Experience Report: Using Objective Caml to Develop
Safety-Critical Embedded Tools in a Certification Framework

Bruno Pagano
Olivier Andrieu
Thomas Moniot

! Esterel Technologies,

8, rue Blaise Pascal,
78890 Elancourt, France

{Bruno.Pagano,Olivier.Andrieu,
Thomas.Moniot}
Qesterel-technologies.com

Benjamin Canou
Emmanuel Chailloux
Philippe Wang
2 Laboratoire d’Informatique de Paris 6,
(LIP6 - CNRS UMR 7606),
Université Pierre et Marie Curie, UPMC,

104, avenue du Président Kennedy,
75016 Paris, France

{Benjamin.Canou,Emmanuel.Chailloux,

2,3 Pascal Manoury
3 Laboratoire Preuves, Programmes et
Systemes,

(PPS - CNRS UMR 7126),
Université Pierre et Marie Curie, UPMC,
175 rue du Chevaleret,

75013 Paris, France.

Pascal.Manoury@pps.jussieu.fr

Philippe.Wang}@lip6.fr

Jean-Louis Colago *

4 Prover Technology S.A.S
21 Rue Alsace Lorraine, 31000 Toulouse, France

Jean-Louis.Colaco@prover.com

Abstract

High-level tools have become unavoidable in industrial software
development processes. Safety-critical embedded programs don’t
escape this trend. In the context of safety-critical embedded sys-
tems, the development processes follow strict guidelines and re-
quirements. The development quality assurance applies as much to
the final embedded code, as to the tools themselves. The French
company Esterel Technologies decided in 2006 to base its new
SCADE SUITE 6™ certifiable code generator on Objective Caml.
This paper outlines how it has been challenging in the context of
safety critical software development by the rigorous norms DO-
178B, IEC 61508, EN 50128 and such.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.2.1 [Requirements/specifications]: Tools;
D.2.5 [Testing and Debugging]: Testing tools

General Terms
ification

Reliability, Experimentation, Measurement, Ver-

Keywords safety critical, DO-178B, Objective Caml, SCADE
SUITE 6™ code generator

* This work started while the author was at Esterel Technologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.

Copyright (© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

215

1.

The civil avionics authorities defined a couple of decades ago the
certification requirements for aircraft embedded code. The DO-
178B standard (RTCA/DO-178B 1992) defines all the constraints
ruling the aircraft software development. This procedure is in-
cluded in the global certification process of an aircraft, and now
has equivalents in other industrial sectors concerned by critical soft-
ware (FDA Class III for the medical industry, EN 50128 for railway
applications, IEC 61508 for the car industry, etc).

The Esterel Technologies company markets SCADE SUITE
6™ ! (Berry 2003; Camus and Dion 2003), a model-based develop-
ment environment dedicated to safety-critical embedded software.
The code generator (KCG 2y of this suite that translates models into
embedded C code is DO-178B compliant and allows to shorten the
certification process of avionics projects which make use of it. Us-
ing such a code generator allows the end user (the one that develops
the critical embedded application) to reduce the development costs
by avoiding the verification that the generated code implements the
SCADE model (considered here as a specification). The verifica-
tion and validation activities are reduced to provide evidence that
the model meets the functional requirements of the embedded ap-
plication. In this way, a large part of the certification charge weighs
on the SCADE framework and this charge is shared (through the
tool provider) between all the projects that make use of this tech-
nology.

The first release of the compiler was implemented in C and
was available in 1999. It was based on a code generator written
in an Eiffel’s dialect (LOVE) (ECMA 2005) and was, at that time,
rewritten in the mainstream C language to avoid the risk of being
rejected by certification authorities.

Then, since 2001, Esterel Technologies has investigated new
compiling techniques (Colago and Pouzet 2003) and language ex-

Introduction

U'SCADE stands for Safety Critical Application Development Environment.
2KCG stands for qualifiable Code Generator.

tensions (Colago et al. 2005). The aim was to demonstrate that us-
ing an academic approach for the specifications of the language
(types systems, etc.) and Objective Caml (OCaml) for its imple-
mentation was also an efficient and clean approach for an indus-
trial project The project quickly led to the expected good technical
results but took some time to convince managers that such an ap-
proach should be accepted by a reasonable certification authority.
It has now appeared that OCaml allowed to significantly reduce
the distance between the specifications and the implementation of
an engineering tool, to have a better traceability between a for-
mal description of the input language of the tool and its compiler
implementation. Thus, Esterel Technologies has designed its new
SCADE SUITE 6™ in OCaml.

