
Experience with Randomized Testing in
Programming Language Metatheory

Casey Klein

August 6, 2009

Abstract

We explore the use of QuickCheck-style randomized testing in programming
languages metatheory, a methodology proposed to reduce development time by
revealing shallow errors early, before a formal proof attempt. This exploration
begins with the development of a randomized testing framework for PLT Redex, a
domain-specific language for specifying and debugging operational semantics. In
keeping with the spirit of Redex, the framework is as lightweight as possible—the
user encodes a conjecture as a predicate over the terms of the language, and guided
by the structure of the language’s grammar, reduction relation, and metafunctions,
Redex attempts to falsify the conjecture automatically.

In addition to the details of this framework, we present a tutorial demonstrating
its use and two case studies applying it to large language specifications. The first
study, a postmortem, applies randomized testing to the formal semantics published
with the latest revision of the Scheme language standard. Despite a community
review period and a comprehensive, manually-constructed test suite, randomized
testing in Redex revealed four bugs in the semantics. The second study presents
our experience applying the tool concurrently with the development of a formal
model for the MzScheme virtual machine and bytecode verifier. In addition to
many errors in our formalization, randomized testing revealed six bugs in the core
bytecode verification algorithm in production use. The results of these studies
suggest that randomized testing is a cheap and effective technique for finding bugs
in large programming language metatheories.

1 Introduction
Most software engineers spend much time testing and little time proving; most se-
mantics engineers, on the other hand, spend much time proving and little time testing.
Bringing formal methods into the mainstream of software engineering is a widely held
goal, but few advocate a balance between formal and informal methods in the study of
programming languages. This paper presents a small step counter to the latter trend,
exploring the hypothesis that randomized testing is a cheap and effective technique for
finding bugs in large programming language metatheories.

To validate this hypothesis, we develop a randomized testing framework for PLT
Redex [19, 47], a domain-specific language for context-sensitive reduction systems.

1



This framework is inspired by the popular QuickCheck library [9] but tailored to test-
ing operational semantics. For example, the test case generator can often improve test
coverage by specifically targeting reduction rules that are unlikely to apply to terms
generated purely at random (e.g., call-by-value β-reduction, which requires a λ-term
of appropriate arity in function position and values in the argument positions). We
apply this framework in two large case studies. The first tests the R6RS formal seman-
tics [64], easily finding four bugs that eluded a comprehensive, hand-crafted test suite,
in addition to the report’s editors and community reviewers. The second integrates
randomized testing into the development of a formal model for the MzScheme virtual
machine and bytecode verifier, finding six long-standing bugs in the core verification
algorithm and twenty-two bugs in our formalization, despite careful manual testing of
each.

Our experience in this second case study suggests another role for randomized test-
ing. Late in the model’s development, I made a global change to the structure of the
bytecode verification algorithm. Knowing this change required several other changes,
I systematically peformed the other changes, ran the hand-crafted test suite, and on a
whim, ran the test case generator, which revealed a forgotten case, much to my sur-
prise. This bug suggested two additional classes of changes, which I made before
running a second round of randomized tests. This round too discovered a bug, which
in turn suggested one more class of changes. Randomized tests following this latest
fix revealed yet another neglected case. Indeed, this happened three times, after one
seemingly simple change. Cases like this one illustrate the value of randomized testing
as a complement to manual testing.

The rest of this paper is organized as follows. Section 2 introduces Redex by pre-
senting the formalization of a toy programming language. Section 3 demonstrates the
application of Redex’s randomized testing facilities. Section 4 describes the general
process and specific tricks that Redex uses to generate random terms. Section 5 and 6
presents the case studies. Section 7 reviews related work, and section 8 concludes.

2 Redex by Example
Redex is a domain-specific language, embedded in PLT Scheme. It inherits the syntac-
tic and lexical structure from PLT Scheme and allows Redex programmers to embed
full-fledged Scheme code into a model, where appropriate. It also inherits DrScheme,
the program development environment, as well as a large standard library. This section
introduces Redex and context-sensitive reduction semantics through a series of exam-
ples, and makes only minimal assumptions about the reader’s knowledge of operational
semantics. In an attempt to give a feel for how programming in Redex works, this sec-
tion is peppered with code fragments; each of these expressions runs exactly as given
(assuming that earlier definitions have been evaluated) and the results of evaluation are
also as shown (although we are using a printer that uses a notation that matches the
input notation for values, instead of the standard Scheme printer).

Our goal with this section is to turn the formal model specified in figure 1 into
a running Redex program; in section 3, we will test the model. The language in the
figure 1 is expression-based, containing application expressions (to invoke functions),

2



conditional expressions, values (i.e., fully simplified expressions), and variables. Val-
ues include functions, the plus operator, and numbers.

The eval function gives the meaning of each program (either a number or the spe-
cial token proc), and it is defined via a binary relation −→ on the syntax of programs.
This relation, commonly referred to as a standard reduction, gives the behavior of pro-
grams in a machine-like way, showing the ways in which an expression can fruitfully
take a step towards a value.

The non-terminal E defines evaluation contexts. It gives the order in which expres-
sions are evaluated by providing a rule for decomposing a program into a context—an
expression containing a “hole”—and the sub-expression to reduce. The context’s hole,
written [], may appear either inside an application expression, when all the expressions
to the left are already values, or inside the test position of an if0 expression.

The first two reduction rules dictate that an if0 expression can be reduced to either
its “then” or its “else” subexpression, based on the value of the test. The third rule says
that function applications can be simplified by substitution, and the final rule says that
fully simplified addition expressions can be replaced with their sums.

We use various features of Redex (as below) to illuminate the behavior of the model
as it is translated to Redex, but just to give a feel for the calculus, here is a sample
reduction sequence illustrating how the rules and the evaluation contexts work together.

(+ (if0 0 1 2) (if0 2 1 0))
−→ (+ 1 (if0 2 1 0))
−→ (+ 1 0)
−→ 1

Consider the step between the first and second term. Both of the if0 expressions are
candidates for reduction, but the evaluation contexts only allow the first to be reduced.
Since the rules for if0 expressions are written with E[] outside of the if0 expression, the
expression must decompose into some E with the if0 expression in the place where the
hole appears. This decomposition is what fails when attempting to reduce the second
if0 expression. Specifically, the case for application expressions requires values to the
left of the hole, but this is not the case for the second if0 expression.

Like a Scheme program, a Redex program consists of a series of definitions. Re-
dex programmers have all of the ordinary Scheme definition forms (variable, function,
structure, etc.) available, as well as a few new definition forms that are specific to
operational semantics. For clarity, when we show code fragments, we italicize Redex
keywords, to make clear where Redex extends Scheme.

Redex’s first definition form is define-language. It uses a parenthesized version
of BNF notation to define a tree grammar,1 consisting of non-terminals and their pro-
ductions. The following defines the same grammar as in figure 1, binding it to the
Scheme-level variable L.

1See Tree Automata Techniques and Applications [13] for an excellent summary of the properties of tree
grammars.

3



Language
e ::= (e e · · ·) | (if0 e e e) | v | x
v ::= λ(x · · ·). e | + |N
E ::= [] | (v · · · E e · · ·) | (if0 E e e)

Evaluator
eval : e→N∪ {proc}
eval(e) = n, if e −→∗ dne for some n ∈N

eval(e) = proc, if
{

e −→∗ λ(x · · ·). e
′
, or

e −→∗ +

Reduction relation

E[(if0 d0e e1 e2)] −→ E[e1]

E[(if0 v e1 e2)] −→ E[e2] v 6= d0e
E[((λ(x · · ·). e) v · · ·)] −→ E[e{x ← v, · · ·}]
E[(+ dne · · ·)] −→ E[d∑(n · · ·)e ]

Figure 1: Mathematical Model of Core Scheme

(define-language L
(e (e e . . . )

(if0 e e e)
v
x)

(v +
n
(λ (x . . . ) e))

(E hole
(v . . . E e . . . )
(if0 E e e))

(n number)
(x variable-not-otherwise-mentioned))

In addition to the non-terminals e, v, and E from the figure, this grammar also provides
definitions for numbers n and variables x. Unlike the traditional notation for BNF
grammars, Redex encloses a non-terminal and its productions in a pair of parentheses
and does not use vertical bars to separate productions, simply juxtaposing them instead.

Following the mathematical model, the first non-terminal in L is e, and it has four
productions: application expressions, if0 expressions, values, and variables. The el-
lipsis is a form of Kleene-star; i.e., it admits repetitions of the pattern preceding it
(possibly zero). In this case, this means that application expressions must have at least
one sub-expression, corresponding to the function position of the application, but may
have arbitrarily many more, corresponding to the function’s arguments.

The v non-terminal specifies the language’s values; it has three productions—one

4



each for the addition operator, numeric literals, and functions. As with application
expressions, function parameter lists use an ellipsis, this time indicating that a function
can have zero or more parameters.

The E non-terminal defines the contexts in which evaluation can occur. The hole
production gives a place where evaluation can occur, in this case, the top-level of the
term. The second production allows evaluation to occur anywhere in an application
expression, as long as all of the terms to the left of the have been fully evaluated. In
other words, this indicates a left-to-right order of evaluation. The third production
dictates that evaluation is allowed only in the test position of an if0 expression.

The n non-terminal generates numbers using the built-in Redex pattern number.
Redex exploits Scheme’s underlying support for numbers, allowing arbitrary Scheme
numbers to be embedded in Redex terms.

Finally, the x generates all variables except λ, +, and if0, using variable-not-
otherwise-mentioned. In general, the pattern variable-not-otherwise-mentioned matches
all variables except those that are used as literals elsewhere in the grammar.

Once a grammar has been defined, a Redex programmer can use redex-match to
test whether a term matches a given pattern. It accepts three arguments—a language,
a pattern, and an expression—and returns #f (Scheme’s false), if the pattern does not
match, or bindings for the pattern variables, if the term does match. For example,
consider the following interaction:

> (redex-match L e (term (if0 (+ 1 2) 0)))
#f

This expression tests whether (if0 (+ 1 2) 0) is an expression according to L. It is not,
because if0 must have three subexpressions.

When redex-match succeeds, it returns a list of match structures, as in this exam-
ple.

> (redex-match
L
(if0 v e 1 e 2)
(term (if0 3 0 (λ (x) x))))

(list (make-match
(list (make-bind ’v 3)

(make-bind ’e 1 0)
(make-bind ’e 2 (term (λ (x) x))))))

Each element in the list corresponds to a distinct way to match the pattern against the
expression. In this case, there is only one way to match it, and so there is only one ele-
ment in the list. Each match structure gives the bindings for the pattern’s variables. In
this case, v matched 3, e 1 matched 0, and e 2 matched (λ (x) x). The term constructor
is absent from the v and e 1 matches because numbers are simultaneously Redex terms
and ordinary Scheme values (and this will come in handy when we define the reduction
relation for this language).

Of course, since Redex patterns can be ambiguous, there might be multiple ways
for the pattern to match the expression. This can arise in two ways: an ambiguous
grammar, or repeated ellipses. Consider the following use of repeated ellipses.

5



> (redex-match L
(n 1 . . . n 2 n 3 . . . )
(term (1 2 3)))

(list (make-match
(list (make-bind ’n 1 (list))

(make-bind ’n 2 1)
(make-bind ’n 3 (list 2 3))))

(make-match
(list (make-bind ’n 1 (list 1))

(make-bind ’n 2 2)
(make-bind ’n 3 (list 3))))

(make-match
(list (make-bind ’n 1 (list 1 2))

(make-bind ’n 2 3)
(make-bind ’n 3 (list)))))

The pattern matches any sequence of numbers that has at least a single element, and
it matches such sequences as many times as there are elements in the sequence, each
time binding n 2 to a distinct element of the sequence.

Now that we have defined a language, we can define the reduction relation for that
language. The reduction-relation form accepts a language and a series of rules that
define the relation case-wise. For example, here is a reduction relation for L. In prepa-
ration for Redex’s automatic test case generation, we have intentionally introduced a
few errors into this definition. The explanatory text does not contain any errors;2 it
simply avoids mention of the mistakes.

(define eval-step
(reduction-relation
L
(--> (in-hole E (if0 0 e 1 e 2))

(in-hole E e 1)
"if0 true")

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
"if0 false")

(--> (in-hole E ((λ (x . . . ) e) v . . . ))
(in-hole E (subst (x v) . . . e))
"beta value")

(--> (in-hole E (+ n 1 n 2))
(in-hole E ,(+ (term n 1) (term n 2)))
"+")))

Each case begins with the arrow --> and includes a pattern, a term template, and a
name for the case. The pattern indicates when the rule will fire and the term indicates
what it should be replaced with.

Each rule begins with an in-hole pattern that decomposes a term into an evaluation
context E and some instruction. For example, consider the first rule. We can use redex-

2We hope.

6



match to test its pattern against a sample expression.
> (redex-match L

(in-hole E (if0 0 e 1 e 2))
(term (+ 1 (if0 0 2 3))))

(list (make-match
(list (make-bind ’E (term (+ 1 hole)))

(make-bind ’e 1 2)
(make-bind ’e 2 3))))

Since the match succeeded, the rule applies to the term, with the substitutions for the
pattern variables shown. Thus, this term will reduce to (+ 1 2), since the rule replaces
the if0 expression with e 1, the “then” branch, inside the context (+ 1 hole). Similarly,
the second reduction rule replaces an if0 expression with its “else” branch.

The third rule defines function application in terms of a metafunction subst that
performs capture-avoiding substitution; its definition is not shown, but standard.

The relation’s final rule is for addition. It exploits Redex’s embedding in Scheme
to use the Scheme-level + operator to perform the Redex-level addition. Specifically,
the comma operator is an escape to Scheme and its result is replaced into the term at
the appropriate point. The term constructor does the reverse, going from Scheme back
to a Redex term. In this case, we use it to pick up the bindings for the pattern variables
n 1 and n 2.

This “escape” from the object language that we are modeling in Redex to the meta-
language (Scheme) mirrors a subtle detail from the mathematical model in figure 1,
specifically the use of the d · e operator. In the model that operator translates a num-
ber into its textual representation. Consider its use in the addition rule; it defers the
definition of addition to the summation operator, much like we defer the definition to
Scheme’s + operator.

Once a Redex programmer has defined a reduction relation, Redex can build reduc-
tion graphs, via traces. The traces function takes a reduction relation and a term and
opens a GUI window showing the reduction graph rooted at the given term. Figure 2
shows such a graph, generated from eval-step and an if0 expression. As the screenshot
shows, the traces window also lets the user adjust the font size and connects to dot [23]
to lay out the graphs. Redex can also detect cycles in the reduction graph, for example
when running an infinite loop, as shown in figure 3.

In addition to traces, Redex provides a lower-level interface to the reduction se-
mantics via the apply-reduction-relation function. It accepts a reduction relation and
a term and returns a list of the next states, as in the following example.

> (apply-reduction-relation eval-step
(term (if0 1 2 3)))

(list 3)
For the eval-step reduction relation, this should always be a singleton list but, in gen-
eral, multiple rules may apply to the same term, or a single rule may even apply in
multiple different ways.

7



Figure 2: A reduction graph with four expressions

Figure 3: A reduction graph with an infinite loop

8



3 Randomized Testing in Redex
If we intend eval-step to model the deterministic evaluation of expressions in our toy
language, we might expect eval-step to define exactly one reduction for any expression
that is not already a value. This is certainly the case for the expressions in figures 2
and 3.

To test this, we first formulate a Scheme function that checks this property on one
example. It accepts a term and returns true when the term is a value, or when the term
reduces just one way, using redex-match and apply-reduction-relation.

;; value-or-unique-step? : term→ boolean
(define (value-or-unique-step? e)

(or (redex-match L v e)
(= 1 (length (apply-reduction-relation

eval-step e)))))
Once we have a predicate that should hold for every term, we can supply it to redex-

check, Redex’s random test case generation tool. It accepts a language, in this case L,
a pattern to generate terms from, in this case just e, and a boolean expression, in this
case, an invocation of the value-or-unique-step? function with the randomly generated
term.

> (redex-check
L e
(value-or-unique-step? (term e)))

counterexample found after 1 attempt:

q

Immediately, we see that the property does not hold for open terms. Of course, this
means that the property does not even hold for our mathematical model! Often, such
terms are referred to as “stuck” states and are ruled out by either a type-checker (in a
typed language) or are left implicit by the designer of the model. In this case, how-
ever, since we want to uncover all of the mistakes in the model, we instead choose to
add explicit error transitions, following how most Scheme implementations actually
behave. These rules generally reduces to something of the form (error description).
For unbound variables, this is the rule:

(--> (in-hole E x)
(error "unbound-id"))

It says that when the next term to reduce is a variable (i.e., the term in the hole of the
evaluation context is x), then instead reduce to an error. Note that on the right-hand
side of the rule, the evaluation context E is omitted. This means that the entire context
of the term is simply erased and (error "unbound-id") becomes the complete state of
the computation, thus aborting the computation.

With the improved relation in hand, we can try again to uncover bugs in the defini-
tion.

> (redex-check
L e
(value-or-unique-step? (term e)))

counterexample found after 6 attempts:

(+)

9



This result represents a true bug. While the language’s grammar allows addition ex-
pressions to have an arbitrary number of arguments, our reduction rule only covers the
case of two arguments. Redex reports this failure via the simplest expression possible:
an application of the plus operator to no arguments at all.

There are several ways to fix this rule. We could add a few rules that would reduce
n-ary addition expressions to binary ones and then add special cases for unary and zero-
ary addition expressions. Alternatively, we can exploit the fact that Redex is embedded
in Scheme to make a rule that is very close in spirit to the rule given in figure 1.

(--> (in-hole E (+ n . . . ))
(in-hole E ,(apply + (term (n . . . ))))
"+")

But there still may be errors to discover, and so with this fix in place, we return to
redex-check.

> (redex-check L
e
(value-or-unique-step? (term e)))

checking ((λ (i) 0)) raises an exception

syntax: incompatible ellipsis match counts

for template in: ...

This time, redex-check is not reporting a failure of the predicate but instead that the
input example ((λ (i) 0)) causes the model to raise a Scheme-level runtime error. The
precise text of this error is a bit inscrutable, but it also comes with source location
highlighting that pinpoints the relation’s application case. Translated into English, the
error message says that the this rule is ill-defined in the case when the number of formal
and actual parameters do not match. The ellipsis in the error message indicates that it
is the ellipsis operator on the right-hand side of the rule that is signaling the error, since
it does not know how to construct a term unless there are the same number of xs and
vs.

