Class Forecast vs. State-of-art

FORECASTER Performance on North Atlantic Hurricane

FORECASTER [1], 2009 [2], 2010 || Random Bagglng Boosting
NC State Colorado GA Tech Forest

Accuracy 93.3 64.0 65.5 76.7
(%)
HSS 0.90 0.45 0.49 0.66 0.60 0.62
PSS 0.92 0.44 0.50 0.65 0.63 0.63
GSS 0.96 0.50 0.68 0.65 0.67 0.66
\ )\ A _J
Y h'd h'd

ML-based Regression Hybrid
[1] P. J. Klotzbach and W. M. Gray, “Twenty-five years of Atlantic basin seasonal hurricane
forecasts (1984-2008),” Geophys. Res. Lett., vol. 36, pp. L09 711, 5pp, May 2009.
[2] H. M. Kim and P. J. Webster. Extended-range seasonal hurricane forecasts for the North
Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37(21):L.21705,
2“HUS'S: Heidke score, measures how well relative to a randomly selected forecast;
PSS: Peirce score, difference between the hit rate and the false alarm rate;

GS: Gerrity score, occurrences substantially less frequent.
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Effectiveness of DETECTOR + FORECASTER
Regional subsystems and global system interplays

FORECASTER || DETECTOR
+
ZUNSNISS| Tropical cyclone activity (STCP):

NH 90.0 95.0 » NH: Northern Hemisphere
STCP * NA1: North Atlantic

NA1 88.3 93.3

Hurricane activity (SHP):

SHP NA2 252 98.6 « NA2: North Atlantic hurricane

LNA 86.7 93.4 * LNA: North Atlantic land-falling

SH 88.9 94.5 North Africa rainfall activity (NARP)
NARP « SH: Sahel area

WS 90.7 96.3 « WS: West Sahel.

West Sahel Mali Ny East Sahel Northern Indian North Pacific North Atlantic

L :




Predicted Network Motifs Agree with Climate Indices

Related to Hurricane Activity

Variable || Spatial location || Climate indices |

SST

VWS

PW

SLP

(4N, 114W)
(2S, 168W)
(42N, 30W)
|(32S, 16W)
|(27.5N, 65W)
(52.5N, 37.5W)
(7.5N, 122.5W)
(10S, 60W)
|(27.5N, 55W)
(52.5N, 135E)
(82.5N, 15W)
(37.5N, 40E)
(57.5N, 22.5W)
(60N, 155E)
|(37.5N, 162.5W)
(12.5N, 122.5E)

Nino 3
ENSO

MDR
NAO
Nino 3

PDO

AO

NAO
PDO

Published Facts

« Nino3 SSTs correlate with
Atlantic hurricane activity

« ENSO modulates NA TCs

« SSTs in MDR contribute to
hurricanes in MDR region

* NAO June correlates with NA
hurricane tracks

« Shifts in the PDO phase can
have significant implications for
Atlantic hurricane activity

New Hypotheses

Atlantic multi-decadal Oscillation
(AMO) and Arctic Oscillation (AO)
indices might affect the North
Atlantic tropical cyclone activities
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0.67 Spearman Rank-order Correlation between
Network-based Climate Index & Hurricane Activity

:values—o 0 Comparison against 33 known climate indices
II\)/Ionth- J;m.e Best absolute correlation for January-June
' Not all p-values are significant

AT
SOLAR |gssss 0.06

AMO

NEW_INDEX




Hypothesis: NAO modulates the climate drivers of the West African
climate—the Atlantic Dipole & Atlantic ENSO—via the low-level westerly jet.

1986-2009 climate research on key factors affecting
the West African Climate are being advanced by
data-driven phenomenological modeling.
|5 e 69
7 - =5

~"|'Data-driven inference of
active phase causality for

the NA%gHVen hypothesis

MSEA15 - =1 =4 T Low-level
- _ N ¥ izontal Win\ds

MSEA2,
MSEA3,

GHTL, 37 o &

Expedition’s novel data-driven approaches already promise to search fo.
fundamental inter-relationships in the climate system in a significant wa
(Fred Semazzi, Nobel Prize team member)

@==p Direct/indirect causality inferred by the data-driven methods
@=—=p Hypothesized mechanisms quantified by data driven methods www.psdgraphics.com




Summary: Discovering Knowledge from

Massive Data — Next Frontier for HPC
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