This paper describes the specific development activities per-
formed by Esterel Technologies to certify KCG with the several
norms: DO-178B, IEC 61508 and EN 50128. The differences and
particularities of these standards are not in the scope of this paper;
for convenience, we focus on the FAA standard (DO-178B, level
A).

2. Certification of safety critical code

The well known V-cycle dear to the software engineering indus-
try is the traditional framework of any certified/qualifiable devel-
opment project. Constraints are reinforced by DO-178B but the
principles stay the same: the product specifications are written by
successive refinements, from high level requirements to low level
design and then implementation. Each step involves several inde-
pendent verification activities: checking complete traceability of re-
quirements between successive steps, testing each stage of code
production with adequate coverage, code and coding rules reviews.

System
Requirements
Analysis

Software
Receipt

|

Software
High Level

Specifications

Architectural ﬁ Integration
Design testing

Detailed
Design

Validation
tests

Unitary
testing

Coding

Figure 1. V-cycle

2.1 The programming language in the development process

Traceability is one of the keywords of the compliance to DO-178B,
any part of any activity of the project cycle pertains to other parts
of the previous and of the following activities. For instance, any
requirement of the detailed design has to be related to one or several
requirements of the architecture design and to the lines of code
implementing this requirement. Furthermore, the relation has to
exist with the corresponding verification activity. In our example,
the detailed design requirement has to be related to unitary tests that
exercise this requirement. The evidence of these relations is one of
the most important documents of a certification file.

216

In a DO-178B compliant project, to ensure that the software sat-
isfies all the requirements and that any single line of the software
is necessary to its purpose, nothing can appear in the code without
being clearly specified and identified first with a good traceability
to high-level requirements (the specifications). These traceability
links pass through architectural design and detailed design require-
ments.

The choice of a programming language close and adapted to the
software to develop is very important since a well-suited language
leads to a simpler and more direct way to encode the software
requirements and consequently, a better and simpler traceability.

In the same vein, when the programming language is adapted
to the developed software, the architecture of the software is close
to the functional description of the software. The links between ar-
chitecture and specifications, and between architecture and detailed
design are simpler to establish and verify.

The code is tested but it is also reviewed by other developers.
To ease this verification, the code must be short (in the sense that
it contains more about fundamental algorithms than on resource
management) and readable.

Furthermore, the libraries and especially the system library have
to be treated in the same way as the main source code: it is manda-
tory to have the same traceability and verifications on any specific
part of the code.

So, the choice of a suitable programming language is relevant
for the various verification activities required in DO-178B compli-
ant projects. This is, of course, always true, but becomes crucial
when one has to defend a project in front of a certification author-

ity.

2.2 Code coverage

The DO-178B defines several verification activities and, among
these, a test suite has to be constituted to cover the set of speci-
fications of the software in order to verify and to establish the con-
formity of their implementation. As any activity during a DO-178B
compliant development process, the verification activities are eval-
uated. Some criteria must be reached to decide that the task has
been completed. One of these criteria is the activation of any part
of the code during a functional test. On this particular point, more
than a complete structural exploration of the code, the DO-178B
standard requires that a complete exploration of the control flow
has to be achieved following the Modified Condition / Decision
Coverage (MC/DC) measurement that we explain below.

® A decision is the Boolean expression evaluated in a test instruc-
tion to determine the branch to be executed. It is covered if tests
exist in which it is evaluated to true and false.

e A condition is an atomic subexpression of a decision. It is
covered if there exist tests in which it is evaluated to true and
false.

e The MC/DC requires that, for each condition ¢ of a decision,
there exist two tests which must change the decision value while
keeping the same valuations for all conditions but c. It ensures
that each condition can affect the outcome of the decision and
that all contribute to the implemented function (no dead code is
wanted).

The MC/DC is properly defined on an abstract Boolean data
flow language (Hayhurst et al. 2001) with a classical automata point
of view. The measure is extended to imperative programming lan-
guages, especially the C language, and is implemented in verifica-
tion tools able to compute this measure.