To fix this rule, we can add subscripts to the ellipses in the application rule
(--> (in-hole E ((λ (x ... 1) e) v ... 1))

(in-hole E (subst (x v) . . . e))
"beta value")

Duplicating the subscript on the ellipses indicates to Redex that it must match the
corresponding sequences with the same length.

Again with the fix in hand, we return to redex-check:
> (redex-check L

e
(value-or-unique-step? (term e)))

counterexample found after 196 attempts:

(if0 0 m +)

This time, Redex reports that the expression (if0 0 m +) fails, but we clearly have
a rule for that case, namely the first if0 rule. To see what is happening, we apply eval-
step to the term directly, using apply-reduction-relation, which shows that the term
reduces two different ways.

10



> (apply-reduction-relation eval-step
(term (if0 0 m +)))

(list (term +)
(term m))

Of course, we should only expect the second result, not the first. A closer look reveals
that, unlike the definition in figure 1, the second eval-step rule applies regardless of the
particular v in the conditional. We fix this oversight by adding a side-condition clause
to the earlier definition.

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
(side-condition (not (equal? (term v) 0)))
"if0 false")

Side-conditions are written as ordinary Scheme code, following the keyword side-
condition, as a new clause in the rule’s definition. If the side-condition expression
evaluates to #f, then the rule is considered not to match.

At this point, redex-check fails to discover any new errors in the semantics. The
complete, corrected reduction relation is shown in figure 4.

In general, after this process fails to uncover (additional) counterexamples, the task
becomes assessing redex-check’s success in generating well-distributed test cases. Re-
dex has some introspective facilities, including the ability to count the number of re-
ductions that fire. With this reduction system, we discover that nearly 60% of the time,
the random term exercises the free variable rule. To get better coverage, Redex can
take into account the structure of the reduction relation. Specifically, providing the
#:source keyword tells Redex to use the left-hand sides of the rules in eval-step as
sources of expressions.

> (redex-check L
e
(value-or-unique-step? (term e))
#:source eval-step)

With this invocation, Redex distributes its effort across the relation’s rules by first gen-
erating terms matching the first rule’s left-hand side, then terms matching the second
term’s left-hand side, etc. Note that this also gives Redex a bit more information;
namely that all of the left-hand sides of the eval-step relation should match the non-
terminal e, and thus Redex also reports such violations. In this case, however, Redex
discovers no new errors, but it does get an even distribution of the uses of the various
rewriting rules.

4 Effective Random Term Generation
At a high level, Redex’s procedure for generating a random term matching a given
pattern is simple: for each non-terminal in the pattern, choose one of its productions
and proceed recursively on that pattern. Of course, picking naively has a number of
obvious shortcomings. This sections describes how we made the randomized test gen-
eration effective in practice.

11



(define complete-eval-step
(reduction-relation
L

;; corrected rules
(--> (in-hole E (if0 0 e 1 e 2))

(in-hole E e 1)
"if0 true")

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
(side-condition (not (equal? (term v) 0)))
"if0 false")

(--> (in-hole E ((λ (x ... 1) e) v ... 1))
(in-hole E (subst (x v) . . . e))
"beta value")

(--> (in-hole E (+ n . . . ))
(in-hole E ,(apply + (term (n . . . ))))
"+")

;; error rules
(--> (in-hole E x)

(error "unbound-id"))
(--> (in-hole E ((λ (x . . . ) e) v . . . ))

(error "arity")
(side-condition
(not (= (length (term (x . . . )))

(length (term (v . . . )))))))
(--> (in-hole E (+ n . . . v 1 v 2 . . . ))

(error "+")
(side-condition (not (number? (term v 1)))))

(--> (in-hole E (v 1 v 2 . . . ))
(error "app")
(side-condition
(and (not (redex-match L + (term v 1)))

(not (redex-match L
(λ (x . . . ) e)
(term v 1))))))))

Figure 4: The complete, corrected reduction relation

12



4.1 Choosing Productions
As sketched above, this procedure has a serious limitation: with non-negligible prob-
ability, it produces enormous terms for many inductively defined non-terminals. For
example, consider the following language of binary trees:

(define-language binary-trees
(t nil

(t t)))
Each failure to choose the production nil expands the problem to the production of two
binary trees. If productions are chosen uniformly at random, this procedure will easily
construct a tree that exhausts available memory. Accordingly, we impose a size bound
on the trees as we generate them. Each time Redex chooses a production that requires
further expansion of non-terminals, it decrements the bound. When the bound reaches
zero, Redex’s restricts its choice to those productions that generate minimum height
expressions.

For example, consider generating a term from the e non-terminal in the grammar
L from section 2, on page 3. If the bound is non-zero, Redex freely chooses from
all of the productions. Once it reaches zero, Redex no longer chooses the first two
productions because those require further expansion of the e non-terminal; instead it
chooses between the v and x productions. It is easy to see why x is okay; it only
generates variables. The v non-terminal is also okay, however, because it contains the
atomic production +.

In general, Redex classifies each production of each non-terminal with a number
indicating the minimum number of non-terminal expansion required to generate an
expression from the production. Then, when the bound reaches zero, it chooses from
one of the productions that have the smallest such number.

Although this generation technique does limit the expressions Redex generates to
be at most a constant taller than the bound, it also results in a poor distribution of the
leaf nodes. Specifically, when Redex hits the size bound for the e non-terminal, it
will never generate a number, preferring to generate + from v. Although Redex will
generate some expressions that contain numbers, the vast majority of leaf nodes will
be either + or a variable.

In general, the factoring of the grammar’s productions into non-terminals can have
a tremendous effect on the distribution of randomly generated terms because the col-
lection of several productions behind a new non-terminal focuses probability on the
original non-terminal’s other productions. We have not, however, been able to detect
a case where Redex’s poor distribution of leaf nodes impedes its ability to find bugs,
despite several attempts. Nevertheless, such situations probably do exist, and so we are
investigating a technique that produces better distributed leaves.

4.2 Non-linear patterns
Redex supports patterns that only match when two parts of the term are syntactically
identical. For example, this revision of the binary tree grammar only matches perfect
binary trees

13



(define-language perfect-binary-trees
(t nil

(t 1 t 1)))
because the subscripts in the second production insists that the two sub-trees are iden-
tical. Additionally, Redex allows subscripts on the ellipses (as we used in section 3 on
page 10) indicating that the length of the matches must be the same.

These two features can interact in subtle ways that affect term generation. For
example, consider the following pattern:

(x 1 . . . y ... 2 x 1 ... 2)
This matches a sequence of xs, followed by a sequence of ys followed by a second
sequence of xs. The 1 subscripts dictate that the xs must be the same (when viewed as
a complete sequence—the individual members of each sequence may be distinct) and
the 2 subscripts dictate that the number of ys must be the same as the number of xs.
Taken together, this means that the length of the first sequence of x’s must be the same
as the length of the sequence of ys, but an left-to-right generation of the term will not
discover this constraint until after it has already finished generating the ys.

Even worse, Redex supports subscripts with exclamation marks which insist same-
named subscripts match different terms; e.g. (x ! 1 x ! 1) matches sequences of length
two where the elements are different.

To support this in the random test case generator, Redex preprocesses the term to
normalize the underscores. In the pattern above, Redex rewrites the pattern to this one

(x 1 ... 2 y ... 2 x 1 ... 2)
simply changing the first ellipsis to ... 2.

4.3 Generation Heuristics
Typically, random test case generators can produce very large test inputs for bugs that
could also have been discovered with small inputs.3 To help mitigate this problem, the
term generator employs several heuristics to gradually increase the size and complexity
of the terms it produces (this is why the generator generally found small examples for
the bugs in section 3).

• The term-height bound increases with the logarithm of the number of terms gen-
erated.

• The generator chooses the lengths of ellipsis-produced sequences and the lengths
of variable names using a geometric distribution, increasing the distribution’s
expected value with the logarithm of the number of attempts.

• The alphabet from which the generator constructs variable names gradually grows
from the English alphabet to the ASCII set and then to the entire unicode char-
acter set. Eventually the generator explicitly considers choosing the names of
the language’s terminals as variables, in hopes of catching rules which confuse

3Indeed, for this reason, QuickCheck supports a form of automatic test case simplification that tries to
shrink a failing test case.

14



the two. The R6RS semantics makes such a mistake, as discussed in section 5.3
(page 5.3), but discovering it is difficult with this heuristic.

• When generating a number, the generator chooses first from the naturals, then
from the integers, the reals, and finally the complex numbers, while also increas-
ing the expected magnitude of the chosen number. The complex numbers tend
to be especially interesting because comparison operators such as <= are not de-
fined on complex numbers.

• Eventually, the generator biases its production choices by randomly selecting
a preferred production for each non-terminal. Once the generator decides to
bias itself towards a particular production, it generates terms with more deeply
nested version of that production, in hope of catching a bug with deeply nested
occurrences of some construct.

5 Case Study: R6RS Formal Semantics
The most recent revision of the specification for the Scheme programming language
(R6RS) [64] includes a formal, operational semantics defined in PLT Redex. The se-
mantics was vetted by the editors of the R6RS and was available for review by the
Scheme community at large for several months before it was finalized.

In an attempt to avoid errors in the semantics, it came with a hand-crafted test suite
of 333 test expressions. Together these tests explore 6,930 distinct program states; the
largest test case explores 307 states. The semantics is non-deterministic in order to
avoid over-constraining implementations. That is, an implementation conforms to the
semantics if it produces any one of the possible results given by the semantics. Accord-
ingly the test suite contains terms that explore multiple reduction sequence paths. There
are 58 test cases that contain at least some non-determinism and, the test case with the
most non-determinism visits 17 states that each have multiple subsequent states.

Despite all of the careful scrutiny, Redex’s randomized testing found four errors in
the semantics, described below. The remainder of this section introduces the seman-
tics itself (section 5.1), describes our experience applying Redex’s randomized testing
framework to the semantics (sections 5.2 and 5.3), discusses the current state of the
fixes to the semantics (section 5.4), and quantifies the size of the bug search space
(section 5.5).

5.1 The R6RS Formal Semantics
In addition to the features modeled in Section 2, the formal semantics includes: mutable
variables, mutable and immutable pairs, variable-arity functions, object identity-based
equivalence, quoted expressions, multiple return values, exceptions, mutually recursive
bindings, first-class continuations, and dynamic-wind. The formal semantics’s gram-
mar has 41 non-terminals, with a total of 144 productions, and its reduction relation
has 105 rules.

15



The core of the formal semantics is a relation on program states that, in a manner
similar to eval-step in Section 2, gives the behavior of a Scheme abstract machine. For
example, here are two of the key rules that govern function application.

(--> (in-hole P 1 ((λ (x 1 x 2 ... 1) e 1 e 2 . . . )
v 1 v 2 ... 1))

(in-hole P 1 ((r6rs-subst-one
(x 1 v 1
(λ (x 2 . . . ) e 1 e 2 . . . )))

v 2 . . . ))
"6appN"
(side-condition

(not (term (Var-set!d?
(x 1
(λ (x 2 . . . ) e 1 e 2 . . . )))))))

(--> (in-hole P 1 ((λ () e 1 e 2 . . . )))
(in-hole P 1 (begin e 1 e 2 . . . ))
"6app0")

These rules apply only to applications that appear in an evaluation context P 1. The
first rule turns the application of an n-ary function into the application of an n− 1-ary
function by substituting the first actual argument for the first formal parameter, using
the metafunction r6rs-subst-one. The side-condition ensures that this rule does not
apply when the function’s body uses the primitive set! to mutate the first parameter’s
binding; instead, another rule (not shown) handles such applications by allocating a
fresh location in the store and replacing each occurrence of the parameter with a refer-
ence to the fresh location. Once the first rule has substituted all of the actual parameters
for the formal parameters, we are left with a nullary function in an empty application,
which is covered by the second rule above. This rule removes both the function and
the application, leaving behind the body of the function in a begin expression.

The R6RS does not fully specify many aspects of evaluation. For example, the or-
der of evaluation of function application expressions is left up to the implementation, as
long as the arguments are evaluated in a manner that is consistent with some sequential
ordering (i.e., evaluating one argument halfway and then switching to another argument
is disallowed). To cope with this in the formal semantics, the evaluation contexts for
application expressions are not like those in section 2, which force left to right evalua-
tion, nor do they have the form (e 1 . . . E e 2 . . . ), which would allow non-sequential
evaluation; instead, the contexts that extend into application expressions take the form
(v 1 . . . E v 2 . . . ) and thus only allow evaluation when there is exactly one argument
expression to evaluate. To allow evaluation in other application contexts, the reduction
relation includes the following rule.

16



(--> (in-hole P 1 (e 1 . . . e i e i+1 . . . ))
(in-hole P 1

((λ (x) (e 1 . . . x e i+1 . . . )) e i))
"6mark"
(fresh x)
(side-condition (not (v? (term e i))))
(side-condition
(ormap (λ (e) (not (v? e)))

(term (e 1 . . . e i+1 . . . )))))
This rule non-deterministically lifts one subexpression out of the application, placing
it in an evaluation context where it will be immediately evaluated then substituted back
into the original expression, by the rule "6appN". The fresh clause binds x such that
it does not capture any of the free variables in the original application. The first side-
condition ensures that the lifted term is not yet a value, and the second ensures that there
is at least one other non-value in the application expression (otherwise the evaluation
contexts could just allow evaluation there, without any lifting).

As an example, consider this expression:
(+ (+ 1 2)

(+ 3 4))
It contains two nested addition expressions. The "6mark" rule applies to both of them,
generating two lifted expressions, which then reduce in parallel and eventually merge,
as shown in this reduction graph (generated and rendered by Redex).

(+ (+ 1 2) (+ 3 4))

((lambda (lifted)

   (+ lifted (+ 3 4)))

 (+ 1 2))

((lambda (lifted)

   (+ (+ 1 2) lifted))

 (+ 3 4))

((lambda (lifted)

   (+ lifted (+ 3 4)))

 3)

((lambda (lifted)

   (+ (+ 1 2) lifted))

 7)

((lambda () (+ 3 (+ 3 4))))((lambda () (+ (+ 1 2) 7)))

(begin (+ 3 (+ 3 4)))(begin (+ (+ 1 2) 7))

(+ 3 (+ 3 4))(+ (+ 1 2) 7)

(+ 3 7)

10

17



5.2 Testing the Formal Semantics, a First Attempt
In general, a reduction relation like→ satisfies the following two properties, commonly
known as progress and preservation:

progress If p is a closed program state, consisting of a store and a program expression,
then either p is either a final result (i.e., a value or an uncaught exception) or p
reduces (i.e., there exists a p′ such that p→ p′).

preservation If p is a closed program state and p → p′, then p′ is also a closed
program state.

Together these properties ensure that the semantics covers all of the cases and thus an
implementation that matches the semantics always produces a result (for every termi-
nating program).

5.2.1 Progress

These properties can be formulated directly as predicates on terms. Progress is a simple
boolean combination of a result? predicate (defined via a redex-match that determines
if a term is a final result), an open? predicate, and a test to make sure that apply-
reduction-relation finds at least one possible step. The open? predicate uses a free-
vars function (not shown, but 29 lines of Redex code) that computes the free variables
of an R6RS expression.

;; progress? : program→ boolean
(define (progress? p)

(or (open? p)
(result? p)
(not (= 0 (length

(apply-reduction-relation
reductions
p))))))

;; open? : program→ boolean
(define (open? p)

(not (= 0 (length (free-vars p)))))
Given that predicate, we can use redex-check to test it on the R6RS semantics,

using the top-level non-terminal (p∗).
(redex-check r6rs p∗ (progress? (term p∗)))

Bug one This test reveals one bug, a problem in the interaction between letrec∗ and
set!. Here is a small example that illustrates the bug.

(store ()
(letrec∗ ([y 1]

[x (set! y 1)])
y))

18



All R6RS terms begin with a store. In general, the store binds variable to values repre-
senting the current mutable state in a program. In this example, however, the store is
empty, and so () follows the keyword store.

After the store is an expression. In this case, it is a letrec∗ expression that binds
y to 1 then binds x to the result of the assignment expression (set! y 1). The informal
report does not specify the value produced by an assignment expression, and the formal
semantics models this under-specification by rewriting these expressions to an explicit
unspecified term, intended to represent any Scheme value. The bug in the formal se-
mantics is that it neglects to provide a rule that covers the case where an unspecified
value is used as the initial value of a letrec∗ binding.

Although the above expression triggers the bug, it does so only after taking several
reduction steps. The progress? property, however, checks only for a first reduction
step, and so Redex can only report a program state like the following, which uses some
internal constructs in the R6RS semantics.

(store ((lx-x bh))
(l! lx-x unspecified))

Here (and in the presentation of subsequent bugs) the actual program state that Redex
identifies is typically somewhat larger than the example we show. Manual simplifica-
tion to simpler states is straightforward, albeit tedious.

5.2.2 Preservation

The preservation? property is a bit more complex. It holds if the expression has free
variables or if each each expression it reduces to is both well-formed according to the
grammar of the R6RS programs and has no free variables.

;; preservation? : program→ boolean
(define (preservation? p)

(or (open? p)
(andmap (λ (q)

(and (well-formed? q)
(not (open? q))))

(apply-reduction-relation
reductions p))))

(redex-check r6rs p∗ (preservation? (term p∗)))
Running this test fails to discover any bugs, even after tens of thousands of random
tests. Manual inspection of just a few random program states reveals why: with high
probability, a random program state has a free variable and therefore satisfies the prop-
erty vacuously.

5.3 Testing the Formal Semantics, Take 2
A closer look at the semantics reveals that we can usually perform at least one evalu-
ation step on an open term, since a free variable is only a problem when the reduction
system immediately requires its value. This observation suggests testing the following
property, which subsumes both progress and preservation: for any program state, either

19



• it is a final result (either a value or an uncaught exception),

• it does not reduce and it is open, or

• it does reduce, all of the terms it reduces to have the same (or fewer) free vari-
ables, and the terms it reduces to are also well-formed R6RS expressions.

The Scheme translation mirrors the English text, using the helper functions re-
sult? and well-formed?, both defined using redex-match and the corresponding non-
terminal in the R6RS grammar, and subset?, a simple Scheme function that compares
two lists to see if the elements of the first list are all in the second.