The challenging consequences of the choice of OCaml instead
of the usual C or ADA on MC/DC test campaigns is described in
section 4.

2.3 Source to object code traceability

The code verification takes place essentially on the source code.
But, the real need is to assert that all verified properties of the
source code are also properties of the object code and, indeed, the
executable binary. Most of the time these verifications activities are
neither possible to do on the binary, nor on the object file.

To handle this contradiction, the process requires to verify that
the properties of the source code are also properties of the object
code. The compiler analysis focuses on three points:

e the traceability of the object code generation: by transitivity,
one can deduce from that, the traceability of the requirements
in the object code.

the management of the system calls: processes for safety critical
applications are very suspicious about calls of system subrou-
tines.

conservation of the control flow: the code coverage measure-
ment is relevant if and only if the control flow is traceable from
source to object code.

More than the choice of a programming language, a DO-178B
project manager has to choose the complete development suite, in-
tegrating the code generator and test management tools which will
be the most convenient to manage all the development activities;
including coding but also all the verification activities about this
coding.

Section 5 describes how the three above requirements can be
addressed.

3. Using OCaml in the development process

OCaml is a functional, imperative and object oriented ML dialect.
The development environment provided by INRIA contains a na-
tive compiler dedicated to the most common architectures®.

As a functional language, OCaml is adapted to symbolic com-
putation and so, particularly suitable for compiler design and for-
mal analysis tools which rely mainly on symbolic computation. As
well for its bootstrapping (Leroy et al. 2008), OCaml is used in Lu-
cid Synchrone (Pouzet 2006), the a la Lustre language for reactive
systems implementation, or the Coq (Project 2006) proof assistant
implementation. Some years ago Dassault major avionics industry
approached the use of OCaml in software engineering for safe real-
time programs development. The experience of Surlog with AGFL*
and the usage of Astrée (Cousot et al. 2005) by AIRBUS industries
show that tools written in OCaml can be integrated in a critical
software development process.

The Esterel Technologies project presented in this paper is a
code generator, named KCG, that translates SCADE models (data-
flow with state machines) into embeddable C code. SCADE is a
Lustre(Halbwachs et al. 1991) dialect (program directed by equa-
tions with time constructions) enhanced by powerful control flow
constructions (automata).

KCG has a classical architecture: a front-end with several steps
of type-check, a middle-end performing a scheduling and transla-
tion of the equational and temporal source language into an im-
perative intermediate language, and a back-end which generates a
bunch of C files. It also contains several optimization passes. A par-
ticularity of KCG compared to other compilers resides in its ability
to ensure a maximum of traceability between the input model and
the generated C program. KCG is specified in a 500 page document
containing more than a thousand high-level requirements: one third
of them describe the functional requirements of the tool, the others
explain the semantics of the input language.

3In the sequel OCaml compiler will design the INRTA OCaml compiler

4w surlog.com

217

The high-level requirements that specify the static and dynamic
semantics of the Scade language involve logical inference rules.
The distance between such a form of requirements and a program
written in ML is small and the implementation is very routine, even
straightforward for some parts. Indeed:

e the functional abstraction and the modularity of OCaml are
high-level enough to be used as architectural requirements (di-
rect traceability).

e the extensive usage of algebraic data types and pattern matching
meets the algorithmic description.

e this functional architecture based on well identified compiler
phases allows an independent validation of each pass.

As any modern functional language, OCaml benefits from a
compiler that produces trustable applications, safer than most of
the mainstream languages which require to make use of dedicated
verification tools. In particular, the safety of its static typing allows
to skip some verifications that would be mandatory with other
languages: among the most evident are the memory allocation,
coherency, initialization checks, which are no longer relevant and
can therefore be omitted when using OCaml.

The OCaml code is compact, which allows to concentrate the
verification efforts on the real difficulties, i.e. the algorithmic ones,
and very little efforts are devoted to data encoding or resource
management issues.