(define (safety? p)
(define fvs (free-vars p))
(define nexts (apply-reduction-relation

reductions p))
(or (result? p)

(and (= 0 (length nexts))
(open? p))

(and (not (= 0 (length nexts)))
(andmap (λ (p2)

(and (well-formed? p2)
(subset? (free-vars p2)

fvs)))
nexts))))

(redex-check r6rs p∗ (safety? (term p∗)))
The remainder of this subsection details our use of the safety? predicate to uncover

three additional bugs in the semantics, all failures of the preservation property.

Bug two The second bug is an omission in the formal grammar that leads to a bad
interaction with substitution. Specifically, the keyword make-cond was allowed to be a
variable. This, by itself, would not lead directly to a violation of our safety property, but
it causes an error in combination with a special property of make-cond—namely that
make-cond is the only construct in the model that uses strings. It is used to construct
values that represent error conditions. Its argument is a string describing the error
condition.

Here is an example term that illustrates the bug.
(store () ((λ (make-cond) (make-cond ""))

null)))
According to the grammar of R6RS, this is a legal expression because the make-cond in
the parameter list of the λ expression is treated as a variable, but the make-cond in the
body of the λ expression is treated as the keyword, and thus the string is in an illegal
position. After a single step, however, we are left with this term (store () (null "")) and
now the string no longer follows make-cond, which is illegal.

The fix is simply to disallow make-cond as a variable, making the original expres-
sion illegal.

20



Bug three The next bug triggers a Scheme-level error when using the substitution
metafunction. When a substitution encounters a λ expression with a repeated parame-
ter, it fails. For example, supplying this expression

(store () ((λ (x) (λ (x x) x))
1))

to the safety? predicate results in this error:
r6rs-subst-one: clause 3 matched

(r6rs-subst-one (x 1 (lambda (x x) x)))

2 different ways

The error indicates that the metafunction r6rs-subst-one, one of the substitution helper
functions from the semantics, is not well-defined for this input.

According to the grammar given in the informal portion of the R6RS, this program
state is not well-formed, since the names bound by the inner λ expression are not
distinct. Thus, the fix is not to the metafunction, but to the grammar of the language,
restricting the parameter lists of λ expressions to variables that are all distinct.

One could also find this bug by testing the metafunction r6rs-subst-one directly.
Specifically, testing that the metafunction is well-defined on its input domain also re-
veals this bug.

Bug four The final bug actually is an error in the definition of the substitution func-
tion. The expression

(store () ((λ (x) (letrec ([x 1]) 1))
1))

reduces to this (bogus) expression:
(store () ((λ () (letrec ((3 1)) 2))))

That is, the substitution function replaced the x in the binding position of the letrec as
if the letrec-binder was actually a reference to the variable. Ultimately the problem
is that r6rs-subst-one lacked the cases that handle substitution into letrec and letrec∗
expressions.

Redex did not discover this bug until we supplied the #:source keyword, which
prompted it to generate many expressions matching the left-hand side of the "6appN"
rule described in section 5.1, on page 16.

5.4 Status of fixes
The version of the R6RS semantics used in this exploration does not match the official
version at http://www.r6rs.org, due to version skew of Redex. Specifically, the
semantics was written for an older version of Redex and redex-check was not present
in that version. Thus, in order to test the model, we first ported it to the latest version of
Redex. We have verified that all four of the bugs are present in the original model, and
we used redex-check to be sure that every concrete term in the ported model is also in
the original model (the reverse is not true; see the discussion of bug three).

Finally, the R6RS is going to appear as book published by Cambridge Press [63]
and the fixes listed here will be included.

21

http://www.r6rs.org


p*

(store (sf ...) es)

 p*

sf ...

(es es ...)

 es

(lambda f es es ...)

 es

es es ...

 es ...

(x ...)

 f

nonproc

 es  es ...

x x ...

 x ...

(make-cond string)

 nonproc

make-cond

 x  x ...

""

 string

nonproc

 es  es ...

null

 nonproc

Figure 5: Smallest example of bug two, as a binary tree (left) and as an R6RS expres-
sion (right)

5.5 Search space sizes
Although all four of the bugs in section 5.3 can be discovered with fairly small exam-
ples, the search space corresponding to the bug can still be fairly large. In this section
we attempt to quantify the size of that search space.

The simplest way to measure the search space is to consider the terms as if they
were drawn from an uniform, s-expression representation, i.e., each term is either a
pair of terms or a symbol, using repeated pairs to form lists. As an example, consider
the left-hand side of figure 5. It shows the parse tree for the smallest expression that
discovers bug two, where the dots with children are the pair nodes and the dots without
children are the list terminators.

The Dx function computes the number of such trees at a given depth (or smaller),
where there are x variables in the expression.

Dx(0) = 61 + 1 + x
Dx(n) = 61 + 1 + x + Dx(n− 1)2

The 61 in the definition is the number of keywords in the R6RS grammar, which
just count as leaf nodes for this function; the 1 accounts for the list terminator. For
example, the parse tree for bug two has depth 9, and there are more than 2211

other
trees with that depth (or smaller).

Of course, using that grammar can lead to a much larger state space than necessary,
since it contains nonsense expressions like ((λ) (λ) (λ)). To do a more accurate count,
we should determine the depth of each of these terms when viewed by the actual R6RS

22



Uniform, R6RS R6RS R6RS
S-expression one var, one var, keywords

B
ug

#

grammar no dups with dups as vars

1 D1(6) > 228
p∗(3) > 211

2 D0(9) > 2211
p∗k(6) ≈ 2556

3 D1(11) > 2213
p∗d(8) > 22,969

mf (5) > 2501

4 D1(12) > 2214
p∗(5) > 2110

Figure 6: Exhaustive search space sizes for the four bugs

grammar. The right-hand side of figure 5 shows the parse tree for bug two, but where
the internal nodes represent expansions of the non-terminals from the R6RS semantics’s
grammar. In this case, each arrow is labeled with the non-terminal being expanded, the
contents of the nodes show what the non-terminal was expanded into, and the dot nodes
correspond to expansions of ellipses that terminate the sequence being expanded.

We have computed the size of the search space needed for each of the bugs, as
shown in figure 6. The first column shows the size of the search space under the
uniform grammar. The second column shows the search space for the first and fourth
bugs, using a variant of the R6RS grammar that contains only a single variable and does
not allow duplicate variables, i.e., it assumes that bug three has already been fixed,
which makes the search space smaller. Still, the search space is fairly large and the
function governing its size is complex, just like the R6RS grammar itself. The function
is shown in figure 7, along with the helper functions it uses. Each function computes
the size of the search space for one of the non-terminals in the grammar. Because p∗ is
the top-level non-terminal, the function p∗ computes the total size.

Of course it does not make sense to use that grammar to measure the search space
for bug three, since it required duplicate variables. Accordingly we used a slightly
different grammar to account for it, as shown in the third column in figure 6. The size
function we used, p∗d, has a subscript d to indicate that it allows duplicate variables and
otherwise has a similar structure to the one given in figure 7.

Bug three is also possible to discover by testing the metafunction directly, as dis-
cussed in section 5.3. In that case, the search space is given by the mf function which
computes the size of the patterns used for r6rs-subst-one’s domain. Under that metric,
the height of the smallest example that exposes the bug is 5. This corresponds to testing
a different property, but would still find the bug, in a much smaller search space.

Finally, our approximation to the search space size for bug two is shown in the
rightmost column. The k subscript indicates that variables are drawn from the entire set
of keywords. Counting this space precisely is more complex than the other functions,
because of the restriction that variables appearing in a parameter list must be distinct.
Indeed, our p∗k function over-counts the number of terms in that search space for that
reason.4

4Amusingly, if we had not found bug three, this would have been an accurate count.

23



p∗(0) = 1 p∗(n + 1) = (es(n) ∗ sfs(n)) + v(n) + 1
ês(0) = 1 ês(n + 1) = (ês(n) ∗ es(n)) + 1
λ̂(0) = 1 λ̂(n + 1) = (λ̂(n) ∗ λ(n)) + 1

Qs(0) = 1 Qs(n + 1) = (Qs(n) ∗ s(n)) + 1
ê(0) = 1 ê(n + 1) = (ê(n) ∗ e(n)) + 1
v̂(0) = 1 v̂(n + 1) = (v̂(n) ∗ v(n)) + 1
E(0) = 1 E(n + 1) = (E(n) ∗ E∗(n))

+ (E(n) ∗ Fo(n)) + 1
E∗(0) = 0 E∗(n + 1) = λ̂(n) + (e(n)2 ∗ x (n)) + F ∗(n)
F ∗(0) = 0 F ∗(n + 1) = ê(n) + (ê(n) ∗ v̂(n))

+ (ê(n) ∗ v(n)) + (ê(n) ∗ e(n) ∗ 2)
Fo(0) = 0 Fo(n + 1) = (x (n) ∗ 2) + v̂(n)2 + e(n)2

b(0) = 1 b(n + 1) = v(n) + 1
e(0) = 1 e(n + 1) = (λ̂(n) ∗ e(n))

+ (ê(n) ∗ e(n) ∗ lb(n) ∗ 2)
+ (ê(n) ∗ e(n) ∗ 3) + (e(n) ∗ x (n) ∗ 2)
+ (e(n)3 ∗ x (n)) + (x (n) ∗ 2) + e(n)3

+ nonλ(n) + λ(n) + 1
es(0) = 2 es(n + 1) = (ês(n) ∗ es(n) ∗ f (n))

+ (λ̂(n) ∗ e(n))
+ (ês(n) ∗ es(n) ∗ lbs(n) ∗ 2)
+ (ês(n) ∗ es(n) ∗ 3)
+ (es(n) ∗ x (n) ∗ 2) + (E(n) ∗ x (n)2)
+ (e(n)3 ∗ x (n)) + (x (n) ∗ 2) + es(n)3

+ nonλ(n) + pλ(n) + seq(n) + sqv(n)
+ 2

f (0) = 1 f (n + 1) = (x (n) ∗ 2) + 1
lb(0) = 1 lb(n + 1) = (e(n) ∗ x (n)) + 1

lbs(0) = 1 lbs(n + 1) = (es(n) ∗ x (n)) + 1
nonλ(0) = 2 nonλ(n + 1) = pp(n) + sqv(n) + x (n) + 2

pp(0) = 0 pp(n + 1) = x (n) ∗ 2
pλ(0) = 4 pλ(n + 1) = proc1(n) + 15
λ(0) = 0 λ(n + 1) = (ê(n) ∗ e(n) ∗ f (n))

+ (E(n) ∗ x (n)2) + pλ(n)
proc1(0) = 7 proc1(n + 1) = 9

s(0) = 1 s(n + 1) = seq(n) + sqv(n) + x (n) + 1
seq(0) = 0 seq(n + 1) = (Qs(n) ∗ s(n) ∗ sqv(n))

+ (Qs(n) ∗ s(n) ∗ x (n))
+ (Qs(n) ∗ s(n))

sf (0) = 0 sf (n + 1) = (b(n) ∗ x (n)) + (v(n)2 ∗ pp(n))
sfs(0) = 1 sfs(n + 1) = sf (n) + 1
sqv(0) = 2 sqv(n + 1) = 3

v(0) = 0 v(n + 1) = nonλ(n) + λ(n)
x (0) = 0 x (n + 1) = 1

Figure 7: Size of the search space for R6RS expressions

24



6 Case Study: The MzScheme Machine and Bytecode
Verifier

Our experience with the R6RS formal semantics suggests that randomized testing may
be fruitfully applied to an off-the-shelf semantics, without the need for significant
changes to accommodate testing. To explore the use of randomized testing during the
development process, we integrated Redex’s randomized testing features into the de-
velopment of a formal model of the MzScheme virtual machine. This model provides
an operational semantics for an abstract machine and a formalization of the bytecode
verification algorithm used in the production virtual machine. Using randomized test-
ing, we checked two properties of the model. First, if the bytecode verifier accepts a
program, then the abstract machine does not get stuck while evaluating that program.
Second, optimizations modeled in the abstract machine do not change the meaning of
programs accepted by the bytecode verifier. Section 6.9 states these properties for-
mally.

Our usual process for developing such models includes the manual construction
of a substantial test suite. We continued this practice for the virtual machine model,
performing randomized tests only after a change or new feature passed the existing test
suite. To provide some idea of the size of the hand-crafted test suite, the suite comprises
192 tests: 90 tests for the 71 cases in the definition of the abstract machine, and 102
tests for the 86 cases in the definition of the verification algorithm.

Despite these hand-crafted tests, randomized testing discovered 22 errors in our
formalization of the abstract machine and verification algorithm (i.e., bugs present in
our model but not the virtual machine’s production implementation). Our formalization
of the virtual machine included the first code review of its verification algorithm, and
a fresh set of eyes discovered 7 bugs in the algorithm before we were able to run
randomized tests on the model. To help gauge the effectiveness of Redex’s randomized
testing framework, we intentionally left these bugs in the model to see if they would be
found.

The remainder of this section provides an overview of the MzScheme bytecode lan-
guage (section 6.1), defines the abstract machine’s operational semantics (sections 6.2–
6.7), formalizes the bytecode verification algorithm (section 6.8), and presents the re-
sults of randomized testing (section 6.9).

6.1 Bytecode Overview
The MzScheme virtual machine is a stack-based machine. It has neither programmer-
visible registers (e.g., as in the JVM[45]) nor explicit variables (e.g., as in the SECD
machine[40]); instead, bytecode specifies its operands as offsets from the top of a stack
of values maintained by the machine. Figure 8 gives the grammar. The first six ex-
pression forms load the value stored at a given stack offset, the next three push a value
on the stack, and the four after those update the value at a given offset. The remaining
productions correspond to forms in MzScheme’s surface-level syntax.

The rest of this section demonstrates the bytecode language by example, showing
surface-level expressions and their translations to bytecode, beginning with the follow-

25



ing procedure.
(λ (x y) (begin (x) (x) (y))

This procedure’s body translates to the following bytecode.
(seq (application (loc 0))

(application (loc-clr 0))
(application (loc-noclr 1)))

The loc, loc-clr, and loc-noclr forms load the value stored at the given stack offset.
In this case, the procedure’s caller pushes x and y on the stack, and the procedure’s
body retrieves them using the offsets 0 and 1. The body’s second reference to x uses
loc-clr rather than loc because loc-clr clears the target slot after reading it, allowing
the compiler to produce safe-for-space bytecode [1, 10]. The loc-noclr behaves just
like loc at runtime; the “noclr” annotation serves only as a promise that no subsequent
instruction clears this slot, helping to ensure the safety of the machine’s optimizations.

In the example above, the procedure’s local variables remain at fixed offsets from
top of the stack, but in general, a variable’s relative location may shift as the procedure
executes. For example, consider the following Scheme procedure.

(λ (x)
(begin

x
(let ([y x])

(begin y x))))
Its body corresponds to the following bytecode, in which the seq and let-one expres-
sions correspond respectively to the input’s begin and let expressions.

(seq (loc 0) ; x
(let-one (loc 1) ; x

(seq (loc 0) ; y
(loc 1)))) ; x

The first x reference uses offset 0, but the third reference uses offset 1, because the let-
one expression pushes y’s value on the stack before execution reaches the body of the
let-one expression. In fact, this push occurs even before execution reaches the let-one’s
first sub-expression, and consequently the second x reference also uses offset 1.

When a let-bound variable is the target of a set! expression, the MzScheme com-
piler represents that variable as a heap-allocated box. Consider the body of the follow-
ing procedure, for example.

(λ (x y)
(let ([z x])

(begin (set! z y)
z)))

With this representation, the expression corresponds to the following bytecode.
(let-void 1

(install-value 0 (loc 1)
(boxenv 0

(install-value-box 0 (loc 2)
(loc-box 0)))))

26



e ::= (loc n)

 | (loc-noclr n)

 | (loc-clr n)

 | (loc-box n)

 | (loc-box-noclr n)

 | (loc-box-clr n)

 | (let-one e e)

 | (let-void n e)

 | (let-void-box n e)

 | (boxenv n e)

 | (install-value n e e)

 | (install-value-box n e e)

 | (application e e ...)

 | (seq e e e ...)

 | (branch e e e)

 | (let-rec (l ...) e)

 | (indirect x)

 | (proc-const (τ ...) e)

 | (case-lam l ...)

 | l

 | v

l ::= (lam (τ ...) (n ...) e)

v ::= number

 | void

 | 'variable

 | b

τ ::= val | ref

n ::= natural

b ::= #t | #f

x, y ::= variable

Figure 8: The grammar for bytecode expressions e.

And this is the progression of the values stack as the machine evaluates the bytecode,
assuming the procedure’s caller supplies ’a for x and ’b for y.

y
x
z

'b
'a

sp 

'b
'a

sp 

'b
'a
'a

'b
'a

'a

'b
'a

'b

First, the let-void expression pushes 1 uninitialized slot on the stack. Second, an
install-value expression initializes that slot with x’s value, which is now at offset 1.
Third, a boxenv expression allocates a fresh box containing the value at offset 0 then
writes a pointer to that box at offset 0. Fourth, an install-value-box expression writes
y’s value, now at offset 2, into the box referenced by the pointer at offset 0. Finally, a
loc-box expression retrieves the value in the box.

The application form has one subtlety. As the machine evaluates an expression
(application e0 . . . en), it must record the result from each sub-expression ei that it
evaluates. To accommodate these intermediate results, the machine pushes n unini-
tialized slots on the stack before evaluating any sub-expression. This space suffices to
hold all prior results while the machine evaluates the final sub-expression. For exam-
ple, consider the bytecode for the body of the procedure (λ (x y z) (x y z)).

(application (loc 2) (loc 3) (loc 4))

27



This application produces two intermediate results, the values fetched by (loc 2) and
(loc 3), and so the machine pushes two uninitialized slots when it begins evaluating the
application. This push shifts x’s offset from 0 to 2, y’s offset from 1 to 3, and z’s offset
from 2 to 4.

A lam expression denotes a procedure. This form includes the stack locations of
the procedure’s free variables. Evaluating a lam expression captures the values at these
offsets, and applying the result unpacks the captured values onto the stack, above the
caller’s arguments. For example, the surface-level procedure (λ (x y) (begin (f ) (x)
(g) (y))) compiles to the following bytecode, assuming f and g respectively reside at
offsets 2 and 9 when evaluating the lam expression.