On the other hand, some of the high-level constructs of this pro-
gramming language may have a bad incidence on the verification
activities. We decided not to support the complete OCaml language,
and thus forbade or restricted the usage of the most complex parts:

e the object-oriented paradigm is not used for the reason that the
control it offers is very difficult to manage statically,

e modules and functors constructions are allowed but without
some unnecessary constructs such as the manifest types and
other artifacts,

e exceptions and higher-order constructions are restricted by spe-
cific coding rules to avoid complex behaviors that would other-
wise be hard to verify.

While using OCaml in a development process has undeniable
advantages, it remains to answer the specific requirements of the
safety-critical software context. This point is addressed in the two
following sections.

4. Code Coverage for OCaml programs

An OCaml program such as KCG uses two kinds of library code:
the OCaml standard library, written mainly in OCaml, and the run-
time library, written in C and assembly language. Both are shipped
with the OCaml compiler and linked with the final executable. The
difficulty of specifying and testing such low-level library code led
us to adapt and simplify it.

The bulk of the modifications of the runtime library was to
remove unessential features according the coding standard of KCG.
In particular, the support for concurrency and serialization was
removed.

Most of the work consisted in simplifying the efficient but complex
memory management subsystem. We successfully replaced it by a
plain Stop&Copy collector with a reasonable loss of performance.

As most of the standard library is written in plain OCaml, its
certification is no more difficult than that of any OCaml application.

Regarding the OCaml part, we developed a tool, called mlcov’,
capable of measuring the MC/DC rate of OCaml programs. The
tool first allows to create an instrumented version of the source code
that handles a trace file. Running the instrumented executable then

5 http://www.esterel-technologies.com/technology/free-software/

leads to (incremental) update of the counters and structures of the
trace file. Finally, the coverage results are presented through HTML
reports generated from the trace file.

MC/DC for OCaml sources Since OCaml is an expression lan-
guage, we have to address the coverage of expression evaluation:
we state that an expression has been covered as soon as its eval-
uation has ended. Expressions are instrumented with a mark al-
lowing to record by side-effect that this point of the program has
been reached. Some constructions of the OCaml language (such as
if then else) may introduce several execution branches. Cov-
erage of expressions entails tracing the evaluation of each one of
the branches independently. These transformations are detailed in
(Pagano et al. 2008).

The mlcov implementation The mlcov tool is built on top of the
front-end of the OCaml compiler. For our specific purposes, a first
pass is done, prior to the instrumentation stage, in order to reject
OCaml programs that do not comply with the coding standard of
KCG.

The figure 2 shows a source code annotated according to test
programs: conditions in light gray fulfill the MC/DC criterion,
while those in dark gray are not completely covered. And the figure
3 gives the structural coverage and MC/DC statistics for these tests.

let all positivel a b c

(a > 0) && (b > 0) && (¢ > 0) ;;
(* all_positivel 1 1 1 ;; *)
(* all positivel 1 1 0 ;; *)
let all positive2 a b c =
(a > 0) && (b >0) && (¢ > 0) ;;
(* all_positive2 1 1 1 ;; *)
(* all_positive2 1 0 1 ;; *)
(* all_positive2 1 1 0 ;; *)
let all positive3 a b c =
(a>0) && (b >0) && (¢ > 0) ;;
(* all positive3 1 1 1 ;; *)
(* all positive3 0 1 1 ;; *)
(* all_positive3 1 0 1 ;; *)
(* all positive3 1 1 0 ;; *)

Figure 2. Annoted source code

Performance Results Performances are good enough for code
coverage analysis since this activity mainly consists in applying a
lot of pretty small examples targeting specific requirements.

5. Traceability from sources to binaries

A DO-178B level A software development imposes to give evi-
dence about the trustability of the tools and compilers used in the
process. To reach this goal, we expertized the OCaml compiling
process in order to set up hints for the traceability from the source
code to the object code. On the basis of this expertise, among other
required documentation, test sets have been produced and are part
of the bunch of documents for the certification of KCG.

We present in this section the guidelines of this study, mainly
focused on two points: the safe management of system calls and
the traceability of control flow.