(lam (val val) (2 9)
(seq (application (loc-clr 0))

(application (loc-clr 2))
(application (loc-clr 1))
(application (loc-clr 3))))

The lam’s first component, described in more detail in section 6.8, gives a coarse-
grained type annotation for each of the procedure’s parameters. The second component
lists the offsets of the procedure’s free variables.

The machine dynamically allocates a closure record even for a lam expression
that capture no values. To allow the compiler to avoid this runtime cost, the machine
provides the proc-const form. A proc-const expression denotes a closed procedure;
unlike a lam expression, it does not close over anything, and it is preallocated when
the code is loaded into the machine.

The bytecode let-rec form represents a surface-level letrec in which the right-hand
side of each definition is a λ-expression. For example, consider the following recursive
definition.

(letrec ([f (λ (x) (begin (f x) (g x)))]
[g (λ (x) (g x))])

f )
This definition corresponds to the following bytecode.

(let-void 2
(let-rec ((lam (val) (0 1)

(seq (application (loc-clr 1) (loc 3))
(application (loc 2) (loc 3))))

(lam (val) (1)
(application (loc 1) (loc 2))))

(loc 0)))
This let-rec expression heap-allocates an uninitialized closure for each lam and writes
pointers to these closures in the space pushed by let-void. Next, the let-rec closes the
lam expressions—the first captures both closure pointers, while the second captures
only itself. Finally, the body of the let-rec returns the pointer to the first closure. The
following shows the machine’s stack and the closure records as the machine evaluates
the let-rec expression above.

28



f
g

clos

clos

clos

clos

When at least one of the surface-level right-hand sides is not a λ-expression, the
MzScheme compiler reverts to boxes to tie the knots. For example, consider the adding
the clause [x (f g)] to the definition above.

(letrec ([f (λ (x) (begin (f x) (g x)))]
[g (λ (x) (g x))]
[x (f g)])

f )
This is the corresponding bytecode.

(let-void-box 3
(install-value-box 0

(lam (val) (0 1)
(seq (application (loc-box-clr 1) (loc 3))

(application (loc-box 2) (loc 3))))
(install-value-box 1

(lam (val) (1)
(application (loc-box 1) (loc 2)))

(install-value-box 2
(application (loc-box 0) (loc-box-clr 1))
(loc-box 0)))))

The let-void-box form is similar to let-void, but instead of pushing uninitialized slots,
it pushes pointers to fresh boxes initialized with the black hole value undefined.

To improve performance, the bytecode language supports one other representation
of recursive procedures: cycles in the bytecode itself. Cycles in bytecode are marked
by indirect expressions; such expressions are the only ones that can be the target of a
cycle. For example the procedure

(letrec ([loop (λ () (loop))])
loop)

corresponds this cyclic bytecode:

(indirect (proc-const () (application   )))

In the grammar of figure 8, the bytecode’s cycle is replaced by the expression (indi-
rect x1), along with the following entry in a separate table of named cycles, described
in section 6.2.

(x1 (proc-const () 0 (application (indirect x1))))

29



p ::= (V S H T C) | error

V ::= v | uninit | (box x)

S ::= (u ... s)

s ::= ε | S

u ::= v | uninit | (box x)

H ::= ((x h) ...)

h ::= v | ((clos n (u ...) x) ...)

T ::= ((x e) ...)

C ::= (i ...)

i ::= e

 | (swap n) | (reorder i (e m) ...)

 | (set n) | (set-box n)

 | (branch e e)

 | framepop | framepush

 | (call n) | (self-call x)

l ::= (lam n (n ...) x)

v ::= ....

 | undefined

 | (clos x)

e ::= ....

 | (self-app x e0 e1 ...)

m ::= n | ?

Figure 9: The grammar for machine states.

The remaining bytecode forms are straightforward. The branch and case-lam
forms represent surface-level if and case-lambda expressions, loc-box-clr and loc-
box-noclr are the box analogs of loc-clr and loc-noclr, and the non-terminal w defines
bytecode constants.

6.2 Bytecode Loading
The bytecode language evaluated by the MzScheme machine is slightly different than
the language produced by the compiler and analyzed by the verifier. This section de-
scribes those differences and the loader that transforms the bytecode in preparation for
evaluation.

Figure 9 gives the grammar of machine states. This grammar extends the grammar
in figure 8, adding a number of non-terminals relevant to the machine states, as well
as extending the w and e non-terminals to support closure values and an optimization
described in section 6.4.

A machine state p is either an error or a tuple of five components, one for each of
the registers in the machine: V , S, H, T , and C. The first four registers are described
in the left-hand column of figure 9. The value (V) register holds the result of the most
recently evaluated expression. It can be either uninitialized, a value, or a box that refers
to some value in the heap. The S register represents the machine’s stack. It is essentially
a list (of u), but segmented into frames that simplify pushing and popping sequences of
values. Like the value register, each position can be either uninitialized, a value, or a
box. The H register represents the machine’s heap, a table mapping names to values or
to closure records. A closure record contains an arity annotation, the values captured
by the closure, and a pointer into the machine’s text segment T . The text segment
holds entries representing bytecode cycles and the bodies of all lam and proc-const
expressions. The C register, shown in the middle column of figure 9, represents the
machine’s control stack. It consists of a sequence of instructions, i, which are either
whole bytecode expressions or one of several tokens that record the work remaining in
a partially evaluated expression.

The final column of figure 9 shows how the runtime representation of bytecode
differs from the form generated by the compiler and accepted by the verifier. First,
bytecode expressions (e) now include a self-app form that identifies recursive tail-calls.

30



MzScheme’s JIT compiler optimizes these applications, as described in section 6.4.
Second, values (v) now include a clos form, representing pointers to closures, and the
blackhole value undefined. Third, the redefinition of lam replaces type annotations
with an arity label and replaces the procedure body with a pointer into the text segment.

The load function constructs an initial machine state from an expression e where
indirect cycles have been rewritten into an initial text segment T.

load : e T → (V S H T C)
load[[e, ((x0 e0) ...) ]]  = (uninit

(((ε)))

concat[[H, H0, ... ]]

concat[[T, ((x0 e0*) ...), T0, ... ]]

(e*))

 where (e* H T) = load*[[e, - ]] , ((e0* H0 T0) ...) = (load*[[e0, - ]]  ...)

The value register begins uninitialized, and the values stack begins with three empty
segments. This stack configuration corresponds to the evaluation of the body of a
procedure with no arguments, with no values in its closure, and with no local variables
pushed by its body. The initial value of the final three registers are built via the load*
function, shown in figure 10.

In addition to a bytecode expression e, the load* function accepts an accumulator φ
that controls when application expressions are transformed into self-app expressions.
This function produces a new bytecode expression suitable for evaluation, as well as
initial values for the machine’s heap and text segment registers. The initial heap con-
tains statically allocated closures for each proc-const in the input, and the text segment
contains the (translated) bodies of the proc-const and lam expressions in the input, as
well as the entries that break the expressions cycles.

The first two cases deal with self-app expressions. When e is in tail position with
respect to a recursive procedure, the φ parameter is a triple of two numbers and a
variable. The first number is the position in the stack of the procedure’s self-pointer,
the second number is the arity of the procedure, and the variable is the location in the
text segment holding the procedure’s body. The φ parameter is not a triple when the
loader is not transforming a recursive procedure and when e is not in tail position.

Using φ, the first case of load* transforms an application expression into a self-app
expression when the arity of the application matches the arity recorded in φ, and when
the function being called is located at the proper position on the stack. The second case
of load* calls load-lam-rec to construct new values of φ and recur with the bindings in
the let-rec.

load-lam-rec : e n→ e H T
load-lam-rec[[(lam (τ0 ...) (n0 ... ni ni+1 ...) e), ni ]]  = 

((lam n (n0 ... ni ni+1 ...) x) H ((x e*) (x0 e0) ...))

 where n = #(τ0 ...), x = a fresh variable, 

(e* H ((x0 e0) ...)) = load*[[e, (#(n0 ...)   n x) ]] , 

 ni ∉ {ni+1, ...}

load-lam-rec[[l, nj ]]  = 

load*[[l, - ]]

31



load* : e φ→ e H T φ ::= - | (n n x)

load*[[(application (loc-noclr n) e1 ...), (np na x) ]]  = ((self-app x (loc-noclr n) e1* ...)

concat[[H1, ... ]]

concat[[T1, ... ]] )

 where  n = np + #(e1 ...),  na = #(e1 ...), ((e1* H1 T1) ...) = (load*[[e1, - ]]  ...)

load*[[(let-rec (l0 ...) e), φ ]]  = ((let-rec (l0* ...) e*)

concat[[H, H0, ... ]]

concat[[T, T0, ... ]] )

 where (e* H T) = load*[[e, φ ]] , (n0 ...) = (0 ... #(l0 ...) -1), 

((l0* H0 T0) ...) = (load-lam-rec[[l0, n0 ]]  ...)

load*[[(application e0 e1 ...), φ ]]  = ((application e0* ...)

concat[[H0, ... ]]

concat[[T0, ... ]] )

 where ((e0* H0 T0) ...) = (load*[[e0, - ]]  load*[[e1, - ]]  ...)

load*[[(let-one er eb), φ ]]  = ((let-one er* eb*) concat[[Hr, Hb ]]  concat[[Tr, Tb ]] )

 where (er* Hr Tr) = load*[[er, - ]] , (eb* Hb Tb) = load*[[eb, φ+[[φ, 1 ]] ]]

load*[[(let-void n e), φ ]]  = ((let-void n e*) H T)

 where (e* H T) = load*[[e, φ+[[φ, n ]] ]]

load*[[(let-void-box n e), φ ]]  = ((let-void-box n e*) H T)

 where (e* H T) = load*[[e, φ+[[φ, n ]] ]]

load*[[(boxenv n e), φ ]]  = ((boxenv n e*) H T)

 where (e* H T) = load*[[e, φ ]]

load*[[(install-value n er eb), φ ]]  = ((install-value n er* eb*)

concat[[Hr, Hb ]]

concat[[Tr, Tb ]] )

 where (er* Hr Tr) = load*[[er, - ]] , (eb* Hb Tb) = load*[[eb, φ ]]

load*[[(install-value-box n er eb), φ ]]  = ((install-value-box n er* eb*)

concat[[Hr, Hb ]]

concat[[Tr, Tb ]] )

 where (er* Hr Tr) = load*[[er, - ]] , (eb* Hb Tb) = load*[[eb, φ ]]

load*[[(seq e0 ... en), φ ]]  = ((seq e0* ... en*)

concat[[H0, ..., Hn ]]

concat[[T0, ..., Tn ]] )

 where ((e0* H0 T0) ...) = (load*[[e0, - ]]  ...), (en* Hn Tn) = load*[[en, φ ]]

load*[[(branch ec et ef), φ ]]  = ((branch ec* et* ef*)

concat[[Hc, Ht, Hf ]]

concat[[Tc, Tt, Tf ]] )

 where (ec* Hc Tc) = load*[[ec, - ]] , (et* Ht Tt) = load*[[et, φ ]] , (ef* Hf Tf) = load*[[ef, φ ]]

load*[[(lam (τ0 ...) (n0 ...) e), φ ]]  = ((lam n (n0 ...) x) H ((x e*) (x0 e0) ...))

 where x = a fresh variable, n = #(τ0 ...), (e* H ((x0 e0) ...)) = load*[[e, - ]]

load*[[(proc-const (τ0 ...) e), φ ]]  = ((clos x)

((x ((clos n () x*))) (x0 h0) ...)

((x* e*) (xi ei) ...))

 where x = a fresh variable, x* = a fresh variable, n = #(τ0 ...), 

(e* ((x0 h0) ...) ((xi ei) ...)) = load*[[e, - ]]

load*[[(case-lam l0 ...), φ ]]  = ((case-lam l0* ...) concat[[H0, ... ]]  concat[[T0, ... ]] )

 where ((l0* H0 T0) ...) = (load*[[l0, φ ]]  ...)

load*[[e, φ ]]  = (e () ())

Figure 10: Construction of the initial machine state.

32



The load-lam-rec function accepts an expression from the right-hand side of a let-
rec and a number, ni, indicating the position where the function occurs in the let-rec.
If it is given a lam expression whose closure also contains ni, then the function closes
over itself and thus load-lam-rec invokes load* with φ as a triple. The second case of
load-lam-rec just calls load*, with an empty φ.

The remaining cases in load* recursively process the structure of the bytecode,
using φ+ to adjust φ as the expressions push values onto the stack.

φ+ : φ n→ φ

φ+[[-, n ]]  = -

φ+[[(np na x), n ]]  = (n + np   na x)

Finally, the cases for lam, proc-const, and case-lam move the procedure bodies
into the text segment, and the case for proc-const also moves its argument into the
initial heap. Each of the cases also uses the concat metafunction to combine the heaps
and text segments from loading sub-expressions.

6.3 Bytecode Evaluation
The MzScheme machine is given as series of transition rules that dispatch on the first
element in the C register. Figure 11 gives the machine transitions related to stack
references. The [loc] rule copies the value at the given stack offset into the machine’s
value register, via the stack-ref metafunction, shown at the bottom of figure 11. Note
that the stack-ref metafunction only returns v and (box x); if the relevant position on
the stack holds uninit, then stack-ref is undefined and the machine is stuck.

The [loc-noclr] rule is just like the [loc] rule, replacing the value register with the
corresponding stack position. The [loc-clr] rule moves the value out of the stack into
the value register as well, but it also clears the relevant position in the stack to facilitate
garbage collection. The [loc-box] rule performs an indirect load, following the pointer
at the given offset to retrieve a heap allocated value. The [loc-box-noclr] and [loc-box-clr]

rules are similar to [loc-noclr] and [loc-clr] but operate on slots containing boxes.
Figure 12 gives the rules for the stack manipulation instructions that are not byte-

code expressions. These instructions are not available to the bytecode programmer
because they allow free-form manipulation of the stack; instead, various other instruc-
tions reduce to uses of these instructions. The [set] rule sets a location on the stack
to the contents of the value register. Similarly, the [set-box] rule sets the contents of a
box on the stack to the contents of the value register. The [swap] rule swaps the value
register with the contents of a stack slot.

The last two rules in figure 12 push and pop frames on the stack. In each case,
the instructions work on frames three at a time, to mimic the stack structure that sup-
ports procedure invocation (described in section 6.4). As Steele advocates [68], these
instructions are used before and after the evaluation of any non-tail expression, and
procedure application always pops the active frame.

The rules in figure 13 change the contents of stack locations. The install-value and
install-value-box instructions both evaluate their first argument and store the result
either directly in the stack or into a box on the stack (respectively) and then evaluate

33



(V S H T ((loc n) i ...))  (stack-ref[[n, S ]]  S H T (i ...))  [loc]

(V S H T ((loc-noclr n) i ...))  (stack-ref[[n, S ]]  S H T (i ...))  [loc-noclr]

(V S H T ((loc-clr n) i ...))  [loc-clr]

(stack-ref[[n, S ]]  stack-set[[uninit, n, S ]]  H T (i ...))

(V S H T ((loc-box n) i ...))  [loc-box]

(heap-ref[[stack-ref[[n, S ]] , H ]]  S H T (i ...))

(V S H T ((loc-box-noclr n) i ...))  [loc-box-noclr]

(heap-ref[[stack-ref[[n, S ]] , H ]]  S H T (i ...))

(V S H T ((loc-box-clr n) i ...))  [loc-box-clr]

(heap-ref[[stack-ref[[n, S ]] , H ]]  stack-set[[uninit, n, S ]]  H T (i ...))

stack-ref : n S→ s
stack-ref[[0, (v u ... s) ]]  = v

stack-ref[[0, ((box x) u ... s) ]]  = (box x)

stack-ref[[n, (u0 u1 ... s) ]]  = stack-ref[[n - 1 ,  (u1 ... s) ]]  where  n > 0

stack-ref[[n, ((u ... s)) ]]  = stack-ref[[n, (u ... s) ]]

stack-set : u n S→ S
stack-set[[u, n, (u0 ... un un+1 ... s) ]]  = (u0 ... u un+1 ... s)  where  n = #(u0 ...)

stack-set[[u, n, (u0 ... s) ]]  = (u0 ... stack-set[[u, n - #(u0 ...) ,  s ]] )

heap-ref : H x → h
heap-ref[[(box xi), ((x0 h0) ... (xi hi) (xi+1 hi+1) ...) ]]  = hi

heap-set : H x h→ H
heap-set[[h, (box xi), ((x0 h0) ... (xi hi) (xi+1 hi+1) ...) ]]  = ((x0 h0) ... (xi h) (xi+1 hi+1) ...)

Figure 11: Machine transitions related to looking at the stack.

their bodies. The boxenv instruction allocates a new box with the value at the specified
stack location and writes a pointer to the box at the same stack location.

Figure 14 shows the rules that allocate more space on the stack. The [let-one] rule
pushes an uninitialized slot, evaluates its right-hand side, storing the result in the unini-
tialized slot, then evaluates its body. The [let-void] rule pushes a fixed number of slots
onto the stack, also initializing them with uninit. The [let-void-box] rule pushes n slots
onto the stack, filling them with boxes initialized to the undefined value.

Figure 15 cover the rules for the creation of procedures. The first two close lam
and case-lam expressions appearing in arbitrary contexts, putting new closure records
into the heap and copying the contents of captured stack locations into the newly cre-
ated closures. The [let-rec] rule allocates closures for the lam expressions in its first
argument, after filling the top of the stack with pointers to the closures.

Figure 16 gives the rules for immediate values, branches, sequences and indirect
expressions. Values are moved in the value register. A branch expression pushes its
test position onto the control stack, followed by a branch instruction containing the
“then” and “else” branches. Once the test positions has been evaluated and its result

34



(V S H T ((set n) i ...))  [set]

(V stack-set[[V, n, S ]]  H T (i ...))

(v S H T ((set-box n) i ...))  [set-box]

(v S heap-set[[v, stack-ref[[n, S ]] , H ]]  T (i ...))

(V S H T ((swap n) i ...))  [swap]

(stack-ref[[n, S ]]  stack-set[[V, n, S ]]  H T (i ...))

(V (u0 ... (ui ... (uj ... s))) H T (framepop i ...))  [framepop]

(V s H T (i ...))

(V S H T (framepush i ...))  [framepush]

(V (((S))) H T (i ...))

Figure 12: Rules for implicit stack manipulation.

(V S H T ((install-value n er eb) i ...))  [install-value]

(V S H T (framepush er framepop (set n) eb i ...))

(V S H T ((install-value-box n er eb) i ...))  [install-value-box]

(V S H T (framepush er framepop (set-box n) eb i ...))

(V S ((x0 h0) ...) T ((boxenv n e) i ...))  [boxenv]

(V stack-set[[(box x), n, S ]]  ((x v) (x0 h0) ...) T (e i ...))

 where v = stack-ref[[n, S ]] , x fresh

Figure 13: Machine transitions related to changing the contents of the stack.

stored in the value register, either the [branch-true] or [branch-false] rule applies, dis-
patching to the appropriate sub-expression. The [seq-two] and [seq-many] rules handle
sequences and the [indirect] rule extracts an expression from the text segment to con-
tinue evaluation.

6.4 Bytecode Application
The rules for application expressions are more complex than the previous rules in order
to model two of the optimizations in the MzScheme JIT compiler, namely the ability to
reorder sub-expressions of an application and special support for recursive tail-calls,
dubbed self-apps.

To model those optimizations, our machine includes both reduction sequences that
do not perform the optimizations (modeling how MzScheme behaves when the inter-
preter runs) and those that do (modeling how MzScheme behaves when the JIT com-
piler runs). To properly explain these, we first show how a straightforward application
reduces and then discuss how the optimizations change the reduction sequences.

Consider the following sequence of machine states, showing an application of the
value at the second position in the stack to the values at the third and fourth posi-
tions. Since application expressions push temporary space before evaluating their

35



(V S H T ((let-one er eb) i ...))  [let-one]

(V push-uninit[[1, S ]]  H T (framepush er framepop (set 0) eb i ...))

(V S H T ((let-void n e) i ...))  [let-void]

(V push-uninit[[n, S ]]  H T (e i ...))

(V S ((x0 h0) ...) T ((let-void-box n e) i ...))  [let-void-box]

(V push[[((box xn) ...), S ]]  ((xn undefined) ... (x0 h0) ...) T (e i ...))

 where (xn ...) = n fresh variables

push-uninit : n S→ S
push-uninit[[0, S ]]  = S

push-uninit[[n, (u ... s) ]]  = push-uninit[[n - 1 ,  (uninit u ... s) ]]

push : (s...) S→ S
push[[(u0 ...), (ui ... s) ]]  = (u0 ... ui ... s)

Figure 14: Machine transitions related to pushing onto stack.

(V S ((x0 h0) ...) T ((lam n (n0 ...) xi) i ...))  [lam]

((clos x) S ((x ((clos n (stack-ref[[n0, S ]]  ...) xi))) (x0 h0) ...) T (i ...))

 where x fresh

(V S ((x0 h0) ...) T ((case-lam (lam n (n0 ...) xi) ...) i ...))  [case-lam]

((clos x) S ((x ((clos n (stack-ref[[n0, S ]]  ...) xi) ...)) (x0 h0) ...) T (i ...))

 where x fresh

(V S ((x0 h0) ...) T ((let-rec (l0 ...) e) i ...))  [let-rec]

(V S* ((x0 h0) ... (x ((clos n0 (stack-ref[[n00, S* ]]  ...) y0))) ...) T (e i ...))

 where (n ...) = (0 ... #(l0 ...) -1), S* = stack-set*[[((clos x) n), ..., S ]] , 

l0 = (lam n0 (n00 ...) y0), (x...) fresh

stack-set* : (u n) . . . S→ S
stack-set*[[S ]]  = S

stack-set*[[(u0 n0), (u1 n1), ..., S ]]  = stack-set*[[(u1 n1), ..., stack-set[[u0, n0, S ]] ]]

Figure 15: Machine transitions for procedure definition.

36



(V S H T (v i ...))  (v S H T (i ...))  [value]

(V S H T ((branch ec et ef) i ...))  [branch]

(V S H T (framepush ec framepop (branch et ef) i ...))

(v S H T ((branch et ef) i ...))  (v S H T (et i ...))  [branch-true]

 where  v ≠ #f

(#f S H T ((branch et ef) i ...))  (#f S H T (ef i ...))  [branch-false]

(V S H T ((seq e1 e2 e3 e4 ...) i ...))  [seq-many]

(V S H T (framepush e1 framepop (seq e2 e3 e4 ...) i ...))

(V S H T ((seq e1 e2) i ...))  [seq-two]

(V S H T (framepush e1 framepop e2 i ...))

(V S H T ((indirect xi) i ...))  (V S H T (ei i ...))  [indirect]

 where T = ((x0 e0) ... (xi ei) (xi+1 ei+1) ...)

Figure 16: Machine transitions for values, branches, sequences, and indirect expres-
sions

sub-expressions, this expression will apply the closure f to the arguments 22 and 33.

(uninit
((clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((application

(loc 2)
(loc 3)
(loc 4))))

(uninit
(uninit uninit (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((reorder

(call 2)
((loc 2) ?)
((loc 3) 0)
((loc 4) 1))))

(uninit
(uninit uninit (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
(framepush (loc 2) framepop
(set 1)
framepush (loc 3) framepop
(set 0)
framepush (loc 4) framepop
(swap 1)
(call 2)))

First, the machine pushes two slots on the stack to hold temporary values while evaluat-
ing the application’s sub-expressions. At the same time, it reduces to an artificial state,
reorder. The reorder state helps to set up the reordering optimization. For this exam-
ple, we assume no reordering occurs, and so the reorder state immediately reduces to
a series of instructions that evaluate the function and argument sub-expressions. The

37



instructions to evaluate and record the sub-expressions push and pop the stack around
each evaluation, because these sub-expressions are not in tail position. To facilitate re-
ordering, the reorder instruction records not only the sub-expressions, but also where
the results should end up—either a number, for a stack location, or the token ?, for
the value register. Ultimately, the result of the function expression should end up in
the value register, though it may be temporarily stored in the stack while other sub-
expressions are evaluated.

(33
(22 (clos f ) (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((swap 1)
(call 2)))

((clos f )
(22 33 (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((call 2)))

((clos f )
((11 (22 33 ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((loc 0)))

After the last sub-expression has been evaluated, its result is in the value register,
and the function position’s result is in the stack slot originally assigned to the last sub-
expression. The swap instruction swaps the function and argument values, leaving the
closure pointer in the value register. This swap step is shown in the first transition
above.

The call instruction records the arity of the procedure to be called, to detect arity
mismatches. In the second state above, the arity in the call instruction matches the arity
of the procedure in the value register, and so evaluation continues, by replacing the call
instruction with the body of the procedure and by updating the stack.

The stack is always maintained as a sequence of three frames. The innermost frame
contains the arguments to the current procedure. The next frame contains the unpacked
closure for the current procedure. The final frame is scratch space for the procedure
body. In this example, since the initial stack was three empty frames, the call replaces
those frames with 22 33 for the arguments, 11 for the unpacked closure, and an extra
set of parentheses for local scratch space.

6.5 The reordering optimization: an overview
The reordering optimization sometimes moves loc-noclr references to the end of an
application to avoid extra stack operations. For example, if the function position ex-
pression had been (loc-noclr 2), then the reorder instruction above can also reduce as
follows.

38



(uninit
(uninit uninit (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((reorder

(call 2)
((loc-noclr 2) ?)
((loc 3) 0)
((loc 4) 1))))

(uninit
(uninit uninit (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
((reorder

(call 2)
((loc 3) 0)
((loc 4) 1)
((loc-noclr 2) ?))))

(uninit
(uninit uninit (clos f ) 22 33 ((ε)))
((f ((clos 2 (11) fb))))
((fb (loc 0)))
(framepush (loc 3) framepop
(set 0)
framepush (loc 4) framepop
(set 1)
framepush
(loc-noclr 2)
framepop
(call 2)))

The first step in this reduction simply moves the loc-noclr operation to the end of the
reorder expression. Then, the reorder operation reduces to a series of pushes and pops
to evaluate sub-expressions, as before. This time, however, the final sub-expression is
the function position, and so no swap instruction is needed before the call.

In general, the reorder rule moves loc-noclr expressions later in an application
expression. This reordering can avoid a swap operation, and it also simulates how
MzScheme’s JIT can achieve similar improvements for known primitives, such as ad-
dition. Consequently, the reduction graphs for application expressions often look like
the one in figure 17. The figure shows the reduction graph for an example like the
one above, but where all of the sub-expressions of the application expression are loc-
noclr expressions instead of loc expressions. To save space, only the name of the first
instruction in the control register is shown. Overall, the graph begins with a nest of
reordering reductions that move the sub-expressions of the application expression into
all possible orderings. After an order is chosen, different reductions proceed in lock-
step until all sub-expressions are evaluated, at which point some of the traces perform
swap instructions and some do not. Eventually, all reductions converge to the same
call state.

6.6 The self-app optimization: an overview
As discussed in section 6.2, some application expressions are transformed into self-app
expressions by the loader. In short, recursive calls in tail-position are rewritten into
self-app expressions. Evaluation of the call can then assume that the closure record is
already unpacked on the stack, allowing it to skip this step of procedure call setup.

39



Figure 17: Reordering optimization reduction graph

40



Figure 18: Self-app optimization reduction graph

For example, the Scheme function to the left below corresponds to the bytecode
expression in the middle. The loader converts the middle bytecode to produce the
bytecode on the right, replacing the application in the body of f with a self-app that
points directly to fb.

(letrec ((f (λ ()
(f ))))

(f ))

(let-void 1
(let-rec ((lam () (0)

(application (loc-noclr 0))))
(application (loc-noclr 0))))

(uninit
(((ε)))
()
((fb (self-app fb (loc-noclr 0))))
((let-void 1

(let-rec ((lam 0 (0) fb))
(application (loc-noclr 0))))))

Evaluation of a self-app expression begins as an ordinary application, but it im-
mediately discards the expression in function position, because its result is already
known. Then, instead of reducing to a call instruction, the reorder state reduces to a
self-call instruction that retains the pointer to the body of the procedure. When control
eventually reaches this self-call, the machine pops the active invocation’s temporary
space, installs the new arguments, and jumps to the position recorded in the self-call
instruction.

Figure 18 shows, in graph form, the two reduction sequences for the self-app
above. The longer cycle shows the instructions that the ordinary application executes.
The shorter cycle shows the instructions that the self application executes.

41



(V S H T ((application e0 e1 ...) i ...))  [application]

(V push-uninit[[n, S ]]  H T ((reorder (call n) (e0 ?) (e1 n1) ...) i ...))

 where n = #(e1 ...), (n1 ...) = (0 ... n-1)

(V S H T ((self-app x e0 e1 ...) i ...))  (V S H T ((application e0 e1 ...) i ...))  [self-app]

(V S H T ((self-app x e0 e1 ...) i ...))  [self-app-opt]

(V push-uninit[[n, S ]]  H T ((reorder (self-call x) (e1 n1) ...) i ...))

 where n = #(e1 ...), (n1 ...) = (0 ... n-1)

(V S H T ((reorder ir (e0 m1) ... ((loc-noclr n) mi) (ei+1 mi+1) (ei+2 mi+2) ...) i ...))  [reorder]

(V S H T ((reorder ir (e0 m1) ... (ei+1 mi+1) (ei+2 mi+2) ... ((loc-noclr n) mi)) i ...))

(V S H T ((reorder (call n) (e0 n0) ... (ei ?) (ei+1 ni+1) ... (ej nj)) i ...))  [finalize-app-not-last]

(V S H T (flatten[[((framepush e0 framepop (set n0)) ...) ]]

framepush ei framepop (set nj)

flatten[[((framepush ei+1 framepop (set ni+1)) ...) ]]

framepush ej framepop

(swap nj) (call n) i ...))

(V S H T ((reorder (call n) (e0 n0) ... (en ?)) i ...))  [finalize-app-is-last]

(V S H T (flatten[[((framepush e0 framepop (set n0)) ...) ]]

framepush en framepop (call n) i ...))

(V S H T ((reorder (self-call x) (e0 n0) ...) i ...))  [finalize-self-app]

(V S H T (flatten[[((framepush e0 framepop (set n0)) ...) ]]

(self-call x) i ...))

(V (u0 ... ui ... (uj ... (uk ... s))) H T ((self-call xi) i ...))  [self-call]

(V ((uj ... (u0 ... s))) H T (ei i ...))

 where  #(u0 ...)  = #(uk ...), T = ((x0 e0) ... (xi ei) (xi+1 ei+1) ...)

((clos xi) (u1 ... un+1 ... (um ... (uk ... s))) H T ((call ni) i ...))  [call]

((clos xi) ((ui ... (u1 ... s))) H T (ei i ...))

 where  ni ∉ {n0, ...},  ni = #(u1 ...), H = ((x0 h0) ...

(xi ((clos n0 (u0 ...) y0) ...

(clos ni (ui ...) yi)

(clos ni+1 (ui+1 ...) yi+1) ...))

(xi+1 hi+1) ...)

, 

T = ((yj ej) ... (yi ei) (yk ek) ...)

(v S H T ((call n) i ...))  error  [non-closure]

 where  v ≠ (clos x)

((clos xi)

S

((x0 h0) ... (xi ((clos n0 (u0 ...) y0) ...)) (xi+1 hi+1) ...)

T

((call n) i ...))   error

 [app-arity]

 where  n ∉ {n0, ...}

Figure 19: Machine transitions for procedure application.

42



6.7 The complete rules
Figure 19 gives the precise rules for procedure application. The [application] rule pushes
n temporary slots for an n-ary application and inserts a reorder instruction that pairs
each sub-expression with the location that should hold its result. The [self-app] rule
reduces a self-app expression to an ordinary application expression, so that both the
optimized and the unoptimized reduction sequences are present in the reduction graphs.
The [self-app-opt] rule reduces directly to reorder with a self-call instruction.

The [reorder] rule shuffles sub-expressions according to the following principle: if
a sub-expression is a loc-noclr, then that sub-expression may be evaluated last.

Together, the rules [finalize-app-is-last] and [finalize-app-not-last] terminate reorder
states reached from application expressions. The former applies when the sub-expression
in function position will be evaluated last; it schedules the evaluation and storage of
each sub-expression and, finally, a call instruction. The latter applies in all other cases;
it schedules a swap instruction before the call but after the evaluation and storage of the
sub-expressions, to move the result of the function position into the value register and
the most recent result to its assigned stack position. The [finalize-self-app] rule handles
self-calls, which never require a swap, since self-calls do not need to evaluate the ap-
plication’s function position. All three rules use the flatten metafunction, which takes
a sequence of sequences of instructions and flattens them into a surrounding instruction
sequence.

The [call] rule handles a call to a procedure with the correct arity, updating the stack
and replacing itself with the body of the procedure. The [self-call] adjusts the stack
similarly, but leaves the closure portion of the stack intact.

The remaining two rules, [non-closure] and [app-arity], handle the cases when func-
tion application receives a non-procedure or a procedure with incorrect arity as its first
argument.

6.8 Bytecode Verification
Evaluation of an unconstrained bytecode expression may get stuck in many ways. For
example, consider the following expression, which attempts to branch on a box instead
of the value inside the box.

(let-one #t
(boxenv 0

(branch (loc 0) ’yes ’no)))
For this expression, the machine eventually reaches the following state.

((box x)
((box x) ((ε)))
((x #t))
()
((branch ’yes ’no)))

Neither the branch-true rule nor the branch-false rule applies to this state, because
(box x) is not itself a value, and so the machine is stuck. Similarly, the machine has no
transitions for states in which the program mistakes a value for a box, attempts to read
an uninitialized slot, or accesses the stack beyond its current bounds.

43



The bytecode verifier identifies (and rejects) programs that reach such states. It
simulates the program’s evaluation though abstract interpretation, maintaining a con-
servative approximation of the machine’s values stack and checking that its approxima-
tion satisfies the assumptions implicit in each evaluation step. For the program above,
the analysis reveals that the top of the stack contains a box when control reaches the
program’s loc expression; since the (loc 0) expression requires a value in that position,
the verifier rejects the program.

The verification analysis does not have to be especially general; it must only handle
the kind of bytecode that the MzScheme compiler generates. For example, the compiler
might generate a let-void followed by an install-value to create a slot and initialize it,
but the compiler will never generate a let-void whose corresponding install-value is
inside a nested branch. Thus, to simplify the tracking of abstract values, the verifier
can rule out certain patterns that might be valid otherwise.

The MzScheme compiler and JIT rely on support for reordering of stack accesses,
as reflected by the reorder instruction generated during evaluation, and so promises
never to clear a slot must be tracked. That is, the verifier must ensure that stack slots
accessed through a loc-noclr or loc-box-noclr expression are, in fact, never cleared—
at least within the region where accesses may be reordered. The verifier implemen-
tation exploits the fact that the reordering region never spans different branches of a
conditional.

For example, the verifier rejects the following program for violating its promise not
to clear the value on top of the stack.

(proc-const (val)
(seq (loc 0) (loc-clr 0)))

On the other hand, the verifier accepts a program like the following, in which one
branch clears a slot that the other promised not to clear.

(proc-const (val val)
(branch (loc 0) (loc 1) (loc-clr 1)))

The abstract value of a stack slot tracks whether the slot is cleared, contains an im-
mediate value, or contains a boxed value. In the latter two cases, the abstract value also
tracks a promise that the slot will never be cleared. Only certain transitions are allowed
among the abstract states of a given stack slot. The states and allowed transitions are
as follows:

• not: not directly readable, and the slot cannot change state. This state is used
for a temporary slot that the evaluator uses to store application-argument values,
and it is also used for a slot that is cleared to enable space safety.

• uninit: not directly readable, but a value can be installed to change the slot state
to imm.

• imm: contains an immediate value. The slot can change to not if it is cleared,
it can change to box if a boxenv instruction boxes the value, or it can change to
imm-nc if it is accessed with loc-noclr.

• imm-nc: contains an immediate value, and the slot cannot change state further.

44



• box: contains a boxed value. The slot can change to not if it is cleared, and it
can change to box-nc if it is accessed with loc-noclr.

• box-nc: contains a boxed value, and the slot cannot change state further.

let-void, let-one

uninit let-void-box

boximm

install-value, let-rec, let-one

loc
boxenv

imm-nc

loc-noclr

not

loc-clr

install-value-box, loc-box, loc

box-nc

loc-box-noclr, loc-noclrloc-box-clr, loc-clr

loc-noclr box-noclr, loc-noclr

application

Figure 20: Abstract slot states and transitions.

Figure 20 summarizes these states and transitions. The shared, octagon states are pos-
sible initial states, and the labels on a transitions indicate the bytecode forms that can
trigger the transition.