218

Structural coverage statistics

|Functi0n name |C0vered points |Total points |Percentage
lall_positivel |1 1 [100 %
lall_positive2 |1 1 [100 %
lall_positive3 |1 1 100 %
[TOTAL 3 3 100 %

MC/DC statistics

|Decisi0n number |C0vered conditions |T0tal conditions |Percentage
[#L (all positivel) |[1 [[33 %
[#2.(all positive2) |2 3 66 %

#3 (all_positive3) [[3 3 [100 %
TOTAL 6 9 66 %

Figure 3. Coverage rates

Actually, not only does the executed object code of an OCaml
program consist of the generated code but also includes some ser-
vice assembly code, the runtime library and the so-called standard
OCaml libraries. All those components are linked together at the
end of the compilation step.

As noticed in section 4, the set of OCaml libraries had been
slightly simplified to keep only the ones written in OCaml, thus it
falls under the regular treatment of pieces of OCaml code. The run-
time library, developed in C, is mainly concerned with garbage col-
lection. A little static assembly code provides mechanisms for ex-
ternal calls to memory management C functions and for exception
handling. As for any OCaml application, when compiling KCG,
an ad hoc piece of assembly code is generated to set the optimized
mechanism of functional application of OCaml. The code for all the
standard and runtime libraries used in KCG is reasonably compact,
especially after the drastic simplification of the GC. External calls
are well confined in small static assembly code and no use of the
libc library can escape from it. So, fulfilling the two requirements
cited above (traceability and safe management of system calls) for
this part of OCaml programs can be done by following the usual
process.

To deal with the generated code, we first benefited from the
facts that the source code of the OCaml compiler is open and its
functional architecture designs a clear process of refining step by
step the intermediate languages, from the abstract syntax tree to
the assembly code. The OCaml compilation is itself traceable in
the sense that all the intermediate rewritings of the source program
can be pretty-printed. It is notable that the bootstrapped OCaml
compiler itself naturally offers the traceability facilities that were
intentionally designed for the KCG code generator (see section 3).

It is possible to stop the OCaml compiling process after the
emission of assembly code. Then, one can assemble by hand and
link all the components, using the same command as the one the
compiler would have used, and finally obtain the same executable
as the one the full compiling process would have produced. As a
consequence, it is enough to establish traceability from source code
to assembly code: a test set can consist in a piece of OCaml code
as input and its corresponding piece of assembly code as expected
output.

At this level of the expertise, three main points had to be taken
into consideration:

e the translation of explicit controls of the source code, including
pattern matching and exception handling;

e the controls introduced by the compiler itself which are indeed
few and have been tracked;

e the so called primitive functions which may either be translated
to assembly language or generate calls to external functions.

Concerning the first point, rather than an unfeasible full correct-
ness test of the OCaml compiler, we proceeded to a review of its
design principles, deep enough to set a methodology able to ensure
the above intended properties of the compiler for a given OCaml
application (restricted to the coding standard of the project).

Concerning the second point, a detailed review of the code led
us to enumerate the few occurrences where tests are generated:
memory allocation, call to the GC, division by 0, access to array
or string elements and the mechanism of functional application.
In each case, either one can design test sets to cover them, or the
branching may stop the program in a safe state®.

Concerning the third point, all the primitives actually appear
in the intermediate lambda code and an exhaustive study of their
appearance in the generated assembly code has been performed.

6. Conclusion

In the field of safety-critical avionics software, the mainstream
programming languages are exclusively C and ADA. Even to de-
velop tools, which are not embedded themselves but which are used
to implement embedded applications, the usage of object-oriented
programming languages as Java or C++ is not considered relevant
due to the complexity of their control flow. The restrictions needed
to develop safety-critical Java/C++ software remove all the features
that differentiate OOP languages than C/ADA.

At the very beginning of the project, using OCaml instead of
C was a challenge; the point was to have a programming language
closer to the functional specifications but further away from the ex-
ecutable program. The main risk resided in the problems that could
have been met to show the traceability between the different levels
of specifications and the binary resulting from the compilation of
a highly functional and polymorphic source code. This project has
shown that this was not an issue thanks to the good traceability of
the OCaml compiler and its compilation schemes.

Another risk was to express and reach a full code coverage with
respect to the MC/DC measure. It was managed by the develop-
ment of a tool and the performing of a classic test campaign, which
revealed neither longer nor more expensive than the previous ex-
periences of code coverage involving code generators written in C
code. The additional cost of development of a specific tool (mlcov)
is balanced by a gain when qualifying as a verification tool a soft-
ware that is completely designed for our purpose.