When abstract evaluation joins after a branch, effects on the stack from the two
branches must be merged and checked for consistency. The uninit state is consis-
tent only with itself. The imm and imm-nc states are consistent with each other, and
the box and box-nc are consistent with each other; the merge operation effectively uses
whichever of the two result from the “then” branch. The loss of precise “never cleared”
information is acceptable at branch joins, because that information is used for reorder-
ing only within a branch. The not state is consistent with any state except uninit, and
the merge operation reduces not with any other value to not; that is, branches of a
conditional can clear different stack slots, but code after the join must assume that any
slot cleared by either branch is cleared.

An abstract stack is consumed and produced by the verify function, which is the
core of the verification algorithm. The definition of verify is split across figures 22
through 27, while figure 21 gives the function’s full type:

• The input e is a bytecode expression to verify.

• The input s is an abstract stack, which is either a sequence of abstract values,
beginning at the top of the stack, or the symbol invalid, representing the re-
sult of illegal bytecode. The abstract stack is updated during verification of an
expression, and the updated stack is the first result of verify.

45



veri f y : e× s× n× b× γ× η × f → s× γ× η

s ::= (^u ...) | invalid
^u ::= uninit | imm | box | imm-nc | box-nc | not

γ ::= ((n ^u) ...)

η ::= (n ...)

f ::= (n n (^u ...)) | ∅

m ::= n | ?

Figure 21: The language of the verifier’s abstract interpretation.

• The input n indicates the depth of the current stack that resides within the same
branch of the nearest enclosing conditional. This depth is used to track abstract-
state changes that must be unwound and merged with the other branch. This
depth is also used to rule out certain abstract-state changes (so that they do not
have to be tracked and merged).

• The input b indicates whether the expression appears as a non-final sub-expression
in a seq form, in which case its result will be ignored. This information ac-
commodates a quirk in the MzScheme compiler; in rare cases, the compiler can
generate a direct reference to a boxed value within a seq sequence. The direct
reference normally would be disallowed, but it causes no problem when the re-
sult of the reference is ignored.

• The input γ accumulates information about cleared stack slots, so that the clear-
ing operations can be merged at branches. Updated information is returned as
the second result of verify.

• The input η accumulates information about “never cleared” annotations on stack
slots, so that the annotations can be merged at branches. Updated information is
returned as the third result of verify.

• The input f tracks the stack location of a self-reference, so that self tail calls
can be checked specially, much like the φ parameter in the loader. An empty
value indicates that a self-reference is not available or that a call using the self-
reference would not be in tail position.

Figure 22 shows the parts of verify’s definition that cover stack references. The first
three clauses verify loc and loc-box expressions. The first of these confirms that the
target of the loc expression is in range and that it contains an immediate value; if it does
not, the definition’s final catch-all clause (shown later in figure 26) produces invalid,
causing the verifier to reject the program containing this expression. The second clause
accommodates an ignored direct reference to a box within a seq form by matching #t
for the fourth input. The definition’s third clause is the box analog of the first clause.

The next three clauses of verify handle loc-noclr and loc-box-noclr expressions.
Verifying such expressions changes the target slot to imm-nc or box-nc. Verification
also records the “never cleared” annotation in the verify function’s η result using the

46



verify[[(loc n), (^u0 ... 
^un 

^un+1 ...), nl, #f, γ, η, f ]]  = ((^u0 ... 
^un 

^un+1 ...) γ η)

 where  #(^u0 ...)  = n,  ^un ∈ {imm, imm-nc}

verify[[(loc n), (^u0 ... 
^un 

^un+1 ...), nl, #t, γ, η, f ]]  = ((^u0 ... 
^un 

^un+1 ...) γ η)

 where  #(^u0 ...)  = n,  ^un ∈ {imm, imm-nc, box, box-nc}

verify[[(loc-box n), (^u0 ... 
^un 

^un+1 ...), nl, b, γ, η, f ]]  = ((^u0 ... 
^un 

^un+1 ...) γ η)

 where  #(^u0 ...)  = n,  ^un ∈ {box, box-nc}

verify[[(loc-noclr n), (^u0 ... 
^un 

^un+1 ...), nl, #f, γ, η, f ]]  = ((^u0 ... nc[[^un ]]  ^un+1 ...) γ log-noclear[[n, nl, η ]] )

 where  #(^u0 ...)  = n,  ^un ∈ {imm, imm-nc}

verify[[(loc-noclr n), (^u0 ... 
^un 

^un+1 ...), nl, #t, γ, η, f ]]  = ((^u0 ... nc[[^un ]]  ^un+1 ...) γ log-noclear[[n, nl, η ]] )

 where  #(^u0 ...)  = n,  ^un ∈ {imm, imm-nc, box, box-nc}

verify[[(loc-box-noclr n), (^u0 ... 
^un 

^un+1 ...), nl, b, γ, η, f ]]  = ((^u0 ... box-nc ^un+1 ...) γ log-noclear[[n, nl, η ]] )

 where  #(^u0 ...)  = n,  ^un ∈ {box, box-nc}

verify[[(loc-clr n), (^u0 ... imm ^un+1 ...), nl, #f, γ, η, f ]]  = ((^u0 ... not ^un+1 ...) log-clear[[n, imm, nl, γ ]]  η)

 where  #(^u0 ...)  = n

verify[[(loc-clr n), (^u0 ... 
^un 

^un+1 ...), nl, #t, γ, η, f ]]  = ((^u0 ... not ^un+1 ...) log-clear[[n, ^un, nl, γ ]]  η)

 where  #(^u0 ...)  = n,  ^un ∈ {imm, box}

verify[[(loc-box-clr n), (^u0 ... box ^un+1 ...), nl, b, γ, η, f ]]  = ((^u0 ... not ^un+1 ...) log-clear[[n, box, nl, γ ]]  η)

 where  #(^u0 ...)  = n

nc[[imm ]]  = imm-nc

nc[[imm-nc ]]  = imm-nc

nc[[box ]]  = box-nc

nc[[box-nc ]]  = box-nc

log-noclear[[np, nl, (n0 ...) ]]  = (np - nl   n0 ...)  where  np >= nl

log-noclear[[np, nl, η ]]  = η

log-clear[[np, 
^u, nl, ((n0 

^u0) ...) ]]  = ((np - nl   
^u) (n0 

^u0) ...)  where  np >= nl

log-clear[[np, 
^u, nl, γ ]]  = γ

Figure 22: The verification rules for variable references

47



verify[[(branch ec et ee), s, nl, b, γ, η, f ]]  = (redo-clears[[γ3, trim[[s3, s ]] ]]  γ1 η3)

 where (s1 γ1 η1) = verify[[ec, s, nl, #f, γ, η, ∅ ]] , 

(s2 γ2 η2) = verify[[et, trim[[s1, s ]] , 0, b, (), (), f ]] , 

(s3 γ3 η3) = verify[[ee, undo-noclears[[η2, undo-clears[[γ2, trim[[s2, s ]] ]] ]] , 0, b, γ2, η1, f ]]

undo-clears[[γ, invalid ]]  = invalid

undo-clears[[(), s ]]  = s

undo-clears[[((n0 
^
u0) (n1 

^
u1) ...), s ]]  = undo-clears[[((n1 

^
u1) ...), set[[^

u0, n0, s ]] ]]

undo-noclears[[η, invalid ]]  = invalid

undo-noclears[[(), s ]]  = s

undo-noclears[[(n0 n1 ...), (
^
u0 ... imm-nc ^

ui ...) ]]  = undo-noclears[[(n1 ...), (
^
u0 ... imm ^

ui ...) ]]

 where  #(^
u0 ...)  = n0

undo-noclears[[(n0 n1 ...), (
^
u0 ... box-nc ^

ui ...) ]]  = undo-noclears[[(n1 ...), (
^
u0 ... box ^

ui ...) ]]

 where  #(^
u0 ...)  = n0

undo-noclears[[(n0 n1 ...), s ]]  = undo-noclears[[(n1 ...), s ]]

redo-clears[[γ, invalid ]]  = invalid

redo-clears[[(), s ]]  = s

redo-clears[[((n0 
^
u0) (n1 

^
u1) ...), s ]]  = redo-clears[[((n1 

^
u1) ...), set[[uninit, n0, s ]] ]]

set[[^
u, n, (^

u0 ... 
^
un 

^
un+1 ...) ]]  = (^

u0 ... 
^
u ^

un+1 ...)  where  #(^
u0 ...)  = n

Figure 23: The verification rules for branches

log-noclear function, unless the slot is local to the nearest enclosing branch (as indi-
cated by the verify function’s n parameter).

The last three clauses of verify in figure 22 handle loc-clr and loc-box-clr forms.
Verification of these forms rejects any attempt to clear a imm-nc or box-nc slot, and
they change a imm or box slot to not. Verification also records the clear operation in
the verify function’s γ result using the log-clear function—again, only for slots that are
not local to the enclosing branch.

The branch clause in figure 23 shows how abstract stacks are “merged,” although
the verify function does not use an explicit merge operation. Instead, the verifier takes
the stack produced by the first branch, truncates it to its original size using trim, re-
verts clear operations performed by the first branch (as recorded in γ), reverts “never
cleared” annotations inserted by the first branch (as recorded in η), and finally feeds
the result into verification of the second branch. The abstract stack from the second
branch is again trimmed to the original size, and the clear operations from the first
branch are re-applied for the result of the entire branch form. Verification of branch
does not have to check consistency of the abstract stack in any other way, because the
verifier constrains transitions past the branch-local part of the stack to clearing and
adding “never cleared” annotations. 5

5The model could be simplified by independently verifying the two branches of a conditional and then
more explicitly merging the abstract stacks. Threading a single stack representation through the “then” and
then “else” clauses more closely matches the actual implementation, so that the model can help us detect

48



verify[[(application e0 e1 ...), s, nl, bi, γ, η, (nf ns (
^u ...)) ]]  = verify-self-app[[(application e0 e1 ...), s, nl, γ, η, (nf ns (

^u ...)) ]]

 where e0 = (loc-noclr n),  n = nf + #(e1 ...)

verify[[(application (lam (τ0 ...) (n0 ...) e) e0 ...), s, nl, b, γ, η, f ]]  = verify*-ref[[(e0 ...), (τ0 ...), s1, nl*, γ, η ]]

 where s = (^u0 ...), n = #(e0 ...), nl* = n + nl, s1 = abs-push[[n, not, s ]] , verify-lam[[(lam (τ0 ...) (n0 ...) e), s1, ? ]]

verify[[(application (proc-const (τ0 ...) e) e0 ...), s, nl, b, γ, η, f ]]  = verify[[(application (lam (τ0 ...) () e) e0 ...), s, nl, b, γ, η, f ]]

verify[[(application e0 e1 ...), s, nl, b, γ, η, f ]]  = verify*[[(e0 e1 ...), abs-push[[n, not, s ]] , nl*, #f, γ, η ]]

 where s = (^u0 ...), n = #(e1 ...), nl* = n + nl

verify-self-app[[(application e0 e1 ...), s, nl, γ, η, (nf ns (
^uj ...)) ]]  = (s1 γ1 η1)

 where s = (^u0 ...), n = #(e1 ...), nl* = n + nl, 

(s1 γ1 η1) = verify*[[(e0 e1 ...), abs-push[[n, not, s ]] , nl*, #f, γ, η ]] , 

s1 ≠ invalid, (nj ...) = (0 ... #(^uj ...) -1), 

closure-intact?[[(stack-ref[[nj  + ns, s1 ]]  ...), (^uj ...) ]]

verify-self-app[[e, s, nl, γ, η, f ]]  = (invalid γ η)

verify*[[(), s, nl, b, γ, η ]]  = (s γ η)

verify*[[(e0 e1 ...), s, nl, b, γ, η ]]  = verify*[[(e1 ...), trim[[s1, s ]] , nl, b, γ1, η1 ]]

 where (s1 γ1 η1) = verify[[e0, s, nl, b, γ, η, ∅ ]]

verify*-ref[[(), (), s, nl, γ, η ]]  = (s γ η)

verify*-ref[[(e0 e1 ...), (val τ1 ...), s, nl, γ, η ]]  = verify*-ref[[(e1 ...), (τ1 ...), trim[[s1, s ]] , nl, γ1, η1 ]]

 where (s1 γ1 η1) = verify[[e0, s, nl, #f, γ, η, ∅ ]]

verify*-ref[[(e0 e1 ...), (), s, nl, γ, η ]]  = verify*[[(e0 e1 ...), s, nl, #f, γ, η ]]

verify*-ref[[(), (τ0 τ1 ...), s, nl, γ, η ]]  = (s γ η)

verify*-ref[[((loc n) e1 ...), (ref τ1 ...), s, nl, γ, η ]]  = verify*-ref[[(e1 ...), (τ1 ...), s1, nl, γ1, η1 ]]

 where (s1 γ1 η1) = verify[[(loc-box n), s, nl, #f, γ, η, ∅ ]]

verify*-ref[[((loc-noclr n) e1 ...), (ref τ1 ...), s, nl, γ, η ]]  = verify*-ref[[(e1 ...), (τ1 ...), s1, nl, γ1, η1 ]]

 where (s1 γ1 η1) = verify[[(loc-box-noclr n), s, nl, #f, γ, η, ∅ ]]

verify*-ref[[((loc-clr n) e1 ...), (ref τ1 ...), s, nl, γ, η ]]  = verify*-ref[[(e1 ...), (τ1 ...), s1, nl, γ1, η1 ]]

 where (s1 γ1 η1) = verify[[(loc-box-clr n), s, nl, #f, γ, η, ∅ ]]

verify*-ref[[(e ...), (τ ...), s, nl, γ, η ]]  = (invalid γ η)

stack-ref[[n, (^
u0 ... 

^
un 

^
un+1 ...) ]]  = ^

un

 where  #(^
u0 ...)  = n

abs-push[[0, ^
u, (^

u0 ...) ]]  = (^
u0 ...)

abs-push[[n, ^
u, (^

u0 ...) ]]  = abs-push[[n-1 ,  ^
u, (^

u ^
u0 ...) ]]

arg[[val ]]  = imm

arg[[ref ]]  = box

Figure 24: The verification rules for applications

49



Figure 24 shows the clauses for verifying procedure applications. The last clause
handles the general case, where temporary slots for argument results are created on
the stack using abs-push, and the procedure and argument expressions are verified in
order (so that abstract effects from earlier expressions are visible to later expressions).
Temporary stack slots are set to the not state, because they are for internal use in the
evaluator; forms like loc or install-value must never use or change the slots.

The first clause in figure 24 handles the case of self-application tail calls. As in the
loader, the self-application rule is triggered by an operator expression that is loc-noclr,
that uses the stack position indicated by the last parameter to verify, and that applies
the expected number of arguments for a self-application. The use of loc-noclr for the
operation position ensures that the self-reference slot access can be re-ordered with
respect to the argument evaluation. In addition, the stack slots containing unpacked
closure values must be intact at the point of the self call, so that the implementation of
the self application can avoid unpacking the closure. That is, the MzScheme compiler
generates a tail self-application using loc-noclr only when it also refrains from clearing
stack slots that correspond to closure values, and the verifier ensures as much.

The second and third verify clauses in figure 24 cover the case where a procedure
accepts boxed arguments. The compiler generates such procedures only when it can
eliminate closure allocation by converting captured variables into arguments. In this
case, “eliminate allocation” includes allocating the closure only once at the top level
(to close over other top-level bindings); since our simplified language does not cover
top-level bindings, we model uses of such bindings as an immediately applied lam
bytecode, which is covered by the second application clause. The third clause shows
an immediately applied proc-const form, which represents a procedure whose closure
allocation is eliminated completely. In either case, argument expressions are checked
with verify*-ref, which verifies each expression and checks that it has the type (imme-
diate or boxed) that is expected by the procedure.

Figure 25 shows the verify clauses for a procedure in arbitrary expression posi-
tions, in which case the argument types must be immediate values (not boxed). The
figure also shows the verify-lam function, which is used for checking all lam forms.
The verify-lam function checks the body of a procedure in a fresh stack that starts with
abstract values for the procedure arguments, and then contains abstract values for cap-
tured values. For slots to be captured in the closure, the abstract values must be imm,
imm-nc, box, or box-nc (not not or uninit). Those abstract values are copied from
the stack where they are captured, but “never cleared” annotations are stripped in the
copy, because a application of a closure unpacks values into fresh stack slots that can
be cleared independently.

The last argument to verify-lam provides the location in the current stack for the
procedure. If the procedure captures that location and then applies the captured value in
tail position, then the application counts as a self-application. Most uses of verify-lam
supply ?, which indicates that a self-application slot is not available. Verification of a
let-rec form supplies a slot number, in which case extract-self extracts information to
be used by self-applications within the procedure body.

mistakes in this approach to unwinding and merging stack information.

50



verify[[(lam (τ ...) (n0 ...) e), s, nl, b, γ, η, f ]]  = (s γ η)

 where τ = val, verify-lam[[(lam (τ ...) (n0 ...) e), s, ? ]]

verify[[(proc-const (τ ...) e), s, nl, b, γ, η, f ]]  = verify[[(lam (τ ...) () e), s, nl, b, γ, η, f ]]

 where τ = val

verify[[(case-lam l ...), s, nl, b, γ, η, f ]]  = (s γ η)

 where verify-lam[[l, s, ? ]]  , ...

verify-lam[[(lam (τ0 ...) (n0 ...) e), s, m ]]  = s1 ≠ invalid

 where s = (^u0 ...), nd = #s, nd* = #(τ0 ...)  + #(n0 ...), 

n0  < nd , ..., 

stack-ref[[n0, s ]]   ∉ {uninit, not} , ..., 

(^u ...) = (drop-noclear[[stack-ref[[n0, s ]] ]]  ...), 

f = extract-self[[m, (n0 ...), (τ0 ...), (
^u ...) ]] , 

(s1 γ1 η1) = verify[[e, (^u ... arg[[τ0 ]]  ...), nd*, #f, (), (), f ]]

verify-lam[[any, s, m ]]  = #f

drop-noclear[[imm-nc ]]  = imm

drop-noclear[[box-nc ]]  = box

drop-noclear[[^
u ]]  = 

^
u

extract-self[[?, (n0 ...), (τ0 ...), (
^
u0 ...) ]]  = ∅

extract-self[[ni, (n0 ... ni ni+1 ...), (τ0 ...), (
^
u0 ...) ]]  = (#(n0 ...)   #(τ0 ...)   (

^
u0 ...))

 where ni  ∉ {ni+1, ...}

extract-self[[n, (n0 ...), (τ0 ...), (
^
u0 ...) ]]  = ∅

Figure 25: The verification rules for procedures

verify[[(let-one er eb), (
^u1 ...), nl, b, γ, η, f ]]  = verify[[eb, (imm ^u1* ...), nl+1 ,  b, γ, η, shift[[1, f ]] ]]

 where (s1 γ1 η1) = verify[[er, (uninit ^u1 ...), nl+1 ,  #f, γ, η, ∅ ]] , s1 ≠ invalid, (^u1* ...) = trim[[s1, (
^u1 ...) ]]

verify[[(let-void n e), s, nl, bi, γ, η, f ]]  = verify[[e, abs-push[[n, uninit, s ]] , n + nl ,  bi, γ, η, shift[[n, f ]] ]]

 where s = (^u0 ...)

verify[[(let-void-box n e), s, nl, bi, γ, η, f ]]  = verify[[e, abs-push[[n, box, s ]] , n + nl ,  bi, γ, η, shift[[n, f ]] ]]

 where s = (^u0 ...)

verify[[(install-value n er eb), s, nl, b, γ, η, f ]]  = verify[[eb, set[[imm, n, s2 ]] , nl, b, γ, η, f ]]

 where  n < nl, (s1 γ1 η1) = verify[[er, s, nl, #f, γ, η, ∅ ]] , s2 = trim[[s1, s ]] , s2 ≠ invalid, 

uninit = stack-ref[[n, s2 ]]

verify[[(install-value-box n er eb), s, nl, b, γ, η, f ]]  = verify[[eb, s2, nl, b, γ1, η1, f ]]

 where s = (^u0 ...),  n < #s, (s1 γ1 η1) = verify[[er, s, nl, #f, γ, η, ∅ ]] , s2 = trim[[s1, s ]] , s2 ≠ invalid, 

 stack-ref[[n, s2 ]]  ∈ {box, box-nc}

verify[[(boxenv np e), (^u0 ... imm ^un+1 ...), nl, b, γ, η, f ]]  = verify[[e, (^u0 ... box ^un+1 ...), nl, b, γ, η, f ]]

 where  #(^u0 ...)  = np,  np < nl

verify[[(let-rec (l ...) e), (^u0 ... 
^un ...), nl, b, γ, η, f ]]  = verify[[e, s1, nl, b, γ, η, f ]]

 where l = (lam (v ...) (n0 ...) e0), v = val, n = #(l ...),  #(^u0 ...)  = n, ^u0  = uninit , ...,  n <= nl, 

s1 = abs-push[[n, imm, (^un ...) ]] , (ni ...) = (0 ... #(l ...) -1), verify-lam[[l, s1, ni ]]  , ...

shift[[n, ∅ ]]  = ∅

shift[[n, (nf ns (
^u ...)) ]]  = (n + nf   n + ns   (

^u ...))

Figure 26: The verification rules for stack operations

51



verify[[(seq e0 ... en), s, nl, b, γ, η, f ]]  = verify[[en, s1, nl, b, γ1, η1, f ]]

 where (s1 γ1 η1) = verify*[[(e0 ...), s, nl, #t, γ, η ]]

verify[[number, s, nl, b, γ, η, f ]]  = (s γ η)

verify[[b, s, nl, bi, γ, η, f ]]  = (s γ η)

verify[['variable,  s, nl, b, γ, η, f ]]  = (s γ η)

verify[[void, s, nl, b, γ, η, f ]]  = (s γ η)

verify[[(indirect x), s, nl, b, γ, η, f ]]  = (s γ η)

verify[[e, s, nl, b, γ, η, f ]]  = (invalid γ η)

Figure 27: The verification rules for the remaining cases

Verification of let-rec and other stack-modifying forms is shown in figure 26. In
each of these forms, the final sub-form is in tail position, so self-application information
is propagated and updated as necessary using shift. The let-void clause simply pushes
uninitialized slots into the stack, and let-void-box similarly pushes boxes onto the
stack. The install-value form installs an immediate value into an uninitialized slot,
but only if the slot is within the nearest enclosing branch. The install-value-box form
is similar to install-value, but it requires the slot to contain a box already; it does not
update the abstract state of the slot, since the run-time effect is just to change the value
within the box. The slot does not have to be within the nearest enclosing branch. The
boxenv form changes the abstract state of a stack slot from imm to box; again, the slot
must be within the nearest enclosing branch. The let-rec form is verified in much the
same way as install-value, but it handles multiple slots. It also calls verify-lam instead
of the generic verify, and it supplies a self-application slot for each call to verify-lam.

Figure 26 completes the definition of verify. It covers the simple cases of sequenc-
ing and immediate values. An indirect form also needs no further work, since the
procedure to which it refers is in the process of being verified. The final clause is a
catch-all that reports an invalid form when the side conditions of other clauses are not
met.

6.9 Verifier Bugs
To assess the bytecode verification algorithm and machine model, we applied PLT
Redex’s randomized testing framework [36] to check two properties. The first, a safety
property, holds if the machine cannot get stuck stuck while evaluating valid bytecode.
Formally, this property requires the following.

safety For a bytecode expression e containing the named cycles ((x0 e0) . . . ), if the
verifier accepts e and (load e ((x0 e0) . . . ))→∗ (V S H T C), then either C = ()
(i.e., no instructions remain) or (V S H T C)→ p, for some machine state p.

In the machine’s production implementation, a stuck state corresponds to a crash or
undefined behavior.

The second property, an approximation of confluence, holds if the machine’s evalu-
ation rules define at most one result for a valid program. The formal statement follows.

confluence For a bytecode expression e containing the named cycles ((x0 e0) . . . ), if

52



Bug # Description Discoveries Attempts Rate
1 application space 458 4 million 1/8,734
2 branch effects (boxenv) 2 4 million 1/2,000,000
3 branch effects (let-rec) 1 25 million 1/25,000,000
4 case-lam ignored 15074 4 million 1/265
5 closure capture 69391 4 million 1/58
6 buffer overflow 44930 4 million 1/89
7 unrestricted update 0 > 45 million —

Figure 28: The rates (discoveries per attempts) at which randomized testing finds the
known verifier bugs.

(load e ((x0 e0) . . . )→∗ (V S H T ()) and (load e ((x0 e0) . . . )→∗ (V
′

S
′

H
′

T
′

()), then V = V
′
.

This approximation admits evaluation rules that allow divergent computation when a
result exists, but detecting non-termination is undecidable in general, preventing us
from testing the stronger property.

Testing these properties revealed six bugs in MzScheme’s production bytecode ver-
ifier but failed to discover a pervasive flaw in the verification algorithm. Figure 28
shows our detection rates for each bug, i.e., the ratio of tests attempted to revealing
instances generated. The rates for bugs 1 – 4 correspond to a test case generator that
ensures that no stack offset exceeds the depth of the stack but makes no other effort to
produce bytecode that passes the verifier. For example, this generator does not ensure
that the slot referenced by a loc-box expression will actually contain a box. The rates
for bugs 5 and 6 correspond to an even simpler generator that completely ignores the
verifier’s invariants, allowing it to produce any syntactically valid bytecode expression.

Bug #1 The verification rules in figure 24 push the abstract value not to reserve slots
for the results of the application’s sub-expressions. No expression may read or write
these slots, preventing a program from observing or disrupting the implementation’s
placement of intermediate results. The original verification algorithm, however, did
not distinguish slots reserved by application from any other uninitialized slots, for
example allowing the following expression to borrow a reserved slot.

(application (install-value 0 (proc-const (val) (loc 0))
(loc 0))

’x)
This expression violates neither safety nor confluence, but other expressions that refer-
ence application-reserved slots do. For example, the following expression produces ’y
if the machine evaluates the application’s sub-expressions in-order but ’x if it chooses
to delay the loc-noclr in function position.

53



(let-one (proc-const (val) (loc 0))
(application

(loc-noclr 1)
(install-value 1 (proc-const (val) ’x)

’y)))
Violating safety is no more difficult. For example, the following expression over-

writes the result of the proc-const expression with a box, causing the application to get
stuck at the call step.

(application (proc-const (val) (loc 0))
(boxenv 0 ’x))

Conversely, the machine’s implicit stores to the slots it reserves may overwrite what
the program explicitly placed in those slots, as in the following expression.

(application
(proc-const (val val) (loc 0 #f))
(install-value 0 ’x (boxenv 0 ’y))
(loc-box 0 #f))

This expression gets stuck at the loc-box expression, when the machine finds ’y in the
target slot. The verifier allowed this loc-box because its analysis ignores the machine’s
implicit store to offset 0, leaving the slot with the box installed by the first argument.

Bugs #2 & #3 The verification of branch expressions reverts the clears and no-clears
applied in one branch before proceeding with the other, preventing these effects from
restricting the code in the second branch. After completing the second branch, the
verification algorithm re-applies the first branch’s clears and no-clears, merging the
branches’ effects. The algorithm makes no effort to revert and re-apply the installation
of immediate values or boxes because none should occur in the portion of the stack that
survives the branch, identified by the verify function’s n parameter. The original box-
env clause, however, ignored the restriction on slots beyond n, allowing expressions
like the following, in which the second branch relies on the effects of the first branch.

(let-one ’x
(branch #f (boxenv 0 ’y) (loc-box 0 #f)))

Similarly, this bug admits the following expression, in which the expression that fol-
lows the branch relies an effect that occurs in only one of the branch paths.

(let-one ’x
(seq (branch #f (boxenv 0 ’y) ’z)

(loc-box 0 #f)))
The original let-rec clause also failed to enforce the restriction on slots beyond n,

allowing unsafe expressions like the following.
(let-void 1

(branch #f
(let-rec ((lam () (0) ’x)) ’y)
(loc 0 #f)))

Bug #4 The original verifier neglected to check the bodies of case-lam expressions.
Reassuringly, randomized testing discovered this omission immediately.

54



Bug #5 An off-by-one error in the original verifier allowed lam and case-lam expres-
sions to capture the first slot beyond the bottom of the active frame, as in the following
expression.

(proc-const ()
(lam () (0) (loc 0 #f)))

This procedure’s safety depends on the context in which it is applied. For example, the
machine evaluates the following expression to completion.

(application
(proc-const (val)

(application (application (loc 0 #f))))
(proc-const () (lam () (0) (loc 0 #f))))

On the other hand, the machine gets stuck on this expression, when the loc attempts to
captured the uninitialized slot pushed by let-one.

(application
(proc-const (val)

(let-one (application (application (loc 0 #f)))
’x))

(proc-const () (lam () (0) (loc 0 #f))))
Besides threatening safety, this bug allows bytecode to distinguish expressions that

should be equivalent, e.g.,
(proc-const (val)

(application (application (loc 0 #f))))
and

(proc-const (val)
(let-one ’q

(application (application (loc 1 #f)))))

Bug #6 The grammar in figure 8 simplifies the syntax of lam and proc-const ex-
pression. In practice, these forms contain an upper bound on the number of stack slots
pushed by an application of the procedure (not including pushes by the procedures it
calls). The machine’s implementation uses this bound to stop a program before its
stack grows into the adjacent memory region. In addition to validating this bound, the
production verifier uses it to allocate the entire abstract interpretation stack up-front
(instead of shrinking and growing it incrementally, as in section 6.8). An early version
of the verification algorithm we tested mimicked the production implementation in this
regard, and our testing found an off-by-one error in the handling of this bound that
could cause the verifier to accept invalid bytecode.

Bug #7 (Not Found) To provide optimization opportunities, the verification rules in
section 6.8 restrict a program’s ability to change the contents of a slot that already
contains an immediate value or a box pointer. In particular, only the loc-clr, loc-box-
clr, and boxenv forms change such slots. These forms do not prevent the JIT from
delaying a loc-noclr because the verification rules reject them when the target slot
holds imm-nc, as it does after a loc-noclr. Similarly, they do not prevent the JIT

55



from reusing the closure-captured values already on the stack for a self-app because
verify-self-app (figure 24) does not permit the program to clear or box these values.

In two respects, the original verification algorithm did not sufficiently restrict up-
dates to initialized slots. First, it allowed the install-value and let-rec forms to over-
write initialized slots, permitting expressions like this one, which produces produces ’y
if the loc-noclr is delayed but ’x if it is not.

(let-one ’x
(application (proc-const (val val) (loc 0))

(loc-noclr 2)
(install-value 2 ’y ’z)))

The failure to restrict these forms also breaks the JIT’s optimization of self-app expres-
sions. For example, the following expression produces ’b with the optimization but ’a
without it, because only in the optimized execution does the second invocation sees the
effect of the install-value.

(let-one ’a
(let-void 1

(let-rec ((lam (val) (0 1)
(branch (loc 2)
(loc 1)
(install-value 1 ’b

(application (loc-noclr 1) #t)))))
(application (loc 1) #f))))

Second, the original formulation of verify-self-app checked only that the procedure
did not clear the slots containing the closure-captured values (and not that it did not
box them). This allows expressions like the following, in which the procedure’s first
invocation replaces the contents of such a slot with a box pointer, causing the second
invocation to get stuck at the loc.

(let-one (proc-const () void)
(let-void 1

(let-rec ((lam () (0 1)
(seq (application (loc 1))

(boxenv 1
(application (loc-noclr 0))))))

(application (loc 0)))))

7 Related Work

7.1 Randomized Testing
Randomized testing goes back at least as far as 1970, to Hanford’s syntax machine, a
test case generator designed to exercise compilers [32]. Like Redex, the syntax ma-
chine generates terms from a BNF grammar, choosing productions at random and
recurring on their non-terminals. Hanford does not consider the problem of control-
ling the size of generated terms (section 4.1), but the syntax machine does provide a
mechanism called dynamic grammar for enforcing context-sensitive constraints, such

56



as variable binding. Hanford applies the syntax machine only to test relatively shallow
properties, e.g., that the parser does not reject syntactically valid programs and that the
compiler terminates normally.

Our experience testing operational semantics corroborates Hanford’s observation
of the strength of randomized testing.

Although as a writer of test cases, the syntax machine is certainly unintel-
ligent, it is also uninhibited. It can test a [language] processor with many
combinations that would not be thought of by a human test case writer.

Redex’s discovery that the R6RS grammar should not accept the name make-cond as a
variable (section 5.3, page 20) provides one particularly striking example—few human
testers would consider testing all of the grammar’s 61 keywords as variable names.

Much of the early attention to randomized testing, however, does not emphasize
this bug-finding ability as an end in itself; rather, its motivation tends to be the inter-
pretion of random tests as a statistically significant random sample of a program’s real
world reliability [73, 24, 30]. This technique may justify statements of the form, “With
confidence p, the program fails at most m times in n runs,” provided that the random
tests are selected according a distribution that models the way the program will be used
in practice. Unfortunately, this distribution, known as the program’s operational pro-
file, may be difficult to predict. For example, using random sampling to measure the
reliability of a programming language’s type system, as one might attempt with Redex,
requires a probability distribution that captures the way programmers use the language
in practice. Even if this distribution were known, programmatically generating terms
according to it may be difficult.

Investigations in the 1980s and 1990s resume the focus on randomized testing as
an error-detection technique, comparing it to partition testing, a model intended to
represent systematic techniques that divide the input into classes and force execution
of at least one test from each class. Examples of partition testing include, for example,
techniques based on notions of control or data flow. Early results show randomized
testing to be competitive with partition testing [16, 31], but follow-up work shows
that partition testing gains an advantage when the partition is chosen carefully [76, 6].
Recent empirical results are mixed.

Many studies show systematic techniques outperforming randomized ones, espe-
cially when the program under test exhibits interesting behavior for only a few inputs,
e.g., ones satisfying some complex invariant. Marinov et al. find that a sophisticated
implementation of bounded exhaustive testing outperforms randomized testing in mu-
tation tests and with respect to simple coverage metrics, when considering the same
number of tests from each method [46]. Cadar et al. find symbolic execution paired
with a custom contraint-solver achieves vastly greater coverage than randomized test-
ing over the same number of tests [5]. Ferguson and Korel find that chaining, an ap-
proach that uses data flow analysis to guide test generation, achieves greater coverage
than randomized testing in runs bounded by execution time, arguably a more apt com-
parison than test case counts [18]. Visser et al. find that randomized testing leaves
much to be desired when testing complex data structures like Fibonacci heaps, which
have complex preconditions [74]. Randomized testing in Redex mitigates this some-
what, due to the way programs are typically written in Redex. Specifically, if such

57



heaps were coded up in Redex, there would be one rule for each different configuration
of the heap, enabling Redex to generate test cases that cover all of the interesting con-
figurations using the #:source keyword. Of course, this does not work in general, due
to arbitrary side-conditions on rules. For example, we were unable to automatically
generate many tests for the the rule [6applyce]6 in the R6RS formal semantics, due to
its side-condition. Often, though, the rule’s precondition can be expressed entirely in
Redex’s pattern language (without a Scheme-level side-condition), and in such cases,
Redex can easily satisfy the rule.

Other studies are more favorable to randomized testing. Pacheco et al. compare
randomized testing with model checking in two studies [54]. In the first, they repeat
the experiment performed by Visser et al. [74], this time using a more sophisticated
randomized technique that incrementally extends previously generated tests according
to their results. For example, when this feedback-directed algorithm generates a test
that appears heuristically to violate a precondition (e.g., by inducing an exception), the
algorithm chooses to avoid generating subsequent tests as extensions of this apparently
invalid one. Their study finds this technique to outperform systematic approaches, even
for complex data structures. In the second study, they report industrial success in apply-
ing this technique to widely used Java and .NET libraries, finding many unknown bugs
missed by model checking, which failed to scale to the libraries’ size. A related study
applies the same feedback-directed approach to another large .NET component, this
time finding many bugs missed by tests based on symbolic execution [53]. Feedback-
directed randomized generation, perhaps guided by Fischer and Kuchen’s notion of
declarative data flow [20], may be a valuable supplement to Redex’s case-based gener-
ation, which can breakdown with Scheme-level side-conditions.

Groce et al. describe another industrial study in which engineers successfully ap-
plied randomized testing early in the development cycle, switching to heavyweight
model-checking and theorem-proving tools only after requirements and prototype code
stabilized [29]. Though the subject of their study is the development of robust file sys-
tem for use on spacecrafts, their balanced approach to verification mirrors what we
have begun to explore in the context of programming language metatheory.