The new KCG, developed with OCaml, is certified with respect
to the IEC 61508 and EN 50128 norms. It is used in several civil
avionics DO-178B projects (such as the A380 Airbus plane, for in-
stance) and will be qualified simultaneously to the project qualifica-
tions (with the DO-178B, the tools are not qualified by themselves,
but by their usage in a project). The project has been accomplished
with the expected delays and costs. The software consists in 65k
lines of OCaml code, including a lexer and a parser, plus 4k lines
of C code for the runtime library. The development team was com-
posed of 6 software engineers and 8 test engineers during almost
2 years. It is a real DO-178B project, yet with only one singularity
compared to other tool development in this certification framework:
the use of OCaml as the main programming language.

There are others industrial usages of OCaml in some big com-
panies in the field of embedded avionics systems and they have an
increasing interest on the usage of this kind of language for build-

6 This is not acceptable for embedded code, but it is for development tools
in the sense that it ensures that no faulty code will ever be silently produced.

219

ing software engineering tools. In the transportation domain, Prover
Technology also provides certifiable solutions for automating veri-
fication activities. To meet a high level of certification (SIL 4 in [EC
61508 standard) required by these applications, a diversified imple-
mentation of some software modules present in the toolchains. This
diversification consists in having two implementations each using
its own implementation technology and comparing the result. For
this purpose, OCaml has been chosen jointly with the mainstream
C language. This different approach of certification is another op-
portunity for functional languages.

The main result for the ICFP community is that the use of our fa-
vorite languages to build compilers is starting to be well understood
and accepted by industrial processes and certification authorities in
the context of software engineering tools. We can be optimistic to
see that, in the middle of all the mainstream (and efficient for other
purposes) languages, there is a room for functional technologies
and culture.

References

Gérard Berry.
Development of Safety-Critical Systems.
Technologies, 2003.

Jean-Louis Camus and Bernard Dion. Efficient Development of Air-
borne Software with SCADE SuiteT™. Technical report, Esterel-
Technologies, 2003.

Jean-Louis Colaco and Marc Pouzet. Clocks as First Class Abstract
Types. In Third International Conference on Embedded Software (EM-
SOFT’03), Philadelphia, Pennsylvania, USA, oct 2003.

Jean-Louis Colago, Bruno Pagano, and Marc Pouzet. A Conservative
Extension of Synchronous Data-flow with State Machines. In ACM
International Conference on Embedded Software (EMSOFT’05), Jersey
city, New Jersey, USA, sep 2005.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The astrée analyser. In European Symposium on Programming.
LNCS, April 2005.

ECMA. ECMA-367: Eiffel analysis, design and programming language.
ECMA (European Association for Standardizing Information and Com-
munication Systems), pub-ECMA:adr, June 2005.

The Effectiveness of Synchronous Languages for the
Technical report, Esterel-

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. In Proceedings of the IEEE,
pages 1305-1320, 1991.

Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K.
Rierson. A Practical Tutorial on Modified Condition/Decision Coverage.
Technical report, NASA/TM-2001-210876, May 2001.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rmy, and
Jrme Vouillon. The Objective Caml system, documentation and
user’s manual — release 3.11. INRIA, December 2008. URL
http://caml.inria.fr/pub/docs/manual-ocaml/.

Bruno Pagano, Olivier Andrieu, Benjamin Canou, Emmanuel Chailloux,
Jean-Louis Colao, Thomas Moniot, and Philippe Wang. Certified de-
velopment tools implementation in objective caml. In Paul Hudak and
David Scott Warren, editors, Tenth International Symposium on Practi-
cal Aspects of Declarative Languages (PADL), volume 4902 of Lecture
Notes in Computer Science, pages 2—17. Springer, 2008.

Marc Pouzet. Lucid Synchrone version 3.0 : Tutorial and Reference Man-
ual, 2006. (www.lri.fr/%7Epouzet/lucid-synchrone).

The Coq Development Team LogiCal Project. The Coq Proof Assistant
Reference Manual, 2006. (coq.inria.fr/V8.1beta/refman).

RTCA/DO-178B. Software Considerations in Airborne Systems and Equip-
ment Certification. Radio Technical Commission for Aeronautics RTCA,
pages 31,74, December 1992.