Our work was inspired by QuickCheck [2, 9], a tool for doing random test case gen-
eration in Haskell. Unlike QuickCheck, however, Redex’s test case generation goes to
some pains to generate tests automatically, rather than asking the user to specify test
case generators. This choice reduces the overhead in using Redex’s test case genera-
tion, but generators for tests cases with a particular property (e.g., closed expressions)
still requires user intervention. QuickCheck also supports automatic test case simpli-
fication, a feature not yet provided in Redex. Our work is not the only follow-up to
QuickCheck; there are several systems in Haskell [8, 62], Clean [39], and even one for
the PLT Scheme’s ACL2 integration [55].

7.2 Mechanized Metatheory
Work on mechanized metatheory goes back almost as far as interest in randomized
testing. Milner produced mechanically verified proofs of properties of programming

6The is the third rule in figure 11: http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-15.html#node sec A.9

58



languages as early as 1972, using a proof-checker for a λ-calculus translation of Scott’s
logic for computable functions (LCF) [48]. This proof-checker lead to the Edinburgh
LCF system [27], and from there, Cambridge LCF [56], NuPRL [14], and HOL [26],
and more recently, Isabelle [57], Twelf [58], and Coq [58].

To date, these proof assistants have been applied to many substantial problems. For
example, there are several programming languages with verified models that comprise
more than an idealized core. Lee et al. [41] show type safety for a language similar to
Standard ML [41], Frujia shows safety for a large subset of C# [22], Nipkow and van
Oheimb [51] and Syme [72] show safety for fragments of Java, and Norrish establishes
several properties of C [52].

Much other work focuses on the verification of implementations. Beginning with
Moore’s Pinton compiler [49], there have been several certified compilers, i.e., ones
accompanied by formal proofs of some correctness property. These include Dold
and Vialard’s compiler for a subset of Common Lisp [15], Strecker’s [69] and Klein
and Nipkow’s [38] compilers for subsets of Java, compilers for C-like languages by
Strecker [70], Leinenbachk et al. [42], and Leroy [44]. As a more lightweight ap-
proach, others have explored proof-carying code [50] and translation validation [60],
in which a separate program certifies the compiler’s output, one program at a time.

Bytecode verification algorithms have themselves been the subject of formal ver-
ification. MzScheme’s bytecode verification algorithm resembles the ones typically
applied to JVM bytecode, originally due to Gosling and Yellin [28, 77, 45]. These
algorithms involve an abstract interpreter that conservatively approximates a defen-
sive VM [12], using forward data-flow analysis to resolve the uncertain control-flow of
branches and exceptions. There have been many formalizations of this approach, many
of which include machine-checked proofs of their soundness [37, 38, 59, 66, 11]. Other
techniques approach verification with the ASM method [65] or cast it as a type infer-
ence problem [67, 21] or a model checking problem [3]. Leroy [43] and Hartel and
Moreau [33] provide excellent surveys of these approaches and others.

There is some, though much less, work on verifying CIL [17] verification algo-
rithms. Gordon and Syme [25] show type safety for a substantial fragment of CIL using
Syme’s DECLARE [71] system. Follow-up work focuses on CIL’s generic types [78].
More recently, Fruja verified type safety for a nearly-complete CIL formalization [22].

7.3 Testing Metatheory
There are number of other tools designed to test programming language metatheory,
but there has been little empirical validation of their techniques on large-scale models.
The case studies in sections 5 and 6 explore models that are an order of magnitude
larger than the subject of most prior studies.

Berghofer and Nipkow have integrated randomized testing into the Isabelle/HOL
proof assistant, with the goal of providing a more cost-effective debugging tool than
doomed proof attempts [4]. They validate their approach with two case studies. The
first exercises a toy language only slightly more complex than the one in section 3.
The second shows that their tool finds a known bug in a formalization of red-black
trees [35] based on the implementation provided with SML/NJ.

59



In addition to the challenge of executing higher-order logic, Berghofer and Nip-
kow tackle one more problem not present in Redex. Consider the statement of the
preservation property in section 5.2. A randomized testing tool that instantiates the
free variables p and p′ independently is unlikely to find a counterexample, since in
addition to finding a state p for which the property fails to hold, it must guess the sub-
sequent state p′. Berghofer and Nipkow’s tool uses a mode analysis on the relations in
the property’s statement to identify which free variables to treat as independent inputs
and which to treat as dependent outputs of these inputs. A Redex programmer would
embed this input-output relationship directly into the test predicate, leaving only the
inputs as free variables, as in the predicate corresponding to the preservation property
(page 19).

Cheney and Momigliano present a similar tool for αProlog that uses bounded model
checking [7]. Their motivation is similar.

We argue that mechanically verified proof is neither the only, nor always
the most appropriate, way of gaining condence in the correctness of a for-
mal system; moreover, it is almost never the most appropriate way to de-
bug such a system.

In addition to validating their approach on a toy language similar to the one in section 3,
they report some success with examples that are more substantial but still smaller than
the subjects of our studies. In particular, their tool automatically confirms a known
limitation of λzap [75] and, with extra guidance, finds the well-known unsoundness in
a model of core ML without the value restriction.

Roberson et al. describe another promising model checking approach to testing
type soundness [61]. Their system performs several additional optimizations, but the
basic idea is the following. The programmer formulates the type system in a declarative
subset of Java, similar to first-order logic. Their tool constructs a propositional logic
formula describing all well-typed terms within some size bound and initializes an incre-
mental SAT solver with that formula. Next, the tool selects a satisfying assignment—
corresponding to some well-typed term—and tests progress and preservation for that
term, noting any parts of the term that the reduction step does not examine. The re-
duction relation behaves similarly on any term that differs only in these unexamined
components, and the tool uses a SAT solver to prove that these similar terms also
satisfy progress and preservation. Finally, the tool extends the incremental solver’s
formula to exclude these similar terms, selects a new satisfying term, and repeats the
processes. This process continues until the incremental solver indicates that formula is
unsatisfiable, meaning that type soundness holds for all terms within the size bound.
Roberson et al. report impressive preliminary results for two extensions to Feather-
weight Java [34], finding many seeded errors. These models are larger than the ones
tested by Berghofer and Nipkow and Cheney and Momigliano but still smaller than the
models in our studies.

It would be interesting to apply their approach to the R6RS model, in which the
type system is much simpler (a term is well-typed if it is closed), but the grammar and
reduction relation is larger, compared to Featherweight Java. It is not clear, however,
how to test our MzScheme model using their approach. Because our notion of valid

60



bytecode is defined at the level of expressions, not abstract machine states, we can-
not frame safety in terms of the single-step reduction relation. Their technique does
not appear suited to our multi-step safety formulation because constructing the initial
machine state and iteratively applying the reduction relation leaves less of the input
term structure untouched, reducing the applicability of their fundamental search space
pruning technique. The finite confluence property poses a similar challenge.

8 Conclusion
Randomized test generation has proven to be a cheap and effective way to improve
models of programming languages in Redex. With only a 13-line predicate (plus a
29-line free variables function), we were easily able to find bugs in the R6RS formal
semantics, one of the biggest, most well-tested (even community-reviewed), mecha-
nized models of a programming language in existence. With only slightly more work
(namely, some configuration of the distribution of terms, to get a greater portion past
the verifier), we were able to find several bugs in our formalization of the MzScheme
machine, a model nearly as large. In this latter case, however, our technique missed one
pervasive bug (and nearly another)—a reminder that testing inevitably leaves plenty for
a theorem prover.

References
[1] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms software with
quviq quickcheck. In Proceedings of the ACM SIGPLAN workshop on Erlang,
pages 2–10, 2006.

[3] D. Basin, S. Friedrich, and M. Gawkowski. Bytecode verification by model-
checking. Journal of Automated Reasoning, 30(3–4):399–444, 2003.

[4] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In Proceedings
of the International Conference on Software Engineering and Formal Methods,
pages 230–239, 2004.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: auto-
matically generating inputs of death. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 322–335, 2006.

[6] T. Y. Chen and Y. T. Yu. On the relationship between partition and random testing.
IEEE Transactions on Software Engineering, 20(12):977–980, 1994.

[7] J. Cheney and A. Momigliano. Mechanized metatheory model-checking. In Pro-
ceedings of the ACM SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming, pages 75–86, 2007.

61



[8] J. Christiansen and S. Fischer. Easycheck – test data for free. In Proceedings
of the International Symposium on Functional and Logic Programming, pages
322–336, 2008.

[9] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, pages 268–279, 2000.

[10] W. D. Clinger. Proper tail recursion and space efficiency. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 174–185, June 1998.

[11] A. Coglio, A. Goldberg, and Z. Qian. Toward a provably-correct implementation
of the JVM bytecode verifier. In Proceedings of ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages
403–410, 1998.

[12] R. Cohen. The defensive Java virtual machine specification. Technical report,
Computational Logic Inc., 1997.

[13] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. Release October, 12th
2007.

[14] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing Mathematics with the Nurpl Proof Development
System. Prentice-Hall International, 1986.

[15] A. Dold and V. Vialard. A mechanically verified compiling specification for a
Lisp compiler. In Proceedings of the Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 144–155, 2001.

[16] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE Transac-
tions on Software Engineering, 10(4):438–4444, 1984.

[17] ECMA. Common Language Infrastructure (CLI), Standard ECMA–335. Eu-
ropean Association for Standardizing Information and Communication Systems,
4th edition, 2006.

[18] R. Ferguson and B. Korel. The chaining approach for software test data gen-
eration. ACM Transactions on Software Engineering Methodology, 5(1):63–86,
1996.

[19] R. B. Findler. Redex: Debugging operational semantics. Reference Manual PLT-
TR2009-redex-v4.2, PLT Scheme Inc., June 2009. http://plt-scheme.org/
techreports/.

62

http://www.grappa.univ-lille3.fr/tata
http://plt-scheme.org/techreports/
http://plt-scheme.org/techreports/


[20] S. Fischer and H. Kuchen. Data-flow testing of declarative programs. In Proceed-
ings of the ACM SIGPLAN International Conference on Functional Program-
ming, pages 201–212, 2008.

[21] S. N. Freund and J. C. Mitchell. A type system for the Java bytecoe language and
verifier. Journal of Automated Reasoning, 30(3–4):271–321, 2003.

[22] N. G. Fruja. Type Safety of C# and .NET CLR. PhD thesis, ETH Zürich, 2007.

[23] E. R. Gansner and S. C. North. An open graph visualization system and its appli-
cations. Software Practice and Experience, 30:1203–1233, 1999.

[24] E. Girard and J.-C. Rault. A programming technique for software reliability. In
Proceedings of IEEE Symposium on Computer Software Reliability, pages 44–50,
1973.

[25] A. D. Gordon and D. Syme. Typing a multi-language intermediate code. In Pro-
ceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 248–260, 2001.

[26] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

[27] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mech-
anized Logic of Computation. Lecture Notes in Computer Science. Springer-
Verlag, 1978.

[28] J. Gosling. Java intermediate bytecodes. In Proceedings of ACM SIGPLAN Work-
shop on Intermediate Representations, pages 111–118, 1995.

[29] A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing as a pre-
lude to formal verification. In Proceedings of the ACM/IEEE International Con-
ference on Software Engineering, pages 621–631, 2007.

[30] D. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of Software
Engineering, pages 970–978, 1994.

[31] D. Hamlet and R. Taylor. Partition testing does not inspire confidence. IEEE
Transactions on Software Engineering, 16(12):1402–1411, 1990.

[32] K. Hanford. Automatic generation of test cases. IBM Systems Journal, 9(4):244–
257, 1970.

[33] P. H. Hartel and L. Moreau. Formalizing the safety of Java, the Java virtual
machine, and Java card. ACM Computing Surveys, 33(4):517–558, 2001.

[34] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a minimal core
calculus for java and gj. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, 2001.

63



[35] A. Kimmig. Red-black trees of smlnj. Studienarbeit, Universität Freiburg, January
2004.

[36] C. Klein and R. B. Findler. Randomized testing in PLT Redex. In Scheme and
Functional Programming, 2009. To appear.

[37] G. Klein. Verified Java Bytecode Verification. PhD thesis, Institut für Informatik,
Technische Universität München, 2003.

[38] G. Klein and T. Nipkow. A machine-checked model for a java-like language,
virtual machine, and compiler. ACM Transactions on Programming Languages
and Systems, 28(4):619–695, 2006.

[39] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic au-
tomated software testing. In Proceedings of the International Workshop on the
Implementation of Functional Languages, pages 84–100, 2003.

[40] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1963.

[41] D. K. Lee, K. Crary, and R. Harper. Toward a mechanized metatheory of stan-
dard ml. In Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–184, 2007.

[42] D. Leinenbachk, W. Paul, and E. Petrova. Towards the formal verification of a C0
compiler: Code generation and implementation correctnes. In Proceedings of the
International Conference on Software Engineering and Formal Methods, pages
2–12, 2005.

[43] X. Leroy. Java bytecode verification:algorithms and formalizations. Journal of
Automated Reasoning, 30(3–4):319–340, 2003.

[44] X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[45] T. Linholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Prentice Hall PTR, 2nd edition, 1999.

[46] D. Marinov, A. Andoni, D. Daniliuc, S. Kurshid, and M. Rinard. An evaluation
of exhaustive testing for data structures. Technical Report 921, MIT Laboratory
for Computer Science, 2003.

[47] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual environment for
developing context-sensitive term rewriting systems. In International Conference
on Rewriting Techniques and Applications, pages 301–312, 2004.

[48] R. Milner. Implementation and application of scott’s logic for computer functions.
In Proceedings of ACM conference on Proving assertions about programs, pages
1–6, 1972.

64



[49] J. S. Moore. A mechanically verified language implementation. Journal of Auto-
mated Reasoning, 5(4):461–492, 1989.

[50] G. Necula. Proof-carrying code. In Proceedings of ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 106–119, 1997.

[51] T. Nipkow and D. von Oheimb. Java light is type-safe—definitely. In Proceed-
ings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 161–170, 1998.

[52] M. Norrish. C formalized in HOL. Technical report, University of Cambridge,
1998.

[53] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .NET with feedback-
directed random testing. In Proceedings of the International Symposium on Soft-
ware Testing and Analysis, pages 87–96, 2008.

[54] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random
test generation. In Proceedings of the ACM/IEEE International Conference on
Software Engineering, pages 75–84, 2007.

[55] R. Page, C. Eastlund, and M. Felleisen. Functional programming and theorem
proving for undergraduates: a progress report. In Proceedings of the International
Workshop on Functional and Declarative Programming in Education, pages 21–
30, 2008.

[56] L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

[57] L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag, 1994.

[58] F. Pfenning and C. Schürmann. Twelf user’s guide. Technical Report CMU-CS-
98-173, Carnegie Mellon University, 1998.

[59] Z. Qian. A formal specification of Java virtual machine instructions for objects,
methods and subrountines. In Formal Syntax and Semantics of Java, pages 271–
312. Springer-Verlag, 1999.

[60] M. C. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings
of the Workshop on Run-Time Result Verification, 1999.

[61] M. Roberson, M. Harries, P. T. Darga, and C. Boyapati. Efficient software model
checking of soundness of type systems. In Proceedings of the ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages and Applica-
tions, pages 493–504, 2008.

[62] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck: au-
tomatic exhaustive testing for small values. In Proceedings of the ACM SIGPLAN
Symposium on Haskell, pages 37–48, 2008.

65



[63] M. Sperber, editor. Revised6 report on the algorithmic language Scheme. Cam-
bridge University Press, 2009. to appear.

[64] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten (editors). The Revised6

Report on the Algorithmic Language Scheme. http://www.r6rs.org/, 2007.

[65] R. Stärk and J. Schmid. Completeness of a bytecode verifier and a certifying Java-
to-JVM compiler. Journal of Automated Reasoning, 30(3–4):323–361, 2003.

[66] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer-
Verlag, 2001.

[67] R. Stata and M. Abadi. A type system for Java bytecode subroutines. ACM
Transactions on Programming Languages and Systems, 21(1):90–137, 1999.

[68] G. L. Steele Jr. Debunking the “expensive procedure call” myth; or, Proce-
dure call implementations considered harmful; or, LAMBDA: The ultimate goto.
Technical Report 443, MIT Artificial Intelligence Laboratory, 1977. First ap-
peared in the Proceedings of the ACM National Conference (Seattle, October
1977), 153–162.

[69] M. Strecker. Formal verification of a Java compiler in Isabelle. In Proceedings of
the International Conference on Automated Deduction, pages 63–77, 2002.

[70] M. Strecker. Compiler verification for C0. Technical report, Universite Paul
Sabatier, 2005.

[71] D. Syme. Declarative Theorem Proving for Operational Semantics. PhD thesis,
University of Cambridge, 1998.

[72] D. Syme. Proving Java type soundness. Technical report, University of Cam-
bridge, 2001.

[73] T. A. Thayer, M. Lipow, and E. C. Nelson. Software Reliability. North-Holland,
1978.

[74] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input generation for java con-
tainers using state matching. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 37–48, 2006.

[75] D. Walker, L. Mackey, J. Ligatti, G. Reis, and D. I. August. Static typing for
a faulty lambda calculus. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, pages 38–49, 2006.

[76] E. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Transac-
tions on Software Engineering, 17(7):703–711, 1991.

[77] F. Yellin. Low level security in Java. In Proceedings of the International World
Wide Web Conference, pages 369–379, 1995.

66

http://www.r6rs.org/


[78] D. Yu, A. Kennedy, and D. Syme. Formalization of generics for the .NET Com-
mon Language Runtime. In Proceedings of ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2004.

67


	Introduction
	Redex by Example
	Randomized Testing in Redex
	Effective Random Term Generation
	Choosing Productions
	Non-linear patterns
	Generation Heuristics

	Case Study: R6RS Formal Semantics
	The R6RS Formal Semantics
	Testing the Formal Semantics, a First Attempt
	Progress
	Preservation

	Testing the Formal Semantics, Take 2
	Status of fixes
	Search space sizes

	Case Study: The MzScheme Machine and Bytecode Verifier
	Bytecode Overview
	Bytecode Loading
	Bytecode Evaluation
	Bytecode Application
	The reordering optimization: an overview
	The self-app optimization: an overview
	The complete rules
	Bytecode Verification
	Verifier Bugs

	Related Work
	Randomized Testing
	Mechanized Metatheory
	Testing Metatheory

	Conclusion

